A Krammer representation for complex braid groups

Ivan Marin

Pisa, June 22, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Introduction

General goal :

General goal : extend what is known for the usual braid groups to their natural generalizations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

Braid groups are linear (Krammer, Bigelow)

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell, Kohno).

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell, Kohno).

Braid groups are residually finite (folklore).

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell, Kohno).

- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell, Kohno).
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)

...

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell, Kohno).
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell, Kohno).
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)

... (torsion-free, Frattini subgroups, ...)

Same questions for Artin groups of finite Coxeter type?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Same questions for Artin groups of finite Coxeter type?

- Braid groups are linear (Krammer, Bigelow)
- Braid groups have Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent .
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)

▶ ...

Same questions for Artin groups of finite Coxeter type?

- Artin groups are linear (Digne, Cohen-Wales)
- Braid groups have Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent .
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)

▶ ...

Same questions for Artin groups of finite Coxeter type?

- Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Briskorn-Saito, Deligne).

- Pure braid groups are residually torsion-free nilpotent .
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- ▶ ...

Same questions for Artin groups of finite Coxeter type?

- Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Briskorn-Saito, Deligne).
- ► Pure Artin groups are residually torsion-free nilpotent (I.M.).

- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- ▶ ...

Same questions for Artin groups of finite Coxeter type?

- Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Briskorn-Saito, Deligne).

- ► Pure Artin groups are residually torsion-free nilpotent (I.M.).
- Artin groups are residually finite (consequence of linearity).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- ▶ ...

Same questions for Artin groups of finite Coxeter type?

- Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Briskorn-Saito, Deligne).

- ▶ Pure Artin groups are residually torsion-free nilpotent (I.M.).
- Artin groups are residually finite (consequence of linearity).
- Artin groups have cyclic center (Brieskorn-Saito, Deligne).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- ▶ ...

Same questions for Artin groups of finite Coxeter type?

- Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Briskorn-Saito, Deligne).

- ▶ Pure Artin groups are residually torsion-free nilpotent (I.M.).
- Artin groups are residually finite (consequence of linearity).
- Artin groups have cyclic center (Brieskorn-Saito, Deligne).
- Normal subgroups of Artin groups usually intersect non-trivially (I.M.)
- ▶ ...

Natural generalization : complex braid groups.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Natural generalization : complex braid groups. The Garside properties have been largely extended to complex braid groups (Bessis, Corran, Picantin).

Natural generalization : complex braid groups. The Garside properties have been largely extended to complex braid groups (Bessis, Corran, Picantin).

Try to find a faithful linear representation for complex braid groups ?

Natural generalization : complex braid groups. The Garside properties have been largely extended to complex braid groups (Bessis, Corran, Picantin).

Try to find a faithful linear representation for complex braid groups?

For the usual braid group $B_n = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$,

Natural generalization : complex braid groups. The Garside properties have been largely extended to complex braid groups (Bessis, Corran, Picantin).

Try to find a faithful linear representation for complex braid groups?

For the usual braid group $B_n = \langle \sigma_1, \dots, \sigma_{n-1} \rangle$, Basis $v_{ij}, 1 \le i \ne j \le n$, $v_{ij} = v_{ji}$

Natural generalization : complex braid groups. The Garside properties have been largely extended to complex braid groups (Bessis, Corran, Picantin).

Try to find a faithful linear representation for complex braid groups?

For the usual braid group $B_n = \langle \sigma_1, \dots, \sigma_{n-1} \rangle$, Basis $v_{ij}, 1 \le i \ne j \le n$, $v_{ij} = v_{ji}$

$$\sigma_{k}.v_{ij} = \begin{cases} v_{ij} & \text{if } k > i-1 \text{ or } j < k \\ v_{i-1,j} + (1-q)v_{ij} & \text{if } k = i-1 \\ tq(q-1)v_{i,i+1} + qv_{i+1,j} & \text{if } k = i < j-1 \\ tq^2v_{ij} & \text{if } k = i = j-1 \\ v_{ij} + tq^{k-i}(q-1)^2v_{k,k+1} & \text{if } i < k < j-1 \\ v_{i,j-1} + tq^{j-i}(q-1)v_{j-1,j} & \text{if } k = j-1 \\ (1-q)v_{ij} + qv_{i,j+1} & \text{if } k = j \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

This kind of formula can be understood in the realm of (real) root systems (Digne, Cohen-Wales, Paris).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

This kind of formula can be understood in the realm of (real) root systems (Digne, Cohen-Wales, Paris).

How to generalize them to the complex world?

This kind of formula can be understood in the realm of (real) root systems (Digne, Cohen-Wales, Paris).

How to generalize them to the complex world?

One needs to find a setting were things are simpler to describe and to understand.

This kind of formula can be understood in the realm of (real) root systems (Digne, Cohen-Wales, Paris).

How to generalize them to the complex world?

One needs to find a setting were things are simpler to describe and to understand.

Another example : the Krammer representation is unitarizable for q, t close to 1 (+ another condition), with unitarising form given explicitly (R. Budney) by

This kind of formula can be understood in the realm of (real) root systems (Digne, Cohen-Wales, Paris).

How to generalize them to the complex world?

One needs to find a setting were things are simpler to describe and to understand.

Another example : the Krammer representation is unitarizable for q, t close to 1 (+ another condition), with unitarising form given explicitly (R. Budney) by

$$< v_{ij}, v_{kl} >= c \times \begin{cases} -q^2 t^2 (q-1) & \text{if } i = k < j < l \text{ or } i < k < j = l \\ (1-q) & \text{if } k = i < l < j \text{ or } k < i < j = l \\ t(q-1) & \text{if } i < j = k < l \\ q^2 t(q-1) & \text{if } k < l = i < j \\ -t(q-1)^2(1+qt) & \text{if } k < i < l < j \\ (1-qt)(1+q^2t) & \text{if } k = i, j = l \end{cases}$$

This kind of formula can be understood in the realm of (real) root systems (Digne, Cohen-Wales, Paris).

How to generalize them to the complex world?

One needs to find a setting were things are simpler to describe and to understand.

Another example : the Krammer representation is unitarizable for q, t close to 1 (+ another condition), with unitarising form given explicitly (R. Budney) by

$$< v_{ij}, v_{kl} >= c \times \begin{cases} -q^2 t^2 (q-1) & \text{if } i = k < j < l \text{ or } i < k < j = l \\ (1-q) & \text{if } k = i < l < j \text{ or } k < i < j = l \\ t(q-1) & \text{if } i < j = k < l \\ q^2 t(q-1) & \text{if } k < l = i < j \\ -t(q-1)^2 (1+qt) & \text{if } k < i < l < j \\ (1-qt)(1+q^2t) & \text{if } k = i, j = l \end{cases}$$

with

$$c = (t-1)(1+qt)(q-1)^2 t^{-2} q^{-3}$$

2. Preliminaries

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Complex reflection groups

 $s \in \operatorname{GL}_n(\mathbb{C})$ is called a reflection if

- $s \in \operatorname{GL}_n(\mathbb{C})$ is called a reflection if
 - $\operatorname{Ker}(s-1)$ is an hyperplane.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $s \in \operatorname{GL}_n(\mathbb{C})$ is called a reflection if
 - $\operatorname{Ker}(s-1)$ is an hyperplane.

► $s^2 = 1$.

- $s \in \operatorname{GL}_n(\mathbb{C})$ is called a reflection if
 - $\operatorname{Ker}(s-1)$ is an hyperplane.

►
$$s^2 = 1$$
.

Relaxing the condition $s^2 = 1$ by *s* having finite order leads to the definition of a pseudo-reflection.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- $s \in \operatorname{GL}_n(\mathbb{C})$ is called a reflection if
 - $\operatorname{Ker}(s-1)$ is an hyperplane.

►
$$s^2 = 1$$
.

Relaxing the condition $s^2 = 1$ by *s* having finite order leads to the definition of a pseudo-reflection.

 $W < \operatorname{GL}_n(\mathbb{C})$ is called a complex (pseudo-)reflection group if it is finite and generated by the set \mathcal{R} of its (pseudo-)reflections.

- $s \in \operatorname{GL}_n(\mathbb{C})$ is called a reflection if
 - $\operatorname{Ker}(s-1)$ is an hyperplane.

►
$$s^2 = 1$$
.

Relaxing the condition $s^2 = 1$ by *s* having finite order leads to the definition of a pseudo-reflection.

 $W < \operatorname{GL}_n(\mathbb{C})$ is called a complex (pseudo-)reflection group if it is finite and generated by the set \mathcal{R} of its (pseudo-)reflections.

From now on, we assume that W is a (true) reflection group.

- $s \in \operatorname{GL}_n(\mathbb{C})$ is called a reflection if
 - $\operatorname{Ker}(s-1)$ is an hyperplane.

►
$$s^2 = 1$$
.

Relaxing the condition $s^2 = 1$ by *s* having finite order leads to the definition of a pseudo-reflection.

 $W < \operatorname{GL}_n(\mathbb{C})$ is called a complex (pseudo-)reflection group if it is finite and generated by the set \mathcal{R} of its (pseudo-)reflections.

From now on, we assume that W is a (true) reflection group.

Remark : if $W < GL_n(\mathbb{R}) < GL_n(\mathbb{C})$, then W is a finite Coxeter group.

- $s \in \operatorname{GL}_n(\mathbb{C})$ is called a reflection if
 - $\operatorname{Ker}(s-1)$ is an hyperplane.

►
$$s^2 = 1$$
.

Relaxing the condition $s^2 = 1$ by *s* having finite order leads to the definition of a pseudo-reflection.

 $W < \operatorname{GL}_n(\mathbb{C})$ is called a complex (pseudo-)reflection group if it is finite and generated by the set \mathcal{R} of its (pseudo-)reflections.

From now on, we assume that W is a (true) reflection group.

Remark : if $W < GL_n(\mathbb{R}) < GL_n(\mathbb{C})$, then W is a finite Coxeter group.

Fact : every reflection group is a direct product of irreducible reflection groups.

