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Natural generalization : complex braid groups. The Garside
properties have been largely extended to complex braid groups
(Bessis, Corran, Picantin).

Try to find a faithful linear representation for complex braid
groups ?

For the usual braid group B, =< 01,...,05-1 >,

Basis vjj, 1 <i#j<n, vj=vy;

vij if k>i—lorj<k

v;_1J+(1—q)vU if k=i—-1

tg(q — 1)vijiq1+qviyr;, if k=i<j—1
Ok-Vij =1 tq7v; if k=i=j-1

vi+tq< (g = 1Pvies if i<k <j-1
Vijo1 (g 1)y if k=j-1
(1= q)vj + qviji1 i k=J
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This kind of formula can be understood in the realm of (real) root
systems (Digne, Cohen-Wales, Paris).

How to generalize them to the complex world ?

One needs to find a setting were things are simpler to describe and
to understand.

Another example : the Krammer representation is unitarizable for
g, t close to 1 (4 another condition), with unitarising form given
explicitely (R. Budney) by

’—q2t2(q—1) if i=k<j<lori<k<j=
(1-q) if k=i<I<jork<i<j-=
) B t(qg—1) if i<j=k<lI
< Vjj, Vg >= CX q2t(q—1) if k</:i<j
—t(q—-1)>?(1+qt) if k<i<lI<j
(1—qt)(1+q?t) if k=ij=1I

with
c=(t—1)(1+qt)(g—1)*t%q 3
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s € GL,(C) is called a reflection if
» Ker (s — 1) is an hyperplane.
> 52 =1,
Relaxing the condition s?> = 1 by s having finite order leads to the

definition of a pseudo-reflection.

W < GL,(C) is called a complex (pseudo-)reflection group if it is
finite and generated by the set R of its (pseudo-)reflections.

From now on, we assume that W is a (true) reflection group.

Remark : if W < GL,(R) < GL,(C), then W is a finite Coxeter
group.

Fact : every reflection group is a direct product of irreducible
reflection groups.
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Shephard-Todd classification : second series.

For e,n > 1, G(2e, e, n) is the group of n X n matrices such that

» they are monomial (one nonzero coefficient in each line and
column)

» they have their nonzero coefficients in p2¢(C)
» the product of their nonzero coefficients is £1.
Coxeter cases : for e = 1, Coxeter group B,,.
In general, 2 classes of reflections.

Plus, not to forget : 15 exceptions !

G12,G13,G22,Go3 = H3,G24,G27,Go8 = Fa,Gog,G39 =
Ha,G31,G33,G34,G35 = Eg,G36 = E7,G37 = Eg.
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Complex braid groups

Let W < GL,(C) be a complex reflection group, and R its set of
reflections.
It defines an hyperplane arrangement and its complement in C”

A={Ker(s—1)|seR} X=C"\[JA4

» P = m1(X) is the corresponding pure complex braid group
» B = m(X/W) is the corresponding complex braid group
1-P—-B—->W-—>1

v

B is torsion-free
(W irréductible.) Z(B) ~ 7Z, Z(P) ~ 7 (except possibly for
Gs1)

v



Archetype : W = G,

B is the classical braid group on n strands.

-l
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Braided reflections and parabolic subgroups

W preserves some hermitian scalar product on C”.
To any vector space U C ©", is associated a parabolic subgroup

Wo={weW VuelU wu=u}

Let V = Ut
(Steinberg) Wy < GL(V) is a complex reflection group, Rg C R
(Broué-Malle-Rouquier) By embeds in B

(uniquely up to P-conjugation)
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One can define elements in 71(X /W, z) = B in the following way

By definition, a braided reflection is a conjugate of such a loop in
X /W. Braided reflections generate B.
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Classical representations

The Hecke algebra Hy(q) is the quotient of the group algebra
©C(q)B by the relations (o — q)(c + q71),

for o braided reflections.

Conjecture

Hw(q) is isomorphic to the group algebra C(q)W
(Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR),

exceptional groups of low rank (Broué-Malle, J. Miiller,
Etingof-Rains).

