Analytic continuation of polytopes and wall crossing

Work in progress with Nicole Berline.
REFERENCES: Varchenko: Combinatorics and topology of the disposition of affine hyperplanes in real space: Functional Analysis and its Applications:1987.
Paradan: Wall crossing formulas in Hamiltonian Geometry arXiv:math/0411306
De Concini+Procesi+Vergne: Vector partition functions and generalized Dahmen-Micchelli spaces, arXiv 0805.2907. Karshon-Tolman: The moment map and line bundles over presymplectic toric manifolds. J. diff geometry (1993)

We define a set theoretic "analytic" continuation of a simple polytope.
For the regular values of the parameter, our construction coincides with the "combinatorial connection" introduced by Varchenko on "mirages".
We study what happens to the polytope when reaching a wall, and crossing it.

Let V be a real vector space, and let $\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right]$ be a sequence of linear forms on V. Consider on V an arrangement of affine hyperplanes given by the equations $\left\langle\alpha_{j}, x\right\rangle-z_{j}=0$. Assume that for a particular value z^{0}, the set

$$
\mathfrak{p}\left(z^{0}\right)=\left\{v ;\left\langle\alpha_{j}, v\right\rangle \leq z_{j}^{0}, 1 \leq j \leq N\right\}
$$

is non empty, and that $\mathfrak{p}\left(z^{0}\right)$ is a simple polytope.

If z varies in a neighborhood U of z^{0}, it is intuitively clear that the nearby polytope

$$
\mathfrak{p}(z)=\left\{v ;\left\langle\alpha_{j}, v\right\rangle \leq z_{j}, 1 \leq j \leq N\right\} .
$$

varies "analytically" with z.
For example, the integral over $\mathfrak{p}(z)$ of a polynomial function $f(v)$ depends polynomially on z.

That is
there exists a polynomial function P of $\left(z_{1}, z_{2}, \ldots, z_{N}\right)$, such that for z in a neighborhood of z^{0}

$$
\int_{\mathfrak{p}(z)} f(v)=P(z)
$$

Varchenko showed that it is possible to interpret the polynomial function $z \rightarrow P(z)$ as the integral of f on "analytic continuation" $X(\mathfrak{p}, z)$ of the polytope $\mathfrak{p}(z)$. Similar result for number of integral points, if the arrangement is rational.
(We will not make any such assumption however)

Here, I will define $X(\mathfrak{p}, z)$, for any $z \in \mathbb{R}^{N}$, prove the "continuity" of $z \rightarrow X(\mathfrak{p}, z)$, when z reaches a singular value, and describe the jump of $X(\mathfrak{p}, z)$ when z crosses a wall.

The idea beyond analytic continuation is quite simple: it follows for example from Brion's formula that the integral of a polynomial over a polytope can be computed from the geometry of the tangent cones: indeed the characteristic function of the polytope $\mathfrak{p}(z)$ is a signed combination of the indicator functions of the tangent cones to the faces of $\mathfrak{p}(z)$. So we move z, follow invidually each vertex, move the tangent cones accordingly, and look at the result.

Let $z_{1}<z_{2}$. Consider the closed interval

$$
C:=\left[z_{1}, z_{2}\right]=\left[z_{1},+\infty\right]+\left[-\infty, z_{2}\right]-[-\infty, \infty] .
$$

If $\left(z_{1}, z_{2}\right)$ moves and cross each other so that now $z_{2} \leq z_{1}$, we see that C becomes a point $\left\{z_{1}=z_{2}\right\}$
THEN
$] z_{2}, z_{1}[$ with a minus sign.

If z_{1}, z_{2} are integers, and we count the number of points in the closed interval $\left[z_{1}, z_{2}\right]$ for $z_{1} \leq z_{2}$, this is the function $\left(z_{2}-z_{1}\right)+1$, and, if $z_{2}<z_{1}$, the function $\left(z_{2}-z_{1}\right)+1$ is indeed minus the number of points in the interior of the interval $\left(z_{2}, z_{1}\right)$.

Let us state more precisely our result.
It is easier to express it when the vector space V varies, but equations are fixed. Thus we consider a r dimensional vector space F, and $\Phi:=\left[\phi_{1}, \phi_{2}, \ldots \phi_{N}\right]$ a sequence of elements of F. We assume that Φ span F and span a pointed cone.

Consider $V(\lambda)$ the affine space

$$
\sum_{i=1}^{N} x_{i} \phi_{i}=\lambda
$$

All $V(\lambda)$ are "the same" vector space V : affine translations of the vector space $V:=\left\{\sum_{i} x_{i} \phi_{i}=0\right\}$ and we consider the "mirage" defined by the fixed equations $x_{i}=0$ on the moving space $V(\lambda) \sim V$.