Shephard-Todd classification : first series.

(ロ)、(型)、(E)、(E)、 E) の(の)

Shephard-Todd classification : first series.

For $e, n \geq 1$,

Shephard-Todd classification : first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Shephard-Todd classification : first series.

For $e, n \geq 1$, G(e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

Shephard-Todd classification : first series.

For $e, n \geq 1$, G(e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

• they have their nonzero coefficients in $\mu_e(\mathbb{C})$

Shephard-Todd classification : first series.

For $e, n \geq 1$, G(e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Shephard-Todd classification : first series.

For $e, n \geq 1$, G(e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases :

Shephard-Todd classification : first series.

For $e, n \geq 1$, G(e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups),

Shephard-Todd classification : first series.

For $e, n \geq 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups), e = 1 (symmetric groups),

Shephard-Todd classification : first series.

For $e, n \geq 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups), e = 1 (symmetric groups), e = 2 (type D_n).

Shephard-Todd classification : first series.

For $e, n \geq 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups), e = 1 (symmetric groups), e = 2 (type D_n).

In general 1 class of reflections.

Shephard-Todd classification : second series.

Shephard-Todd classification : second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

Shephard-Todd classification : second series.

For $e,n \geq 1$, G(2e,e,n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

• they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases :

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Plus, not to forget :

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Plus, not to forget : 15 exceptions !

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

```
Coxeter cases : for e = 1, Coxeter group B_n.
```

In general, 2 classes of reflections.

```
Plus, not to forget : 15 exceptions !
```

 $G_{12}, G_{13}, G_{22},$

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Plus, not to forget : 15 exceptions !

 $G_{12}, G_{13}, G_{22}, G_{23} = H_3, G_{24}, G_{27}, G_{28} = F_4, G_{29},$

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Plus, not to forget : 15 exceptions !

 $G_{12}, G_{13}, G_{22}, G_{23} = H_3, G_{24}, G_{27}, G_{28} = F_4, G_{29}, G_{30} = H_4, G_{31}, G_{33},$

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Plus, not to forget : 15 exceptions !

 $G_{12}, G_{13}, G_{22}, G_{23} = H_3, G_{24}, G_{27}, G_{28} = F_4, G_{29}, G_{30} = H_4, G_{31}, G_{33}, G_{34},$

Shephard-Todd classification : second series.

For $e, n \geq 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Plus, not to forget : 15 exceptions !

 $G_{12}, G_{13}, G_{22}, G_{23} = H_3, G_{24}, G_{27}, G_{28} = F_4, G_{29}, G_{30} = H_4, G_{31}, G_{33}, G_{34}, G_{35} = E_6, G_{36} = E_7, G_{37} = E_8.$

Complex braid groups

Complex braid groups

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Complex braid groups

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

It defines an hyperplane arrangement

$$\mathcal{A} = \{ \operatorname{Ker} (s - 1) \mid s \in \mathcal{R} \}$$

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

It defines an hyperplane arrangement and its complement in \mathbb{C}^n

$$\mathcal{A} = \{ \operatorname{Ker} (s-1) \mid s \in \mathcal{R} \} \quad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

It defines an hyperplane arrangement and its complement in \mathbb{C}^n

$$\mathcal{A} = \{ \operatorname{Ker} (s-1) \mid s \in \mathcal{R} \} \qquad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

• $P = \pi_1(X)$ is the corresponding pure complex braid group

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

It defines an hyperplane arrangement and its complement in \mathbb{C}^n

$$\mathcal{A} = \{ \operatorname{Ker} (s-1) \mid s \in \mathcal{R} \} \qquad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

P = π₁(X) is the corresponding pure complex braid group
 B = π₁(X/W) is the corresponding complex braid group

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

It defines an hyperplane arrangement and its complement in \mathbb{C}^n

$$\mathcal{A} = \{ \operatorname{Ker} (s-1) \mid s \in \mathcal{R} \} \qquad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

 P = π₁(X) is the corresponding pure complex braid group
 B = π₁(X/W) is the corresponding complex braid group 1 → P → B → W → 1

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

It defines an hyperplane arrangement and its complement in \mathbb{C}^n

$$\mathcal{A} = \{ \operatorname{Ker} (s-1) \mid s \in \mathcal{R} \} \qquad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

 P = π₁(X) is the corresponding pure complex braid group
 B = π₁(X/W) is the corresponding complex braid group 1 → P → B → W → 1

B is torsion-free

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

It defines an hyperplane arrangement and its complement in \mathbb{C}^n

$$\mathcal{A} = \{ \operatorname{Ker} (s-1) \mid s \in \mathcal{R} \} \qquad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

 P = π₁(X) is the corresponding pure complex braid group
 B = π₁(X/W) is the corresponding complex braid group 1 → P → B → W → 1

B is torsion-free

• (*W* irréductible.) $Z(B) \simeq \mathbb{Z}$, $Z(P) \simeq \mathbb{Z}$

Let $W < GL_n(\mathbb{C})$ be a complex reflection group, and \mathcal{R} its set of reflections.

It defines an hyperplane arrangement and its complement in \mathbb{C}^n

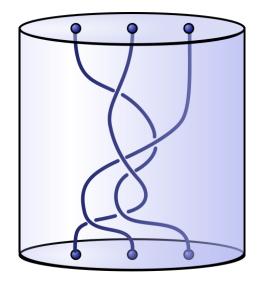
$$\mathcal{A} = \{ \operatorname{Ker} (s-1) \mid s \in \mathcal{R} \} \quad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

 P = π₁(X) is the corresponding pure complex braid group
 B = π₁(X/W) is the corresponding complex braid group 1 → P → B → W → 1

- B is torsion-free
- (*W* irréductible.) $Z(B) \simeq \mathbb{Z}$, $Z(P) \simeq \mathbb{Z}$ (except possibly for G_{31})

Archetype : $W = \mathfrak{S}_n$

B is the classical braid group on n strands.



W preserves some hermitian scalar product on \mathbb{C}^n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V = U^{\perp}$.

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V = U^{\perp}$. (Steinberg) $W_0 < \operatorname{GL}(V)$ is a complex reflection group,

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V = U^{\perp}$. (Steinberg) $W_0 < \operatorname{GL}(V)$ is a complex reflection group, $\mathcal{R}_0 \subset \mathcal{R}$

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V = U^{\perp}$. (Steinberg) $W_0 < \operatorname{GL}(V)$ is a complex reflection group, $\mathcal{R}_0 \subset \mathcal{R}$ (Broué-Malle-Rouquier) B_0 embeds in B

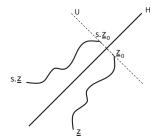
W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V = U^{\perp}$. (Steinberg) $W_0 < \operatorname{GL}(V)$ is a complex reflection group, $\mathcal{R}_0 \subset \mathcal{R}$ (Broué-Malle-Rouquier) B_0 embeds in B(uniquely up to P-conjugation)

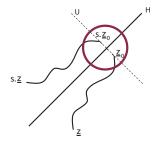
One can define elements in $\pi_1(X/W, \underline{z}) = B$ in the following way

One can define elements in $\pi_1(X/W, \underline{z}) = B$ in the following way



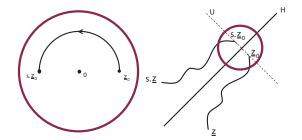
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One can define elements in $\pi_1(X/W, \underline{z}) = B$ in the following way



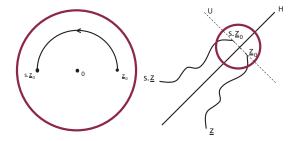
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

One can define elements in $\pi_1(X/W, \underline{z}) = B$ in the following way



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

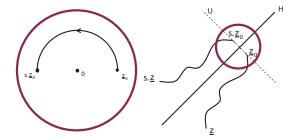
One can define elements in $\pi_1(X/W, \underline{z}) = B$ in the following way



By definition, a braided reflection is a conjugate of such a loop in X/W.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

One can define elements in $\pi_1(X/W, \underline{z}) = B$ in the following way



By definition, a braided reflection is a conjugate of such a loop in X/W. Braided reflections generate B.

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$,

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits),

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR),

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR), exceptional groups of low rank (Broué-Malle, J. Müller, Etingof-Rains).

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR), exceptional groups of low rank (Broué-Malle, J. Müller, Etingof-Rains).

When it holds :

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR), exceptional groups of low rank (Broué-Malle, J. Müller, Etingof-Rains).

When it holds : $\operatorname{Rep}(W) \rightsquigarrow \operatorname{Rep} H_W(q)$

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR), exceptional groups of low rank (Broué-Malle, J. Müller, Etingof-Rains).

When it holds : $\operatorname{Rep}(W) \rightsquigarrow \operatorname{Rep} H_W(q) \rightsquigarrow \operatorname{Rep}(B)$

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

The holonomy Lie algebra is

The holonomy Lie algebra is

$$\mathcal{T} = \langle t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

The holonomy Lie algebra is

$$\mathcal{T} = < t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in A$ and

Holonomy Lie algebra

The holonomy Lie algebra is

$$\mathcal{T} = < t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

where $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in \mathcal{A}$ and

$$t_Z = \sum_{Z \subset H} t_H$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Holonomy Lie algebra

The holonomy Lie algebra is

$$\mathcal{T} = \langle t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

where $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in \mathcal{A}$ and

$$t_Z = \sum_{Z \subset H} t_H$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

W acts on T through $w.t_H = t_{w(H)}$,

Holonomy Lie algebra

The holonomy Lie algebra is

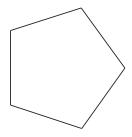
$$\mathcal{T} = \langle t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

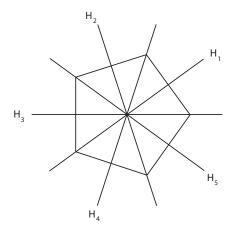
where $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in \mathcal{A}$ and

$$t_Z = \sum_{Z \subset H} t_H$$

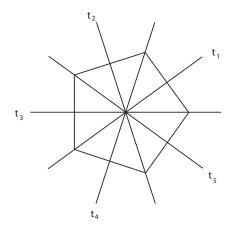
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

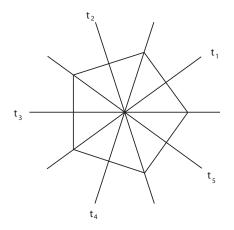
W acts on \mathcal{T} through $w.t_H = t_{w(H)}$, where $w.t_s = t_{wsw^{-1}}$ with $\mathcal{R} \leftrightarrow \mathcal{A}$.