When it holds : Rep(W) ~~ Rep Hw/(q) ~ Rep(B)
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Holonomy Lie algebra

The holonomy Lie algebra is
T=<ty,He A ’ [thtZ] =0>

where codimZ =2, Z C Hy, Hy € A and

tZ:ZtH

ZCH

W acts on T through w.ty = t, (), where w.ts = t,5, -1 with
R« A.
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Example 1 : W = G(5,5,2) = h(5)

t

ty

to=tit+tb+t3+4+1s
T=<t,.. ts|[1+t+t3+ts+ts1]=0>
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W =6, C GL,(C)
C"={(z1,...,2n) | zz € C}
si=(ij) Hj:zi=z ~ t;€T

> ZZZ,':ZJ‘:Zk w[t,'j,t,'j-i-t,'k-f—tkj]:o
» ZZZ,':ZJ‘&Z/(:ZI W[t,’j,t,‘j—i-tk/]zo
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W =&, C GL,(C)
C"={(z1,...,2n) | zz € C}
si=(J) Hj:zi=z ~ t;eT

PZZZ,':ZJ':Zk w[t,'j,t,'j-i-t,'k-f—tkj]:o
>Z;Zl-:zj&zk:Z/ W[t,’j,t,‘j—i-tk/]zo

T =< tjj | [t,'j, tix + tkj] =0, [t,'j, tk/] =0>



Example 2 : W = G(1,1,n) =6,

W =6, C GL.(C)
C"={(z1,...,2n) | zz € C}
sj=(1J) Hj:zi=z ~ t;eT
> Z:izi=2zj =2z ~ [tj, tj+tu+t] =0
> Z:zi=2 & zx =z ~ [tj, tj+tw] =0
T =< tj | [t tic + tis] = 0, [tj, ti] =0 >

Remark. When W = &,,, 7 is also known as the Lie algebra of
(horizontal) chord diagrams.
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Monodromy representations

Let p: W — GLN(C). If ¢ : T — glpn(C) is equivariant, then

1
wp = 1-h %m)w € Q4(X) @ gln(C)

with wy = day/ay, H = Ker ay, is integrable and equivariant
(Kohno). It yields

R: B — GLy(A) € GLy(K) with A = C[[H]], K = C((h))

such that R(o) is conjugated to p(s) exp(hy(ts)) if o is a braided
reflection associated to s € R.
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Cherednik systems

For p: W — GLpn(C), let ¢(ts) = p(s) € GLy(C) C gly(C).

Easily checked : ¢ is a representation of 7.

Proof :
Sotzso_l = 50.(2 tH) = Z tso(H) =tz
H>Z H>Z

hence [tn,, tz] = [s0, tz] = 0.

R(o) has eigenvalues g = exp(h) and —g~! = —e~", hence factors

through Hy/(q).

This was the only contruction known so far which worked for
arbitrary complex reflection groups.
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Let Wy be a parabolic subgroup of W, and By, 7p the associated
objects.
(Broué-Malle-Rouquier) By can be embedded in B.

Lemma
To— T

Theorem

Let (p, ) be a representation of (W, T), let (po, o) be its
restriction to (W, 7o), and let R, Ry be the associated
representations of B and By. Then Ry is isomorphic to the
restriction of R to By < B.

Type A : Jorge Gonzalez-Lorca, 1998.

In terms of universal monodromy :

B‘>Wb<exp’?

|

By — W, x exp’]AE)
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General properties (2)

The correspondence (p, ¢) ~> R is functorial and preserves
irreducibility.

Proposition

The Lie algebra of the Zariski closure of R(P) contains

o(T) ®c K.

Proposition

If to(tr) = ¢(tn) and p(W) C On(R), then R(B) C Ui (K)
where ¢ : K — K, f(h) — f(—h) and

Un(K) = {x € GLn(K) | fe(x) = x71}
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Rational variations

Let k be a characteristic 0 field. 7 is defined over k.
In order to make (p, p) ~> R work over k and K = k((h)), one
only needs

¢:B— Wk exp’ZA'

such that, whenever o is a braided reflection, ®(o) is conjugated
to sexp ty by some exp(x), x € 7.

Conjecture 1

Such morphisms exist.