Definition

If $\lambda \in F$, define

$$
\mathfrak{p}(\Phi, \lambda):=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right) ; x_{i} \geq 0 ; \sum_{i} x_{i} \phi_{i}=\lambda\right\} .
$$

That is this is the intersection of $V(\lambda)$ with the positive quadrant. It is a bounded polytope.
We will need intersections with other quadrants; so let $A \cup B=[1,2, \ldots, N]$ and let

$$
Q(A, B):=\left\{x_{a} \geq 0, a \in A, \quad x_{b}<0, b \in B .\right\}
$$

Define

$$
\mathfrak{q}(A, B, \lambda)=V(\lambda) \cap Q(A, B) .
$$

Bounded if and only if $\left\{\phi_{a} ; a \in A\right\} \cup\left\{\left(-\phi_{b}\right), b \in B\right\}$ generates a pointed cone.
"walls": hyperplanes in F generated by $(r-1)$ independent vectors.

An element f which is not on one of these walls be called regular.
A connected component C_{O} of the open set of regular elements will be called a chamber.

Let λ_{0} be regular and in the cone generated by the ϕ_{i}.
Then $\mathfrak{p}\left(\Phi, \lambda_{0}\right)$ is a simple polytope with non empty interior relatively to $V\left(\lambda_{0}\right)$.

Let C_{0} be the chamber which contains λ_{0}.
We denote by $\mathcal{G}\left(\Phi, C_{0}\right)$ the set of subsets $I \subseteq\{1, \ldots N\}$ such that C_{0} is contained in the cone generated by the $\phi_{i}, i \in I$. For any $I \in \mathcal{G}\left(\Phi, C_{0}\right)$, define

$$
\begin{equation*}
\mathfrak{t}(\Phi, I)=\left\{x \in \mathbb{R}^{N}, x_{k} \geq 0 \text { for } k \in I^{c}\right\} . \tag{1}
\end{equation*}
$$

In this equation, the set I^{c} is the complementary set of indices to I in $\{1,2, \ldots, N\}$.
(No condition on x_{i} for $i \in I$)

Let $\lambda \in C_{0}$. When I varies in the set $\mathcal{G}\left(\Phi, C_{0}\right)$, the affine cones

$$
\begin{equation*}
\mathfrak{t}\left(\Phi, I, \lambda_{0}\right)=\mathfrak{t}(\Phi, I) \cap V\left(\lambda_{0}\right) \tag{2}
\end{equation*}
$$

describe all tangent cones to the faces of $\mathfrak{p}\left(\Phi, \lambda_{0}\right)$. The corresponding face is of dimension $|I|-\operatorname{dim} F$. Vertex if I corresponds to a feasible basis $\phi_{i}: \lambda=\sum_{i} \lambda_{i} \phi_{i}$ with $\lambda_{i} \geq 0$.

Denote by [S] the indicator function of a set $S \subset V(\lambda)$.
By Brianchon-Gram, the polytope is the signed sum of its tangent cones:
for $\lambda \in C_{0}$:

$$
\left[\mathfrak{p}\left(\Phi, \lambda_{0}\right)\right]=\sum_{I \in \mathcal{G}\left(\Phi, C_{0}\right)}(-1)^{|I|-\operatorname{dim} F}\left[\mathfrak{t}(\Phi, I) \cap V\left(\lambda_{0}\right)\right]
$$

Define the "analytic continuation" of $\mathfrak{p}\left(\Phi, \lambda_{0}\right)$ to be:

$$
X\left(\Phi, C_{0}, \lambda\right)=\sum_{I \in \mathcal{G}\left(\Phi, C_{0}\right)}(-1)^{|I|-\operatorname{dim} F}[\mathfrak{t}(\Phi, I) \cap V(\lambda)]
$$

Recall:

$$
\begin{equation*}
\mathfrak{t}(\Phi, I)=\left\{x \in \mathbb{R}^{N}, x_{k} \geq 0 \text { for } k \in I^{c}\right\} . \tag{3}
\end{equation*}
$$

and $\mathfrak{t}(\Phi, I) \cap V(\lambda)$ is always "the same cone".

Theorem

For any $\lambda \in F, X\left(\Phi, C_{O}, \lambda\right)$ is a combination of characteristic functions of bounded polytopes.
It is "continuous" on the closure: when λ is in \bar{C}_{0},
$X\left(\Phi, C_{O}, \lambda\right)=[\mathfrak{p}(\Phi, \lambda)]$.
(for the moment, only weaker statement: $X\left(\Phi, C_{O}, \lambda\right)$, for λ singular in the closure, is equal to $[\mathfrak{p}(\Phi, \lambda)]$ (not simple) modulo indicator functions of cones with lines.)
First assertion due to Varchenko for regular values, and $X\left(\Phi, C_{O}, \lambda\right)$ coincides with Varchenko construction on regular values.
We can think of this theorem, as a set theoretic analogue of the finiteness of the Euler characteristic for a line bundle over a complete toric manifold; and of the continuity theorem of Boutot.

More precise wall crossing theorem later.
$\lambda->X\left(\Phi, \lambda, C_{0}\right)$ is "the" analytic continuation of $\mathfrak{p}(\Phi, \lambda)$ (intially defined "analytically" for λ in the open set $\in C_{0}$). Indeed the cones $[\mathfrak{t}(\Phi, I) \cap V(\lambda)]$ are just affine "analytic translations" of the tangent cones to $\mathfrak{p}\left(\Phi, \lambda_{0}\right)$.