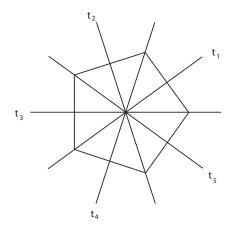


・ロト・雪・・雪・・雪・・ 白・ ろくの





$t_0 = t_1 + t_2 + t_3 + t_4 + t_5$



$$t_0 = t_1 + t_2 + t_3 + t_4 + t_5$$

$$\mathcal{T} = \langle t_1, \dots, t_5 \mid [t_1 + t_2 + t_3 + t_4 + t_5, t_i] = 0, \forall a \in \mathbb{R}$$

$$W = \mathfrak{S}_n \subset \mathrm{GL}_n(\mathbb{C})$$

$$W = \mathfrak{S}_n \subset \mathrm{GL}_n(\mathbb{C})$$
$$\mathbb{C}^n = \{(z_1, \dots, z_n) \mid z_i \in \mathbb{C}\}$$

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$
$$\mathbb{C}^n = \{(z_1, \dots, z_n) \mid z_i \in \mathbb{C}\}$$
$$s_{ij} = (i \ j)$$

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$
$$\mathbb{C}^n = \{ (z_1, \dots, z_n) \mid z_i \in \mathbb{C} \}$$
$$s_{ij} = (i \ j) \quad H_{ij} : z_i = z_j$$

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$
$$\mathbb{C}^n = \{(z_1, \dots, z_n) \mid z_i \in \mathbb{C}\}$$
$$s_{ij} = (i \ j) \quad H_{ij} : z_i = z_j \quad \rightsquigarrow \quad t_{ij} \in \mathcal{T}$$

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$
$$\mathbb{C}^n = \{ (z_1, \dots, z_n) \mid z_i \in \mathbb{C} \}$$
$$s_{ij} = (i \ j) \quad H_{ij} : z_i = z_j \quad \rightsquigarrow \quad t_{ij} \in \mathcal{T}$$
$$\blacktriangleright Z : z_i = z_j = z_k$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$
$$\mathbb{C}^n = \{ (z_1, \dots, z_n) \mid z_i \in \mathbb{C} \}$$
$$s_{ij} = (i \ j) \quad H_{ij} : z_i = z_j \quad \rightsquigarrow \quad t_{ij} \in \mathcal{T}$$
$$\blacktriangleright \ Z : z_i = z_j = z_k \quad \rightsquigarrow [t_{ij}, t_{ij} + t_{ik} + t_{kj}] = 0$$

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$
$$\mathbb{C}^n = \{ (z_1, \dots, z_n) \mid z_i \in \mathbb{C} \}$$
$$s_{ij} = (i \ j) \quad H_{ij} : z_i = z_j \quad \rightsquigarrow \quad t_{ij} \in \mathcal{T}$$
$$\blacktriangleright Z : z_i = z_j = z_k \quad \rightsquigarrow [t_{ij}, t_{ij} + t_{ik} + t_{kj}] = 0$$
$$\blacktriangleright Z : z_i = z_j \And z_k = z_l$$

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$
$$\mathbb{C}^n = \{ (z_1, \dots, z_n) \mid z_i \in \mathbb{C} \}$$
$$s_{ij} = (i \ j) \quad H_{ij} : z_i = z_j \quad \rightsquigarrow \quad t_{ij} \in \mathcal{T}$$
$$\blacktriangleright Z : z_i = z_j = z_k \quad \rightsquigarrow [t_{ij}, t_{ij} + t_{ik} + t_{kj}] = 0$$
$$\blacktriangleright Z : z_i = z_j \& z_k = z_l \quad \rightsquigarrow [t_{ij}, t_{ij} + t_{kl}] = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$

$$\mathbb{C}^n = \{(z_1, \dots, z_n) \mid z_i \in \mathbb{C}\}$$

$$s_{ij} = (i \ j) \quad H_{ij} : z_i = z_j \quad \rightsquigarrow \quad t_{ij} \in \mathcal{T}$$

$$\blacktriangleright Z : z_i = z_j = z_k \quad \rightsquigarrow [t_{ij}, t_{ij} + t_{ik} + t_{kj}] = 0$$

$$\blacktriangleright Z : z_i = z_j \& z_k = z_l \quad \rightsquigarrow [t_{ij}, t_{ij} + t_{kl}] = 0$$

$$\mathcal{T} = \langle t_{ij} \mid [t_{ij}, t_{ik} + t_{kj}] = 0, [t_{ij}, t_{kl}] = 0 > 1$$

0

$$W = \mathfrak{S}_n \subset \operatorname{GL}_n(\mathbb{C})$$

$$\mathbb{C}^n = \{(z_1, \dots, z_n) \mid z_i \in \mathbb{C}\}$$

$$s_{ij} = (i \ j) \quad H_{ij} : z_i = z_j \quad \rightsquigarrow \quad t_{ij} \in \mathcal{T}$$

$$\blacktriangleright Z : z_i = z_j = z_k \quad \rightsquigarrow [t_{ij}, t_{ij} + t_{ik} + t_{kj}] = 0$$

$$\blacktriangleright Z : z_i = z_j \& z_k = z_l \quad \rightsquigarrow [t_{ij}, t_{ij} + t_{kl}] = 0$$

$$\mathcal{T} = \langle t_{ij} \mid [t_{ij}, t_{ik} + t_{kj}] = 0, [t_{ij}, t_{kl}] = 0 >$$

Remark. When $W = \mathfrak{S}_n$, \mathcal{T} is also known as the Lie algebra of (horizontal) chord diagrams.

3. Monodromy

Let
$$\rho: W \to \operatorname{GL}_N(\mathbb{C})$$
.

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_N(\mathbb{C})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

with $\omega_H = d\alpha_H / \alpha_H$,

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

with $\omega_H = d\alpha_H / \alpha_H$, $H = \text{Ker} \alpha_H$,

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_N(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \text{Ker } \alpha_H$, is integrable and equivariant (Kohno).

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \text{Ker } \alpha_H$, is integrable and equivariant (Kohno). It yields

$$R: B \to \operatorname{GL}_N(A) \subset \operatorname{GL}_N(K)$$

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_N(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \text{Ker } \alpha_H$, is integrable and equivariant (Kohno). It yields

 $R: B \to \operatorname{GL}_N(A) \subset \operatorname{GL}_N(K)$ with $A = \mathbb{C}[[h]]$

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_N(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \text{Ker } \alpha_H$, is integrable and equivariant (Kohno). It yields

 $R: B \to \operatorname{GL}_N(A) \subset \operatorname{GL}_N(K)$ with $A = \mathbb{C}[[h]], K = \mathbb{C}((h))$

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_N(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \text{Ker } \alpha_H$, is integrable and equivariant (Kohno). It yields

 $R: B \to \operatorname{GL}_N(A) \subset \operatorname{GL}_N(K)$ with $A = \mathbb{C}[[h]], K = \mathbb{C}((h))$

such that $R(\sigma)$ is conjugated to $\rho(s) \exp(h\varphi(t_s))$

Let $\rho: W \to \operatorname{GL}_N(\mathbb{C})$. If $\varphi: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{\varphi} = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} \varphi(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \text{Ker } \alpha_H$, is integrable and equivariant (Kohno). It yields

 $R: B \to \operatorname{GL}_N(A) \subset \operatorname{GL}_N(K)$ with $A = \mathbb{C}[[h]], K = \mathbb{C}((h))$

such that $R(\sigma)$ is conjugated to $\rho(s) \exp(h\varphi(t_s))$ if σ is a braided reflection associated to $s \in \mathcal{R}$.

Cherednik systems

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$,

Cherednik systems

For
$$\rho: W \to \operatorname{GL}_N(\mathbb{C})$$
, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C})$.

Cherednik systems

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$. Easily checked :

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$. Easily checked : φ is a representation of \mathcal{T} .

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$. Easily checked : φ is a representation of \mathcal{T} . Proof :

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$. Easily checked : φ is a representation of \mathcal{T} . Proof :

$$s_0 t_Z s_0^{-1} =$$

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$. Easily checked : φ is a representation of \mathcal{T} . Proof :

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) =$$

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$. Easily checked : φ is a representation of \mathcal{T} . Proof :

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)}$$

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$. Easily checked : φ is a representation of \mathcal{T} . Proof :

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

For
$$\rho: W \to \operatorname{GL}_N(\mathbb{C})$$
, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$
Easily checked : φ is a representation of \mathcal{T} .
Proof :

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

hence $[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : φ is a representation of \mathcal{T} . Proof :

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

hence $[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$

 $R(\sigma)$ has eigenvalues $q = \exp(h)$

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$. Easily checked : φ is a representation of \mathcal{T} .

Proof :

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

hence $[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$

 $R(\sigma)$ has eigenvalues $q = \exp(h)$ and $-q^{-1} = -e^{-h}$,

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : φ is a representation of \mathcal{T} . Proof :

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

hence $[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$

 $R(\sigma)$ has eigenvalues $q = \exp(h)$ and $-q^{-1} = -e^{-h}$, hence factors through $H_W(q)$.

For $\rho: W \to \operatorname{GL}_N(\mathbb{C})$, let $\varphi(t_s) = \rho(s) \in \operatorname{GL}_N(\mathbb{C}) \subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : φ is a representation of \mathcal{T} . Proof :

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

hence $[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$

 $R(\sigma)$ has eigenvalues $q = \exp(h)$ and $-q^{-1} = -e^{-h}$, hence factors through $H_W(q)$.

This was the only contruction known so far which worked for arbitrary complex reflection groups.