Type A : Drinfeld (associators)
Type B : Enriquez
Type h(m) = G(m,m,2) : |.M.

This conjecture is corroborated by : X, X/W , X — X/W are
defined over Q (.M., Jean Michel).
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Application 1 : unitarity

Theorem

If conjecture 1 (+ conjecture BMR) holds true, then the Hecke
algebra representations are unitarizable when |q| =1 and q is close
to 1.

Main argument in proof : by substitution h =iu, u € k = R,
provided that ® is convergent.
If it is not, one can use

Proposition

If L C R((h)) is a finitely generated extension of R(h) such that
e(L) = L, then there exists L* C R({h}) such that e(L*) = L* and
L*/R(h) ~ L/R(h) in a e-equivariant way.
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When W is Coxeter, one can use that the representations of
Hw(q) are defined over R[q, g 1] (Lusztig, Alvis, Geck).
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Theorem

If W belong to the general series, then the representations of the
Hecke algebra representations are unitarizable when |q| =1 and q
is close to 1.

Reflection representation case : Couwenberg, Heckman, Looijenga
2005.
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The monodromy construction of Hyy(q)-representations is a
consequence of the strange fact that

0: T —->CW,ty—syeR
is a Lie algebra morphism, CW being considered as a Lie algebra
for [a, b] = ab — ba.
Definition
The infinitesimal Hecke algebra 'H is the image of ¢, namely the
Lie subalgebra of CW generated by the reflections.

Proposition

‘H is reductive, with center of dimension the number of conjugacy
classes of reflections in W.
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Theorem

Let p be a representation of W, R the associated
Hy (q)-representation. Then, the Zariski closure R(P) is
connected, has index at most 2 in R(B), and Lie algebra

p(H) ®¢ K.

Remark : using unitarisability (e.g. if W Coxeter), the knowledge
of R(B) determines the topological closure of R(B) when |g| =1
and g close to 1 (g transcendent).

Type A : Freedman, Larsen, Wang 2002.
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Theorem

H =~ IT sV | x| T su(v)

PEQRef /~ peEE /™

X H so(V,) | x H sp(V,)

pPEFsa/~ pEFsp /=

Example : if p: W — GL,(C) is a reflection representation, Wy a
maximal parabolic subgroup, p(H') acts irreducibly, contains
p(Hp) = sln-1(C) ~ p(H') = sls(C).

Proposition

The real Lie subalgebra H. of H C CW generated by the
vV—1s,s € R, is a compact form of H.
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Where to look ?

The Krammer representation is a deformation of the permutation
representation of W on R :

Letting N = #R, and p: W — GLy(C) = GL(CR) the natural
permutation representation on R is given by :

Basis of V = CN : v5,5 € R, with w.vg = v, -1.

This part of the representation variety in dimension N seems a
good place to start with.

A first general deformation is given by the Hecke algebra
representation Hecke(R) : B — GLy(C), but :

» the faithfulness question is still open for the Hecke algebra
» it is not irreducible

» in the usual Krammer representation, the generators have 3
eigenvalues and not 2

> so it is not a generalization of what is known to work !
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Let N =#R, and p: W — GLy(C) the natural permutation
representation on R.
Basis of V = CN : v5,s € R, with w.vg = v, 1.

Let es be the standard idempotent associated to s € R :
€s.Vs = Vs, €.V, =0 fors#u

Then ¢(ts) = es defines an equivariant representation of 7, hence
R: B — GLn(K), or Ry : B — GLy(C).
Let (P, P) be the commutator subgroup of P.

Theorem

Ry factors through B/(P, P), and is faithful as a representation of
B/(P,P) if h ¢ Q. If h € Z, then Ry, factors trough W. h — Ry, is
k(W)-periodic for some k(W) € Z>>.
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One has Ry = p. When W is a Coxeter group, x(W) =2. If W is
the Weyl group of a root system ®, R; is the hyperoctahedral
action on &7 :

Let 5(s) € @ be the positive root associated to s € R, and o(3)
the reflection associated to 3 € ¢

if w.B(s) € T then Ry(w).vs = Vo(w.3(s)) =
if W.ﬁ(s) o4 &1 then Rl(W).VS = —Vo(w.B(s)) = ~Vusw-!
Theorem

(V. Beck) k(W) is the order of the extension
1—(P,P)— B/(P,P)— W — 1.
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The generalized Krammer representation

Let N =#R, and p: W — GLp(C) the natural permutation
representation on R.