Let us see how $X\left(\Phi, C_{0}, \lambda\right)$ varies in the following example:

Figure: Chambers

Assume that λ_{0} lies in the open conic chamber C_{0} generated by ϕ_{2} and ϕ_{4}.
To draw $\mathfrak{p}(\lambda)$, we parametrize $V(\lambda)=\left\{\sum_{i} x_{i} \phi_{i}=\lambda\right\} \subset \mathbb{R}^{4}$ by \mathbb{R}^{2} :

$$
\left(x_{1}, x_{2}\right) \rightarrow\left[\lambda_{1}+x_{1}, \lambda_{2}+x_{2}, \frac{\left(x_{1}-x_{2}\right)}{2},-\frac{\left(x_{1}+x_{2}\right)}{2}\right] .
$$

We start by λ in the chamber ϕ_{2}, ϕ_{4}. $\mathfrak{p}(\lambda)$ is the quadrilateral

Figure: OUR START
described by the inequations $x_{1} \geq-\lambda_{1}, x_{2} \geq-\lambda_{2} x_{1} \geq x_{2}$, $x_{1}+x_{2} \leq 0$

Let us describe its analytic continuation, as the parameter λ visits all the chambers. When λ_{1} increases (the vertical line moves to the right), we watch the jump appear. It is -with a minus sign- the semi-open triangle.

Figure: JUMP OVER THE FIRST WALL ϕ_{4}

We picture how vary the polytope turning in clockwise direction (there are some semi open pieces, and minus signs in red):

Figure: Turning around

Thus after one half turn, we go to $-\lambda$, and we picture the start and the end.

which is just the interior of the original polytope (turned by 180 degree rotation).

We now give a description of how $X\left(\Phi, C_{O}, \lambda\right)$ varies when crossing a wall W.
Let C_{0}, C_{1} be adjacent chambers. We assume C_{0} contained in the cone generated by the ϕ_{i}.

Define $B \subset\{1,2, \ldots, N\}$ to be the set of ϕ_{b} such that ϕ_{b} is (strictly) on the side of C_{1} with respect to the wall W. Let A be the complement of B in $[1,2, \ldots, N]$. So $A \cup B=\{1,2, \ldots N\}$ Remark that

$$
\left\{\phi_{a}, a \in A\right\} \cup\left\{-\phi_{b}, b \in B\right\}
$$

span a pointed cone.

Theorem

For $\lambda \in C_{1}$, an adjacent chamber, the analytic continuation is given by the formula:

$$
\left[X\left(\Phi, C_{O}\right)(\lambda)\right]=[\mathfrak{p}(\Phi, \lambda)]+(-1)^{|B|}[\mathfrak{q}(A, B, \lambda)] .
$$

Or

$$
\mathfrak{q}([1,2, \ldots, N], \emptyset, \lambda)+(-1)^{|B|}[\mathfrak{q}(A, B, \lambda)] .
$$

Here $[\mathfrak{p}(\Phi, \lambda)]$ is the polytope associated to λ for the chamber C_{1} : while $[\mathfrak{q}(A, B, \lambda)]$ is also a polytope associated to the chamber C_{1} but for a system $\Psi \subset \Phi \cup(-\Phi)$, where some of the Φ are reversed. (In the toric context where Φ are integral vectors, would correspond to a change of complex structure on \mathbb{C}^{N})

In other-words, for $\lambda \in C_{1}$,
[$\left.X\left(\Phi, C_{O}\right)(\lambda)\right]$ is the "sum" of two bounded sets: the intersection of $V(\lambda)$ with the positive quadrant and (with some sign) the (bounded) intersection of $V(\lambda)$ with an explicit other semi-open quadrant.
(The first set $\mathfrak{p}(\Phi, \lambda)$ maybe empty, if C_{1} is not contained in the cone generated Φ)

This theorem is a rephrasing in a set theoretic manner the jump formula of Paradan for number of points in polytopes. It implies it. Maybe we can get more information on $X\left(\Phi, C_{O}\right)(\lambda)$ for any λ, where the "zonotope" will appear: recall that the number of integral points in $X\left(\Phi, C_{O}\right)(\lambda)$ is given by a quasi-polynomial formula if $\lambda \in C_{O}$ - Zontope (Φ) (Szenes-Vergne).
Here, we dont (yet) see this result.

Case of jumps of volumes (or Riemann Roch numbers) reductions of a vector space by a torus actions: implied by the set theoretic jump.
Question: is there a set theoretic version of the variation of the fibers of the moment map, that will explain Paradan jump formulae in the more general Hamiltonian setting.
Paradan: Wall crossing formulas in Hamiltonian Geometry arXiv:math/0411306
See also
De Concini+Procesi+Vergne: Vector partition functions and generalized Dahmen-Micchelli spaces, arXiv 0805.2907.
Also Examples in Boysal-Vergne (work in progress) for multiple Bernoulli polynomials of very similar jump formulae where I dont see set theoretic analogues, nor Hamiltonian analogues.