Let W_0 be a parabolic subgroup of W,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let W_0 be a parabolic subgroup of W, and B_0 , T_0 the associated objects.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let W_0 be a parabolic subgroup of W, and B_0 , \mathcal{T}_0 the associated objects.

(Broué-Malle-Rouquier) B_0 can be embedded in B.

Let W_0 be a parabolic subgroup of W, and B_0 , \mathcal{T}_0 the associated objects.

(Broué-Malle-Rouquier) B_0 can be embedded in B.

Lemma

 $\mathcal{T}_0 \hookrightarrow \mathcal{T}$

Let W_0 be a parabolic subgroup of W, and B_0 , \mathcal{T}_0 the associated objects.

(Broué-Malle-Rouquier) B_0 can be embedded in B.

Lemma

 $\mathcal{T}_0 \hookrightarrow \mathcal{T}$

Theorem

Let (ρ, φ) be a representation of (W, T), let (ρ_0, φ_0) be its restriction to (W_0, T_0) , and let R, R_0 be the associated representations of B and B_0 . Then R_0 is isomorphic to the restriction of R to $B_0 < B$.

Let W_0 be a parabolic subgroup of W, and B_0 , \mathcal{T}_0 the associated objects.

(Broué-Malle-Rouquier) B_0 can be embedded in B.

Lemma

 $\mathcal{T}_0 \hookrightarrow \mathcal{T}$

Theorem

Let (ρ, φ) be a representation of (W, T), let (ρ_0, φ_0) be its restriction to (W_0, T_0) , and let R, R_0 be the associated representations of B and B_0 . Then R_0 is isomorphic to the restriction of R to $B_0 < B$.

Type A : Jorge González-Lorca, 1998.

Let W_0 be a parabolic subgroup of W, and B_0 , \mathcal{T}_0 the associated objects.

(Broué-Malle-Rouquier) B_0 can be embedded in B.

Lemma

 $\mathcal{T}_0 \hookrightarrow \mathcal{T}$

Theorem

Let (ρ, φ) be a representation of (W, T), let (ρ_0, φ_0) be its restriction to (W_0, T_0) , and let R, R_0 be the associated representations of B and B_0 . Then R_0 is isomorphic to the restriction of R to $B_0 < B$.

Type A : Jorge González-Lorca, 1998. In terms of universal monodromy :

Let W_0 be a parabolic subgroup of W, and B_0 , \mathcal{T}_0 the associated objects.

(Broué-Malle-Rouquier) B_0 can be embedded in B.

Lemma

 $\mathcal{T}_0 \hookrightarrow \mathcal{T}$

Theorem

Let (ρ, φ) be a representation of (W, \mathcal{T}) , let (ρ_0, φ_0) be its restriction to (W_0, \mathcal{T}_0) , and let R, R_0 be the associated representations of B and B_0 . Then R_0 is isomorphic to the restriction of R to $B_0 < B$.

Type A : Jorge González-Lorca, 1998. In terms of universal monodromy :

The correspondence $(\rho, \varphi) \rightsquigarrow R$ is functorial and preserves irreducibility.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The correspondence $(\rho, \varphi) \rightsquigarrow R$ is functorial and preserves irreducibility.

Proposition

The Lie algebra of the Zariski closure of R(P) contains $\varphi(\mathcal{T}) \otimes_{\mathbb{C}} K$.

The correspondence $(\rho, \varphi) \rightsquigarrow R$ is functorial and preserves irreducibility.

Proposition

The Lie algebra of the Zariski closure of R(P) contains $\varphi(\mathcal{T}) \otimes_{\mathbb{C}} K$.

Proposition

If ${}^t\varphi(t_H) = \varphi(t_H)$ and $\rho(W) \subset O_N(\mathbb{R})$, then $R(B) \subset U^{\varepsilon}_N(K)$

The correspondence $(\rho, \varphi) \rightsquigarrow R$ is functorial and preserves irreducibility.

Proposition

The Lie algebra of the Zariski closure of R(P) contains $\varphi(\mathcal{T}) \otimes_{\mathbb{C}} K$.

Proposition

If ${}^t\varphi(t_H) = \varphi(t_H)$ and $\rho(W) \subset O_N(\mathbb{R})$, then $R(B) \subset U_N^{\varepsilon}(K)$ where $\varepsilon : K \to K$, $f(h) \mapsto f(-h)$

The correspondence $(\rho, \varphi) \rightsquigarrow R$ is functorial and preserves irreducibility.

Proposition

The Lie algebra of the Zariski closure of R(P) contains $\varphi(\mathcal{T}) \otimes_{\mathbb{C}} K$.

Proposition

If ${}^t\varphi(t_H) = \varphi(t_H)$ and $\rho(W) \subset O_N(\mathbb{R})$, then $R(B) \subset U_N^{\varepsilon}(K)$ where $\varepsilon : K \to K$, $f(h) \mapsto f(-h)$ and

$$U_N^{\varepsilon}(K) = \{x \in \operatorname{GL}_N(K) \mid {}^t \varepsilon(x) = x^{-1}\}$$

・ロ・・西・・川・・田・ 日・ うらぐ

Let ${\bf k}$ be a characteristic 0 field.

Let \Bbbk be a characteristic 0 field. ${\mathcal T}$ is defined over $\Bbbk.$

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B \to W \ltimes \exp \widehat{\mathcal{T}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B o W \ltimes \exp \widehat{\mathcal{T}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

such that,

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B \to W \ltimes \exp \widehat{T}$$

such that, whenever σ is a braided reflection,

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B o W \ltimes \exp \widehat{\mathcal{T}}$$

such that, whenever σ is a braided reflection, $\Phi(\sigma)$ is conjugated to $s \exp t_H$ by some $\exp(x)$, $x \in \widehat{\mathcal{T}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B o W \ltimes \exp \widehat{\mathcal{T}}$$

such that, whenever σ is a braided reflection, $\Phi(\sigma)$ is conjugated to $s \exp t_H$ by some $\exp(x)$, $x \in \widehat{\mathcal{T}}$.

Conjecture 1

Such morphisms exist.

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B o W \ltimes \exp \widehat{\mathcal{T}}$$

such that, whenever σ is a braided reflection, $\Phi(\sigma)$ is conjugated to $s \exp t_H$ by some $\exp(x)$, $x \in \widehat{\mathcal{T}}$.

Conjecture 1

Such morphisms exist.

Type A : Drinfeld (associators)

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B o W \ltimes \exp \widehat{\mathcal{T}}$$

such that, whenever σ is a braided reflection, $\Phi(\sigma)$ is conjugated to $s \exp t_H$ by some $\exp(x)$, $x \in \widehat{\mathcal{T}}$.

Conjecture 1

Such morphisms exist.

Type A : Drinfeld (associators) Type B : Enriquez

Rational variations

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B o W \ltimes \exp \widehat{\mathcal{T}}$$

such that, whenever σ is a braided reflection, $\Phi(\sigma)$ is conjugated to $s \exp t_H$ by some $\exp(x)$, $x \in \widehat{\mathcal{T}}$.

Conjecture 1

Such morphisms exist.

Type A : Drinfeld (associators) Type B : Enriquez Type $l_2(m) = G(m, m, 2)$: I.M.

Rational variations

Let \Bbbk be a characteristic 0 field. \mathcal{T} is defined over \Bbbk . In order to make $(\rho, \varphi) \rightsquigarrow R$ work over \Bbbk and $K = \Bbbk((h))$, one only needs

$$\Phi: B o W \ltimes \exp \widehat{\mathcal{T}}$$

such that, whenever σ is a braided reflection, $\Phi(\sigma)$ is conjugated to $s \exp t_H$ by some $\exp(x)$, $x \in \widehat{\mathcal{T}}$.

Conjecture 1

Such morphisms exist.

Type A : Drinfeld (associators) Type B : Enriquez Type $l_2(m) = G(m, m, 2)$: I.M.

This conjecture is corroborated by : $X, X/W, X \rightarrow X/W$ are defined over \mathbb{Q} (I.M., Jean Michel).

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

Theorem

If conjecture 1 (+ conjecture BMR) holds true, then the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

If conjecture 1 (+ conjecture BMR) holds true, then the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

Main argument in proof : by substitution h = iu, $u \in \mathbb{k} = \mathbb{R}$, provided that Φ is convergent.

Theorem

If conjecture 1 (+ conjecture BMR) holds true, then the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

Main argument in proof : by substitution h = iu, $u \in \mathbb{k} = \mathbb{R}$, provided that Φ is convergent. If it is not,

Theorem

If conjecture 1 (+ conjecture BMR) holds true, then the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

Main argument in proof : by substitution h = iu, $u \in k = \mathbb{R}$, provided that Φ is convergent.

If it is not, one can use

Proposition

If $L \subset \mathbb{R}((h))$ is a finitely generated extension of $\mathbb{R}(h)$ such that $\varepsilon(L) = L$, then there exists $L^* \subset \mathbb{R}(\{h\})$ such that $\varepsilon(L^*) = L^*$ and $L^*/\mathbb{R}(h) \simeq L/\mathbb{R}(h)$ in a ε -equivariant way.

When W is Coxeter, one can use that the representations of $H_W(q)$ are defined over $\mathbb{R}[q, q^{-1}]$ (Lusztig, Alvis, Geck).

When W is Coxeter, one can use that the representations of $H_W(q)$ are defined over $\mathbb{R}[q, q^{-1}]$ (Lusztig, Alvis, Geck). Using arguments of deformation and Galois descent, one obtain unconditionally :

When W is Coxeter, one can use that the representations of $H_W(q)$ are defined over $\mathbb{R}[q, q^{-1}]$ (Lusztig, Alvis, Geck). Using arguments of deformation and Galois descent, one obtain unconditionally :

Theorem

If W is a finite Coxeter group, then the representations of the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

When W is Coxeter, one can use that the representations of $H_W(q)$ are defined over $\mathbb{R}[q, q^{-1}]$ (Lusztig, Alvis, Geck). Using arguments of deformation and Galois descent, one obtain unconditionally :

Theorem

If W is a finite Coxeter group, then the representations of the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

Type A : Wenzl 1988.