Basis of V = CN : v, s € R, with w.vs = vye,-1.

Let me C.

Theorem
The formulas

ts.Vs = mvs
ts.Vy = Veus — (S, u)vs ifs#u

define an equivariant representation of T, where

afs,u) = #{y € R | yuy = s}
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Example : W =G,

The Krammer representation is a representation of the BMW
algebra, hence appears in the representation theory of
orthosymplectic quantum groups. Through the Kohno-Drinfeld
theorem, it corresponds to a representation of 7 that factors
through the algebra of Brauer diagrams.

One finds tj; — s; — pj;; with

i j i j
SU : ‘ ‘ }{ pij : ‘ ‘ i':'i ‘
j i j

More precisely we find

tij.vii = myj
tij-‘/jk = Vik — Vj if #{Iv.jak}:?)
tivig = vigif #{i,j,k, I} =4
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Irreducible components

Theorem

The formulas ts.vs = mvs, ts.v, = vsys — oS, u)vs define an
equivariant representation of T, where

afs,u) =#{y € R | yuy = s}

For c € R/ W, define V. =< vs,s € ¢ > and (vs|vs) =1 —m,
(vs|vy) = a(s, u) on each V..

Then ¢(ts) is a linear combination of p(s) and of the orthogonal
projector on vs associated to ( | ).

Moreover :
> o is the direct sum of the ¢, c € R/W.
> @ is irreducible iff ( | ) is nondegenerate on V. (for m # —1)
» For generic values of m, ¢(7) = gl(Vc)
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Irreducibility and decompositions

Let R: B — GLp(K) be the corresponding representation. We
have
R= P Re, Re:B— GLy(K)
cER/W

Theorem
For generic values of m,

> R is irreducible and R.(P) = GL(V. ® K)
> If Wy C W parabolic, then

Resg,R ~ Ry & Hecke(R \ Ro)

> SpR(0) ={q,—q7',q™}, g = exp(irh).
» If conjecture 1 is true, then ‘R’ is unitarizable for small h and
large m.
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Faithfulness

If W is a Coxeter group of type ADE, then W has a single class of
reflections.

Theorem
If W is a Coxeter group of type ADE, then R is isomorphic to the
Krammer representation, hence is faithful.

We do not know if R can be unfaithful when #R/W > 1.
Theorem

If W is a Coxeter group of type
h(2m+1)= G(2m+1,2m+ 1,2), then R is faithful.

At least, the following seems plausible.

Conjecture 2
If W has a single class of reflections, then R is faithful.
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Group-theoretic properties

Let W be an irreducible pseudo-reflection group.

Theorem
If conjecture 2 is true, then

» B is linear, residually finite, etc.

» P is residually torsion-free nilpotent (hence biorderable,
residually p, etc.)

» Normal subgroups of B “usually” intersect
» The Fitting subgroup of B equals its center
» The Frattini subgroup of B is trivial.
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The statements concerning B are consequences of the following

Theorem
If conjecture 2 holds and W is irreducible, then B embeds in some
GL, as a Zariski-dense subgroup.

» By considering pseudo-reflection groups, no new B arise, so
we can assume that W is a (true) reflection group.

» All groups of type G(2e, e, n) can be embedded in the usual
braid group as finite-index subgroups.

» This theorem is true when W is Coxeter (I.M.).

» Among exceptional groups, only Gi3 has #R/W > 1, and its
braid group is isomorphic to the one of Coxeter type h(6).
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Sketch of proof

In order to prove that P is residually torsion-free nilpotent, we need
to consider pseudo-reflection groups : infinite series G(de, e, n)
plus 34 exceptions. Fortunately, the following phenomena occur :

» All P arising in the infinite series are either of type G(e, e, n)
or fiber-type.