When W is Coxeter, one can use that the representations of $H_W(q)$ are defined over $\mathbb{R}[q, q^{-1}]$ (Lusztig, Alvis, Geck). Using arguments of deformation and Galois descent, one obtain unconditionally :

Theorem

If W is a finite Coxeter group, then the representations of the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

Type A : Wenzl 1988. Using Enriquez 'associators' one can prove

When W is Coxeter, one can use that the representations of $H_W(q)$ are defined over $\mathbb{R}[q, q^{-1}]$ (Lusztig, Alvis, Geck). Using arguments of deformation and Galois descent, one obtain unconditionally :

Theorem

If W is a finite Coxeter group, then the representations of the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

Type A : Wenzl 1988. Using Enriquez 'associators' one can prove

Theorem

If W belong to the general series, then the representations of the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

When W is Coxeter, one can use that the representations of $H_W(q)$ are defined over $\mathbb{R}[q, q^{-1}]$ (Lusztig, Alvis, Geck). Using arguments of deformation and Galois descent, one obtain unconditionally :

Theorem

If W is a finite Coxeter group, then the representations of the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

Type A : Wenzl 1988. Using Enriquez 'associators' one can prove

Theorem

If W belong to the general series, then the representations of the Hecke algebra representations are unitarizable when |q| = 1 and q is close to 1.

Reflection representation case : Couwenberg, Heckman, Looijenga 2005.

The monodromy construction of $H_W(q)$ -representations is a consequence of the strange fact that

$$\varphi: \mathcal{T} \to \mathbb{C}W, t_H \mapsto s_H \in \mathcal{R}$$

is a Lie algebra morphism, $\mathbb{C}W$ being considered as a Lie algebra for [a, b] = ab - ba.

The monodromy construction of $H_W(q)$ -representations is a consequence of the strange fact that

$$\varphi: \mathcal{T} \to \mathbb{C}W, t_H \mapsto s_H \in \mathcal{R}$$

is a Lie algebra morphism, $\mathbb{C}W$ being considered as a Lie algebra for [a, b] = ab - ba.

Definition

The infinitesimal Hecke algebra \mathcal{H} is the image of φ , namely the Lie subalgebra of $\mathbb{C}W$ generated by the reflections.

The monodromy construction of $H_W(q)$ -representations is a consequence of the strange fact that

$$\varphi: \mathcal{T} \to \mathbb{C}W, t_H \mapsto s_H \in \mathcal{R}$$

is a Lie algebra morphism, $\mathbb{C}W$ being considered as a Lie algebra for [a, b] = ab - ba.

Definition

The infinitesimal Hecke algebra \mathcal{H} is the image of φ , namely the Lie subalgebra of $\mathbb{C}W$ generated by the reflections.

Proposition

 $\mathcal H$ is reductive, with center of dimension the number of conjugacy classes of reflections in W.

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - の Q @

Theorem

・ロト・母ト・ヨト・ヨト ヨー うへぐ

Theorem

Let ρ be a representation of W, R the associated $H_W(q)$ -representation.

Theorem

Let ρ be a representation of W, R the associated $H_W(q)$ -representation. Then, the Zariski closure $\overline{R(P)}$ is connected,

Theorem

Let ρ be a representation of W, R the associated $H_W(q)$ -representation. Then, the Zariski closure $\overline{R(P)}$ is connected, has index at most 2 in $\overline{R(B)}$,

Theorem

Let ρ be a representation of W, R the associated $H_W(q)$ -representation. Then, the Zariski closure $\overline{R(P)}$ is connected, has index at most 2 in $\overline{R(B)}$, and Lie algebra $\rho(\mathcal{H}) \otimes_{\mathbb{C}} K$.

Theorem

Let ρ be a representation of W, R the associated $H_W(q)$ -representation. Then, the Zariski closure $\overline{R(P)}$ is connected, has index at most 2 in $\overline{R(B)}$, and Lie algebra $\rho(\mathcal{H}) \otimes_{\mathbb{C}} K$.

Remark : using unitarisability (e.g. if W Coxeter), the knowledge of $\overline{R(B)}$ determines the topological closure of R(B) when |q| = 1 and q close to 1 (q transcendent).

Theorem

Let ρ be a representation of W, R the associated $H_W(q)$ -representation. Then, the Zariski closure $\overline{R(P)}$ is connected, has index at most 2 in $\overline{R(B)}$, and Lie algebra $\rho(\mathcal{H}) \otimes_{\mathbb{C}} K$.

Remark : using unitarisability (e.g. if W Coxeter), the knowledge of $\overline{R(B)}$ determines the topological closure of R(B) when |q| = 1 and q close to 1 (q transcendent).

Type A : Freedman, Larsen, Wang 2002.

Theorem

$$\mathcal{H}' \simeq \left(\prod_{
ho \in \mathrm{QRef}/pprox} \mathfrak{sl}(V_{
ho})
ight) imes \left(\prod_{
ho \in \mathcal{E}/pprox} \mathfrak{sl}(V_{
ho})
ight)
onumber \ imes \left(\prod_{
ho \in \mathcal{F}_{\mathfrak{sp}}/pprox} \mathfrak{sp}(V_{
ho})
ight) imes \left(\prod_{
ho \in \mathcal{F}_{\mathfrak{sp}}/pprox} \mathfrak{sp}(V_{
ho})
ight)$$

Theorem

$$\mathcal{H}' \simeq \left(\prod_{
ho \in \mathrm{QRef}/pprox} \mathfrak{sl}(V_{
ho})
ight) imes \left(\prod_{
ho \in \mathcal{E}/pprox} \mathfrak{sl}(V_{
ho})
ight)
onumber \ imes \left(\prod_{
ho \in \mathcal{F}_{\mathfrak{so}}/pprox} \mathfrak{so}(V_{
ho})
ight) imes \left(\prod_{
ho \in \mathcal{F}_{\mathfrak{sp}}/pprox} \mathfrak{sp}(V_{
ho})
ight)$$

Example : if $\rho: W \to \operatorname{GL}_n(\mathbb{C})$ is a reflection representation, W_0 a maximal parabolic subgroup, $\rho(\mathcal{H}')$ acts irreducibly, contains $\rho(\mathcal{H}'_0) = \mathfrak{sl}_{n-1}(\mathbb{C}) \rightsquigarrow \rho(\mathcal{H}') = \mathfrak{sl}_n(\mathbb{C}).$

Theorem

$$\mathcal{H}' \simeq \left(\prod_{
ho \in \mathrm{QRef}/pprox} \mathfrak{sl}(V_
ho)
ight) imes \left(\prod_{
ho \in \mathcal{E}/pprox} \mathfrak{sl}(V_
ho)
ight)
onumber \ imes \left(\prod_{
ho \in \mathcal{F}_{\mathfrak{so}}/pprox} \mathfrak{so}(V_
ho)
ight) imes \left(\prod_{
ho \in \mathcal{F}_{\mathfrak{sp}}/pprox} \mathfrak{sp}(V_
ho)
ight)$$

Example : if $\rho: W \to \operatorname{GL}_n(\mathbb{C})$ is a reflection representation, W_0 a maximal parabolic subgroup, $\rho(\mathcal{H}')$ acts irreducibly, contains $\rho(\mathcal{H}'_0) = \mathfrak{sl}_{n-1}(\mathbb{C}) \rightsquigarrow \rho(\mathcal{H}') = \mathfrak{sl}_n(\mathbb{C}).$

Proposition

The real Lie subalgebra \mathcal{H}_c of $\mathcal{H} \subset \mathbb{C}W$ generated by the $\sqrt{-1}s, s \in \mathcal{R}$,

Theorem

$$\mathcal{H}' \simeq \left(\prod_{
ho \in \mathrm{QRef}/pprox} \mathfrak{sl}(V_
ho)
ight) imes \left(\prod_{
ho \in \mathcal{E}/pprox} \mathfrak{sl}(V_
ho)
ight)
onumber \ imes \left(\prod_{
ho \in \mathcal{F}_{\mathfrak{so}}/pprox} \mathfrak{so}(V_
ho)
ight) imes \left(\prod_{
ho \in \mathcal{F}_{\mathfrak{sp}}/pprox} \mathfrak{sp}(V_
ho)
ight)$$

Example : if $\rho: W \to \operatorname{GL}_n(\mathbb{C})$ is a reflection representation, W_0 a maximal parabolic subgroup, $\rho(\mathcal{H}')$ acts irreducibly, contains $\rho(\mathcal{H}'_0) = \mathfrak{sl}_{n-1}(\mathbb{C}) \rightsquigarrow \rho(\mathcal{H}') = \mathfrak{sl}_n(\mathbb{C}).$

Proposition

The real Lie subalgebra \mathcal{H}_c of $\mathcal{H} \subset \mathbb{C}W$ generated by the $\sqrt{-1}s, s \in \mathcal{R}$, is a compact form of \mathcal{H} .

4. Quest for a Krammer representation

<ロ>

<ロ> <@> < E> < E> E のQの

The Krammer representation is a deformation of the permutation representation of ${\it W}$ on ${\it {\cal R}}$:

The Krammer representation is a deformation of the permutation representation of W on $\mathcal R$:

Letting $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C}) = \operatorname{GL}(\mathbb{C}\mathcal{R})$ the natural permutation representation on \mathcal{R} is given by :

The Krammer representation is a deformation of the permutation representation of ${\it W}$ on ${\it {\cal R}}$:

Letting $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C}) = \operatorname{GL}(\mathbb{C}\mathcal{R})$ the natural permutation representation on \mathcal{R} is given by :

Basis of $V = \mathbb{C}^N$: $v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

The Krammer representation is a deformation of the permutation representation of ${\it W}$ on ${\it {\cal R}}$:

Letting $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C}) = \operatorname{GL}(\mathbb{C}\mathcal{R})$ the natural permutation representation on \mathcal{R} is given by :

Basis of $V = \mathbb{C}^N$: $v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

This part of the representation variety in dimension N seems a good place to start with.

The Krammer representation is a deformation of the permutation representation of W on ${\cal R}$:

Letting $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C}) = \operatorname{GL}(\mathbb{C}\mathcal{R})$ the natural permutation representation on \mathcal{R} is given by :

Basis of $V = \mathbb{C}^N$: $v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

This part of the representation variety in dimension N seems a good place to start with.

A first general deformation is given by the Hecke algebra representation $Hecke(\mathcal{R}) : B \to GL_N(\mathbb{C})$, but :

The Krammer representation is a deformation of the permutation representation of W on ${\cal R}$:

Letting $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C}) = \operatorname{GL}(\mathbb{C}\mathcal{R})$ the natural permutation representation on \mathcal{R} is given by :

Basis of $V = \mathbb{C}^N$: $v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

This part of the representation variety in dimension N seems a good place to start with.

A first general deformation is given by the Hecke algebra representation $Hecke(\mathcal{R}) : B \to GL_N(\mathbb{C})$, but :

the faithfulness question is still open for the Hecke algebra

The Krammer representation is a deformation of the permutation representation of W on ${\cal R}$:

Letting $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C}) = \operatorname{GL}(\mathbb{C}\mathcal{R})$ the natural permutation representation on \mathcal{R} is given by :

Basis of $V = \mathbb{C}^N$: $v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

This part of the representation variety in dimension N seems a good place to start with.

A first general deformation is given by the Hecke algebra representation $Hecke(\mathcal{R}) : B \to GL_N(\mathbb{C})$, but :

the faithfulness question is still open for the Hecke algebra

it is not irreducible

The Krammer representation is a deformation of the permutation representation of W on ${\cal R}$:

Letting $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C}) = \operatorname{GL}(\mathbb{C}\mathcal{R})$ the natural permutation representation on \mathcal{R} is given by :

Basis of $V = \mathbb{C}^N$: $v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

This part of the representation variety in dimension N seems a good place to start with.

A first general deformation is given by the Hecke algebra representation $Hecke(\mathcal{R}) : B \to GL_N(\mathbb{C})$, but :

- the faithfulness question is still open for the Hecke algebra
- it is not irreducible
- in the usual Krammer representation, the generators have 3 eigenvalues and not 2

The Krammer representation is a deformation of the permutation representation of W on ${\cal R}$:

Letting $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C}) = \operatorname{GL}(\mathbb{C}\mathcal{R})$ the natural permutation representation on \mathcal{R} is given by :

Basis of $V = \mathbb{C}^N$: $v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

This part of the representation variety in dimension N seems a good place to start with.

A first general deformation is given by the Hecke algebra representation $Hecke(\mathcal{R}) : B \to GL_N(\mathbb{C})$, but :

- the faithfulness question is still open for the Hecke algebra
- it is not irreducible
- in the usual Krammer representation, the generators have 3 eigenvalues and not 2
- so it is not a generalization of what is known to work !

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Let $N = #\mathcal{R}$, and $\rho : W \to GL_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} . Basis of $V = \mathbb{C}^N : v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

・ロト・日本・モート モー うへぐ

Let $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} . Basis of $V = \mathbb{C}^N : v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$. Let e_s be the standard idempotent associated to $s \in \mathcal{R}$:

$$e_s.v_s = v_s, e_s.v_u = 0$$
 for $s \neq u$

Let $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} . Basis of $V = \mathbb{C}^N : v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$. Let e_s be the standard idempotent associated to $s \in \mathcal{R}$:

$$e_s.v_s = v_s, e_s.v_u = 0$$
 for $s \neq u$

Then $\varphi(t_s) = e_s$ defines an equivariant representation of \mathcal{T} , hence $R: B \to \operatorname{GL}_N(K)$, or $R_h: B \to \operatorname{GL}_N(\mathbb{C})$.

Let $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} . Basis of $V = \mathbb{C}^N : v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$. Let e_s be the standard idempotent associated to $s \in \mathcal{R}$:

$$e_s.v_s = v_s, e_s.v_u = 0$$
 for $s \neq u$

Then $\varphi(t_s) = e_s$ defines an equivariant representation of \mathcal{T} , hence $R: B \to \operatorname{GL}_N(K)$, or $R_h: B \to \operatorname{GL}_N(\mathbb{C})$. Let (P, P) be the commutator subgroup of P.

Theorem

 R_h factors through B/(P, P), and is faithful as a representation of B/(P, P) if $h \notin \mathbb{Q}$. If $h \in \mathbb{Z}$, then R_h factors trough W. $h \mapsto R_h$ is $\kappa(W)$ -periodic for some $\kappa(W) \in \mathbb{Z}_{\geq 2}$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

One has $R_0 = \rho$.

One has $R_0 = \rho$. When W is a Coxeter group, $\kappa(W) = 2$.

One has $R_0 = \rho$. When W is a Coxeter group, $\kappa(W) = 2$. If W is the Weyl group of a root system Φ ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One has $R_0 = \rho$. When W is a Coxeter group, $\kappa(W) = 2$. If W is the Weyl group of a root system Φ , R_1 is the hyperoctahedral action on Φ^+ :

One has $R_0 = \rho$. When W is a Coxeter group, $\kappa(W) = 2$. If W is the Weyl group of a root system Φ , R_1 is the hyperoctahedral action on Φ^+ :

Let $\beta(s) \in \Phi^+$ be the positive root associated to $s \in \mathcal{R}$, and $\sigma(\beta)$ the reflection associated to $\beta \in \Phi$;

One has $R_0 = \rho$. When W is a Coxeter group, $\kappa(W) = 2$. If W is the Weyl group of a root system Φ , R_1 is the hyperoctahedral action on Φ^+ :

Let $\beta(s) \in \Phi^+$ be the positive root associated to $s \in \mathcal{R}$, and $\sigma(\beta)$ the reflection associated to $\beta \in \Phi$; if $w.\beta(s) \in \Phi^+$ then $R_1(w).v_s = v_{\sigma(w.\beta(s))} = v_{wsw^{-1}}$

if $w.\beta(s) \notin \Phi^+$ then $R_1(w).v_s = -v_{\sigma(w.\beta(s))} = -v_{wsw^{-1}}$

One has $R_0 = \rho$. When W is a Coxeter group, $\kappa(W) = 2$. If W is the Weyl group of a root system Φ , R_1 is the hyperoctahedral action on Φ^+ :

Let $\beta(s) \in \Phi^+$ be the positive root associated to $s \in \mathcal{R}$, and $\sigma(\beta)$ the reflection associated to $\beta \in \Phi$; if $w.\beta(s) \in \Phi^+$ then $R_1(w).v_s = v_{\sigma(w.\beta(s))} = v_{wsw^{-1}}$

if $w.eta(s)
ot\in \Phi^+$ then $R_1(w).v_s=-v_{\sigma(w.eta(s))}=-v_{wsw^{-1}}$

Theorem

(V. Beck) $\kappa(W)$ is the order of the extension $1 \rightarrow (P, P) \rightarrow B/(P, P) \rightarrow W \rightarrow 1$.

Let $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} . Basis of $V = \mathbb{C}^N : v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$.

Let $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} . Basis of $V = \mathbb{C}^N : v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$. Let $m \in \mathbb{C}$.

Let $N = \#\mathcal{R}$, and $\rho : W \to \operatorname{GL}_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} . Basis of $V = \mathbb{C}^N : v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$. Let $m \in \mathbb{C}$.

Theorem The formulas

$$\begin{cases} t_s.v_s = mv_s \\ t_s.v_u = v_{sus} - \alpha(s,u)v_s \text{ if } s \neq u \end{cases}$$

define an equivariant representation of \mathcal{T} , where

$$\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$$

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

The Krammer representation is a representation of the BMW algebra,

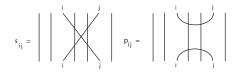
(ロ)、

The Krammer representation is a representation of the BMW algebra, hence appears in the representation theory of orthosymplectic quantum groups.

The Krammer representation is a representation of the BMW algebra, hence appears in the representation theory of orthosymplectic quantum groups. Through the Kohno-Drinfeld theorem, it corresponds to a representation of T that factors through the algebra of Brauer diagrams.

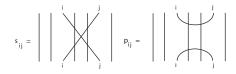
The Krammer representation is a representation of the BMW algebra, hence appears in the representation theory of orthosymplectic quantum groups. Through the Kohno-Drinfeld theorem, it corresponds to a representation of T that factors through the algebra of Brauer diagrams.

One finds $t_{ij} \mapsto s_{ij} - p_{ij}$ with



The Krammer representation is a representation of the BMW algebra, hence appears in the representation theory of orthosymplectic quantum groups. Through the Kohno-Drinfeld theorem, it corresponds to a representation of T that factors through the algebra of Brauer diagrams.

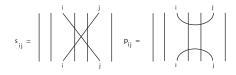
One finds $t_{ij} \mapsto s_{ij} - p_{ij}$ with



More precisely we find

The Krammer representation is a representation of the BMW algebra, hence appears in the representation theory of orthosymplectic quantum groups. Through the Kohno-Drinfeld theorem, it corresponds to a representation of T that factors through the algebra of Brauer diagrams.

One finds $t_{ij} \mapsto s_{ij} - p_{ij}$ with



More precisely we find

$$\begin{cases} t_{ij}.v_{ij} = mv_{ij} \\ t_{ij}.v_{jk} = v_{ik} - v_{ij} \text{ if } \#\{i,j,k\} = 3 \\ t_{ij}.v_{kl} = v_{kl} \text{ if } \#\{i,j,k,l\} = 4 \end{cases}$$

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of \mathcal{T} , where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of \mathcal{T} , where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

For $c \in \mathcal{R}/W$, define $V_c = \langle v_s, s \in c \rangle$ and $(v_s|v_s) = 1 - m$, $(v_s|v_u) = \alpha(s, u)$ on each V_c .

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of T, where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

For $c \in \mathcal{R}/W$, define $V_c = \langle v_s, s \in c \rangle$ and $(v_s|v_s) = 1 - m$, $(v_s|v_u) = \alpha(s, u)$ on each V_c .