» All P arising in the exceptional types are either fiber-type or
correspond to reflection groups with #R/W =1, except
Gas, Gog, G32

So it is sufficient to prove it for reflection groups with #R/W =1,
provided that :
Proposition

(I.M.) If W is a Coxeter group, or of type Gas, Gog, G32, then P is
residually torsion-free nilpotent.
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Residual nilpotence and representations

How do we prove residual torsion-free nilpotence?

Idea : use faithful representations, embed P in some residually
torsion-free linear group

For A= CJ[[h]], GLn(A) contains a residually torsion-free nilpotent
group, namely

CGLY(A) = {M € GLy(A) | M =1d mod h} = exp (hMaty(A))

If R: B — GLy(A) is faithful, check if R(P) C GL&(A).

It works for monodromy representations,

so under conjecture 2 this settles the case of #R/W =1 for W a
reflection group.
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First miracle

For the other ones?
For type Gps, W is generated by < s1, sp, 53 > with relations

3 3 3
5153 = 5351,515251 = S25152,525352 = S35253,S51 = Sp = 53 =1
and B is the usual braid group on 4 strands By.
But P = Ker (B +— W) is not the pure braid group on 4 strands

Ps.
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where t and g denote algebraically independent parameters.
Embed Q(q, t) into K = C((h)) by g — e and t evV2h,
Then R(P4) € GLY,(A) : no surprise.
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Consider the Lawrence-Krammer formulas :

(

Ok Xk k+1 = tq2Xk,k+1

orxXik = (1 = q)Xi k + X k+1 i<k

OkXj k+1 = Xik + tgk— (g — Dxis1 i<k

okxkj = tq(q — L)Xk k41 + Xkt k+1<j

OkXki1) = Xkj + (1 — q)Xkq1 k+1<j
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First miracle

Consider the Lawrence-Krammer formulas :

(

OkXk kb1 = 14X ket 1

orXik = (1 = q)Xik + 9 kt1 i<k

OkXikr1 = Xik + tq" g — V)xppy1 i< k

okxkj = tq(q — L)Xk k+1 + GXkt1, k+1<j

OkXkt1j = Xkj + (1 — q)Xkt1,) k4+1<j

TkXij = Xi j i<j<kork+tl<i<j
okXij = Xij + 16" 7(q — 1) X k41 i<k<k+l<j

where t and g denote algebraically independent parameters.
Embed Q(gq, t) into K = C((h)) by q — —je" and t — e¥2/ with
j = exp(3T).

Then (Miracle!) R(P) C GLY(A).

Hence P is residually torsion-free nilpotent.
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First miracle

The same miracle happens for Gz, whose P is a subgroup of the
usual braid group on 5 strands.

Hence P is residually torsion-free nilpotent for Gps and Gss.
But for Gyg ?

< s, t,u | stst = tsts,su = us, tut = utu, s> =t> =13 =1>
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Second miracle

For W = Gpg, B is isomorphic to the Artin group of type Bs.
Recall P = 71(X).

The hyperplane complement of Gyg is included in the hyperplane
complement of Gos.

But : the corresponding morphisms P,s — Pas is not into.
However, there exists morphisms

Bys <—— B>
Wos <— Whe

hence Pog embeds in Pos in a strange way.
These two morphisms are defined by (s, t, u) — ((tu)3, s, t).
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Are they related to something ?

Surprisingly, yes.
Recall that
» Bos = By, braid group on 4 strands,
> By is the Artin group C3 of type B3z = (3,
» C3 ~ B3 x F3 through Artin action.
Then B3 x F3 embeds in B, in several ways.
> Artin way : use F3 ~ Ker(Py — P3).
Not the right one.

» In Magnus way : through B4 — Aut(Fa) restricted to
Fa/x1xox3xa =~ F3, one gets By — Aut(F3), of kernel Z(Bs)
and image containing Inn(F3) ~ F3. It also contains a copy of
B3, whence another subgroup of B4 isomorphic to B3 x F3.

This is the right one!
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Group-theoretic conjecture

These miracles maybe give additional support to the following
conjecture, independantly of the ‘main’ one.
Conjecture 3

If A is a pseudo-reflection arrangement, then 71(X) is residually
torsion-free nilpotent.

(Recall that residual torsion-free nilpotent groups are bi-orderable
and residually p for all p.)
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