Then $\varphi(t_s)$ is a linear combination of $\rho(s)$ and of the orthogonal projector on v_s associated to (|).

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of T, where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

For $c \in \mathcal{R}/W$, define $V_c = \langle v_s, s \in c \rangle$ and $(v_s|v_s) = 1 - m$, $(v_s|v_u) = \alpha(s, u)$ on each V_c .

Then $\varphi(t_s)$ is a linear combination of $\rho(s)$ and of the orthogonal projector on v_s associated to (|).

Moreover :

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of T, where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

For $c \in \mathcal{R}/W$, define $V_c = \langle v_s, s \in c \rangle$ and $(v_s|v_s) = 1 - m$, $(v_s|v_u) = \alpha(s, u)$ on each V_c .

Then $\varphi(t_s)$ is a linear combination of $\rho(s)$ and of the orthogonal projector on v_s associated to (|).

Moreover :

• φ is the direct sum of the φ_c , $c \in \mathcal{R}/W$.

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of T, where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

For $c \in \mathcal{R}/W$, define $V_c = \langle v_s, s \in c \rangle$ and $(v_s|v_s) = 1 - m$, $(v_s|v_u) = \alpha(s, u)$ on each V_c .

Then $\varphi(t_s)$ is a linear combination of $\rho(s)$ and of the orthogonal projector on v_s associated to (|).

Moreover :

- φ is the direct sum of the φ_c , $c \in \mathcal{R}/W$.
- φ_c is irreducible iff (|) is nondegenerate on V_c

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of T, where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

For $c \in \mathcal{R}/W$, define $V_c = \langle v_s, s \in c \rangle$ and $(v_s|v_s) = 1 - m$, $(v_s|v_u) = \alpha(s, u)$ on each V_c .

Then $\varphi(t_s)$ is a linear combination of $\rho(s)$ and of the orthogonal projector on v_s associated to (|).

Moreover :

- φ is the direct sum of the φ_c , $c \in \mathcal{R}/W$.
- φ_c is irreducible iff (|) is nondegenerate on V_c (for $m \neq -1$)

Irreducible components

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of T, where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

For $c \in \mathcal{R}/W$, define $V_c = \langle v_s, s \in c \rangle$ and $(v_s|v_s) = 1 - m$, $(v_s|v_u) = \alpha(s, u)$ on each V_c .

Then $\varphi(t_s)$ is a linear combination of $\rho(s)$ and of the orthogonal projector on v_s associated to (|).

Moreover :

- φ is the direct sum of the φ_c , $c \in \mathcal{R}/W$.
- φ_c is irreducible iff (|) is nondegenerate on V_c (for $m \neq -1$)
- For generic values of m, $\varphi_c(\mathcal{T}) = \mathfrak{gl}(V_c)$

Let $R : B \to \operatorname{GL}_N(K)$ be the corresponding representation.

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c$$

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \quad R_c : B \to \mathrm{GL}_{\#c}(K)$$

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

For generic values of m,

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Theorem

For generic values of m,

• R_c is irreducible and $\overline{R_c(P)} = \operatorname{GL}(V_c \otimes K)$

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Theorem

For generic values of m,

- R_c is irreducible and $\overline{R_c(P)} = \operatorname{GL}(V_c \otimes K)$
- If $W_0 \subset W$ parabolic, then

$$\mathit{Res}_{B_0} R \simeq R_0 \oplus \mathit{Hecke}(\mathcal{R} \setminus \mathcal{R}_0)$$

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Theorem

For generic values of m,

• R_c is irreducible and $\overline{R_c(P)} = \operatorname{GL}(V_c \otimes K)$

• If $W_0 \subset W$ parabolic, then

$$Res_{B_0}R \simeq R_0 \oplus Hecke(\mathcal{R} \setminus \mathcal{R}_0)$$

•
$$Sp R(\sigma) = \{q, -q^{-1}, q^m\}, q = \exp(i\pi h).$$

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Theorem

For generic values of m,

• R_c is irreducible and $\overline{R_c(P)} = \operatorname{GL}(V_c \otimes K)$

• If $W_0 \subset W$ parabolic, then

$$Res_{B_0}R \simeq R_0 \oplus Hecke(\mathcal{R} \setminus \mathcal{R}_0)$$

- Sp $R(\sigma) = \{q, -q^{-1}, q^m\}, q = \exp(i\pi h).$
- If conjecture 1 is true, then 'R' is unitarizable for small h and large m.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

We do not know if R can be unfaithful when $\#\mathcal{R}/W > 1$.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We do not know if R can be unfaithful when $\#\mathcal{R}/W > 1$.

Theorem If W is a Coxeter group of type $I_2(2m + 1) = G(2m + 1, 2m + 1, 2)$, then R is faithful.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

We do not know if R can be unfaithful when $\#\mathcal{R}/W > 1$.

Theorem If W is a Coxeter group of type $I_2(2m + 1) = G(2m + 1, 2m + 1, 2)$, then R is faithful. At least, the following scores plausible

At least, the following seems plausible.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

We do not know if R can be unfaithful when $\#\mathcal{R}/W > 1$.

Theorem If W is a Coxeter group of type $I_2(2m+1) = G(2m+1, 2m+1, 2)$, then R is faithful. At least, the following seems plausible.

Conjecture 2

If W has a single class of reflections, then R is faithful.

Let W be an irreducible pseudo-reflection group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let W be an irreducible pseudo-reflection group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem If conjecture 2 is true, then

Let W be an irreducible pseudo-reflection group.

Theorem

If conjecture 2 is true, then

B is linear, residually finite, etc.

Let W be an irreducible pseudo-reflection group.

Theorem

If conjecture 2 is true, then

- B is linear, residually finite, etc.
- P is residually torsion-free nilpotent (hence biorderable, residually p, etc.)

Let W be an irreducible pseudo-reflection group.

Theorem

If conjecture 2 is true, then

- B is linear, residually finite, etc.
- P is residually torsion-free nilpotent (hence biorderable, residually p, etc.)

Normal subgroups of B "usually" intersect

Let W be an irreducible pseudo-reflection group.

Theorem

If conjecture 2 is true, then

- B is linear, residually finite, etc.
- P is residually torsion-free nilpotent (hence biorderable, residually p, etc.)

- Normal subgroups of B "usually" intersect
- The Fitting subgroup of B equals its center

Let W be an irreducible pseudo-reflection group.

Theorem

If conjecture 2 is true, then

- B is linear, residually finite, etc.
- P is residually torsion-free nilpotent (hence biorderable, residually p, etc.)

- Normal subgroups of B "usually" intersect
- The Fitting subgroup of B equals its center
- The Frattini subgroup of B is trivial.

The statements concerning B are consequences of the following

The statements concerning B are consequences of the following

Theorem

If conjecture 2 holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The statements concerning B are consequences of the following

Theorem

If conjecture 2 holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

▶ By considering pseudo-reflection groups, no new B arise, so we can assume that W is a (true) reflection group.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The statements concerning B are consequences of the following

Theorem

If conjecture 2 holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

- ▶ By considering pseudo-reflection groups, no new B arise, so we can assume that W is a (true) reflection group.
- ► All groups of type G(2e, e, n) can be embedded in the usual braid group as finite-index subgroups.

The statements concerning B are consequences of the following

Theorem

If conjecture 2 holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

- ▶ By considering pseudo-reflection groups, no new B arise, so we can assume that W is a (true) reflection group.
- ► All groups of type G(2e, e, n) can be embedded in the usual braid group as finite-index subgroups.

► This theorem is true when *W* is Coxeter (I.M.).

The statements concerning B are consequences of the following

Theorem

If conjecture 2 holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

- ▶ By considering pseudo-reflection groups, no new B arise, so we can assume that W is a (true) reflection group.
- ► All groups of type G(2e, e, n) can be embedded in the usual braid group as finite-index subgroups.
- ► This theorem is true when *W* is Coxeter (I.M.).
- ► Among exceptional groups, only G₁₃ has #R/W > 1, and its braid group is isomorphic to the one of Coxeter type I₂(6).

5. Residual nilpotence

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups : infinite series G(de, e, n) plus 34 exceptions.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups : infinite series G(de, e, n) plus 34 exceptions. Fortunately, the following phenomena occur :

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups : infinite series G(de, e, n) plus 34 exceptions. Fortunately, the following phenomena occur :

All P arising in the infinite series are either of type G(e, e, n) or fiber-type.

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups : infinite series G(de, e, n) plus 34 exceptions. Fortunately, the following phenomena occur :

- ► All P arising in the infinite series are either of type G(e, e, n) or fiber-type.
- ► All P arising in the exceptional types are either fiber-type or correspond to reflection groups with #R/W = 1, except G₂₅, G₂₆, G₃₂

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups : infinite series G(de, e, n) plus 34 exceptions. Fortunately, the following phenomena occur :

- All P arising in the infinite series are either of type G(e, e, n) or fiber-type.
- ► All P arising in the exceptional types are either fiber-type or correspond to reflection groups with #R/W = 1, except G₂₅, G₂₆, G₃₂

So it is sufficient to prove it for reflection groups with $\#\mathcal{R}/\mathcal{W}=$ 1, provided that :

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups : infinite series G(de, e, n) plus 34 exceptions. Fortunately, the following phenomena occur :

- ► All P arising in the infinite series are either of type G(e, e, n) or fiber-type.
- ► All P arising in the exceptional types are either fiber-type or correspond to reflection groups with #R/W = 1, except G₂₅, G₂₆, G₃₂

So it is sufficient to prove it for reflection groups with $\#\mathcal{R}/\mathcal{W}=$ 1, provided that :

Proposition

(I.M.) If W is a Coxeter group, or of type G_{25} , G_{26} , G_{32} , then P is residually torsion-free nilpotent.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

How do we prove residual torsion-free nilpotence?

How do we prove residual torsion-free nilpotence? Idea : use faithful representations,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How do we prove residual torsion-free nilpotence? Idea : use faithful representations, embed P in some residually torsion-free linear group

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How do we prove residual torsion-free nilpotence? Idea : use faithful representations, embed P in some residually torsion-free linear group For $A = \mathbb{C}[[h]]$, $\operatorname{GL}_N(A)$ contains a residually torsion-free nilpotent group,

How do we prove residual torsion-free nilpotence? Idea : use faithful representations, embed P in some residually torsion-free linear group For $A = \mathbb{C}[[h]]$, $\operatorname{GL}_N(A)$ contains a residually torsion-free nilpotent group, namely

$$\operatorname{GL}^0_N(A) = \{M \in \operatorname{GL}_N(A) \mid M \equiv \operatorname{Id} \mathsf{mod} h\} = \exp\left(h\operatorname{Mat}_N(A)\right)$$

How do we prove residual torsion-free nilpotence? Idea : use faithful representations, embed P in some residually torsion-free linear group For $A = \mathbb{C}[[h]]$, $\operatorname{GL}_N(A)$ contains a residually torsion-free nilpotent group, namely

$$\operatorname{GL}^{0}_{N}(A) = \{ M \in \operatorname{GL}_{N}(A) \mid M \equiv \operatorname{Id} \operatorname{\mathsf{mod}} h \} = \exp(h \operatorname{Mat}_{N}(A))$$

If $R : B \to \operatorname{GL}_N(A)$ is faithful, check if $R(P) \subset \operatorname{GL}^0_N(A)$.

How do we prove residual torsion-free nilpotence? Idea : use faithful representations, embed P in some residually torsion-free linear group For $A = \mathbb{C}[[h]]$, $\operatorname{GL}_N(A)$ contains a residually torsion-free nilpotent group, namely

$$\operatorname{GL}^0_N(A) = \{ M \in \operatorname{GL}_N(A) \mid M \equiv \operatorname{Id} \operatorname{\mathsf{mod}} h \} = \exp\left(h \operatorname{Mat}_N(A)\right)$$

If $R : B \to \operatorname{GL}_N(A)$ is faithful, check if $R(P) \subset \operatorname{GL}_N^0(A)$. It works for monodromy representations,

How do we prove residual torsion-free nilpotence? Idea : use faithful representations, embed P in some residually torsion-free linear group For $A = \mathbb{C}[[h]]$, $\operatorname{GL}_N(A)$ contains a residually torsion-free nilpotent group, namely

$$\operatorname{GL}^0_N(A) = \{ M \in \operatorname{GL}_N(A) \mid M \equiv \operatorname{Id} \mathsf{mod} h \} = \exp(h \operatorname{Mat}_N(A))$$

If $R : B \to \operatorname{GL}_N(A)$ is faithful, check if $R(P) \subset \operatorname{GL}_N^0(A)$. It works for monodromy representations, so under conjecture 2 this settles the case of $\#\mathcal{R}/W = 1$ for W a reflection group.

For the other ones?

For the other ones?

For the other ones ? For type G_{25} , W is generated by $< s_1, s_2, s_3 >$ with relations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For the other ones? For type G_{25} , W is generated by $< s_1, s_2, s_3 >$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For the other ones? For type G_{25} , W is generated by $< s_1, s_2, s_3 >$ with relations $s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$

and B is the usual braid group on 4 strands \mathcal{B}_4 .

For the other ones? For type G_{25} , W is generated by $< s_1, s_2, s_3 >$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and B is the usual braid group on 4 strands \mathcal{B}_4 . But

For the other ones? For type G_{25} , W is generated by $< s_1, s_2, s_3 >$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

and B is the usual braid group on 4 strands \mathcal{B}_4 . But $P = \operatorname{Ker} (B \mapsto W)$ is

For the other ones? For type G_{25} , W is generated by $< s_1, s_2, s_3 >$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

and *B* is the usual braid group on 4 strands \mathcal{B}_4 . But $P = \text{Ker}(B \mapsto W)$ is not the pure braid group on 4 strands \mathcal{P}_4 .

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} & i < k \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where t and q denote algebraically independent parameters.

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} & i < k \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q, t)$ into $K = \mathbb{C}((h))$ by $q \mapsto e^h$ and $t \mapsto e^{\sqrt{2}h}$.

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} & i < k \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q, t)$ into $K = \mathbb{C}((h))$ by $q \mapsto e^h$ and $t \mapsto e^{\sqrt{2}h}$. Then $R(\mathcal{P}_4) \subset \operatorname{GL}^0_N(A)$:

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} & i < k \\ \sigma_k x_{i,k} = (1-q)x_{i,k} + qx_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1}(q-1)x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1)x_{k,k+1} + qx_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q)x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i}(q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q, t)$ into $K = \mathbb{C}((h))$ by $q \mapsto e^h$ and $t \mapsto e^{\sqrt{2}h}$. Then $R(\mathcal{P}_4) \subset \operatorname{GL}^0_N(A)$: no surprise.

Consider the Lawrence-Krammer formulas :

$$\begin{array}{ll} f & \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where t and q denote algebraically independent parameters.

Consider the Lawrence-Krammer formulas :

$$\begin{array}{ll} f & \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq (q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{array}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q, t)$ into $K = \mathbb{C}((h))$ by $q \mapsto -je^h$ and $t \mapsto e^{\sqrt{2}h}$ with $j = \exp(\frac{2i\pi}{3})$.

Consider the Lawrence-Krammer formulas :

$$\begin{array}{ll} f & \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq (q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{array}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q, t)$ into $K = \mathbb{C}((h))$ by $q \mapsto -je^h$ and $t \mapsto e^{\sqrt{2}h}$ with $j = \exp(\frac{2i\pi}{3})$. Then (Miracle!) $R(P) \subset \operatorname{GL}^0_N(A)$.

Consider the Lawrence-Krammer formulas :

$$\begin{array}{ll} f & \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq (q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{array}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q, t)$ into $K = \mathbb{C}((h))$ by $q \mapsto -je^h$ and $t \mapsto e^{\sqrt{2}h}$ with $j = \exp(\frac{2i\pi}{3})$. Then (Miracle!) $R(P) \subset \operatorname{GL}^0_N(A)$. Hence P is residually torsion-free nilpotent.

The same miracle happens for G_{32} , whose *P* is a subgroup of the usual braid group on 5 strands.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The same miracle happens for G_{32} , whose *P* is a subgroup of the usual braid group on 5 strands.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The same miracle happens for G_{32} , whose P is a subgroup of the usual braid group on 5 strands.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Hence *P* is residually torsion-free nilpotent for G_{25} and G_{32} .

The same miracle happens for G_{32} , whose P is a subgroup of the usual braid group on 5 strands. Hence P is residually torsion-free nilpotent for G_{25} and G_{32} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

But for G_{26} ?

The same miracle happens for G_{32} , whose P is a subgroup of the usual braid group on 5 strands. Hence P is residually torsion-free nilpotent for G_{25} and G_{32} . But for G_{26} ?

 $\langle s, t, u \mid stst = tsts, su = us, tut = utu, s^2 = t^3 = u^3 = 1 \rangle$

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 .

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

For $W = G_{26}$, *B* is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$. The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} . But :

For $W = G_{26}$, *B* is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26} \rightarrow P_{25}$ is not into.

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

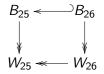
But : the corresponding morphisms $P_{26} \rightarrow P_{25}$ is not into. However,

Second miracle

For $W = G_{26}$, *B* is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26} \rightarrow P_{25}$ is not into. However, there exists morphisms

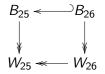


Second miracle

For $W = G_{26}$, *B* is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26} \rightarrow P_{25}$ is not into. However, there exists morphisms



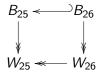
hence P_{26} embeds in P_{25} in a strange way.

Second miracle

For $W = G_{26}$, *B* is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26} \rightarrow P_{25}$ is not into. However, there exists morphisms



hence P_{26} embeds in P_{25} in a strange way. These two morphisms are defined by $(s, t, u) \mapsto ((tu)^3, s, t)$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Surprisingly, yes.

Surprisingly, yes. Recall that

Surprisingly, yes. Recall that

•
$$B_{25} = B_4$$
, braid group on 4 strands,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,

• $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,

• $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

• Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$.

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,

• $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

• Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,

• $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- In Magnus way :

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$,

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes \mathcal{F}_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$,

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes \mathcal{F}_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes \mathcal{F}_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$ and image containing $\operatorname{Inn}(F_3) \simeq F_3$.

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes \mathcal{F}_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$ and image containing $\operatorname{Inn}(F_3) \simeq F_3$. It also contains a copy of \mathcal{B}_3 ,

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes \mathcal{F}_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$ and image containing $\operatorname{Inn}(F_3) \simeq F_3$. It also contains a copy of \mathcal{B}_3 , whence another subgroup of \mathcal{B}_4 isomorphic to $\mathcal{B}_3 \ltimes F_3$.

Surprisingly, yes. Recall that

- $B_{25} = B_4$, braid group on 4 strands,
- B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes \mathcal{F}_3$ embeds in \mathcal{B}_4 in several ways.

- Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \rightarrow \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$ and image containing $\operatorname{Inn}(F_3) \simeq F_3$. It also contains a copy of \mathcal{B}_3 , whence another subgroup of \mathcal{B}_4 isomorphic to $\mathcal{B}_3 \ltimes F_3$.

This is the right one !

Group-theoretic conjecture

<ロト (個) (目) (目) (目) (0) (0)</p>

These miracles maybe give additional support to the following conjecture, independantly of the 'main' one.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

These miracles maybe give additional support to the following conjecture, independantly of the 'main' one.

Conjecture 3

If A is a pseudo-reflection arrangement, then $\pi_1(X)$ is residually torsion-free nilpotent.

These miracles maybe give additional support to the following conjecture, independantly of the 'main' one.

Conjecture 3

If A is a pseudo-reflection arrangement, then $\pi_1(X)$ is residually torsion-free nilpotent.

(Recall that residual torsion-free nilpotent groups are bi-orderable and residually p for all p.)