LOGARITHMIC SHEAVES AND ARRANGEMENTS OF HYPERPLANES

DANIELE FAENZI, DANIEL MATEI, AND JEAN VALLÈS

ABSTRACT. This is the outline of the talk presented by the second author in the workshop *Configuration Spaces and Hyperplane Arrangements*, at the Scuola Normale Superiore di Pisa, on June 25, 2010.

One object naturally associated to a hyperplane arrangement \mathcal{A} in \mathbb{P}^n is the sheaf $\Omega^1(\mathcal{A})$ of logarithmic one-forms with poles along \mathcal{A} . We discuss here a certain sub-sheaf $\widetilde{\Omega}^1(\mathcal{A})$ of $\Omega^1(\mathcal{A})$, introduced by I. Dolgachev, and his notion of Torelli arrangement, that is, an arrangement \mathcal{A} that can be uniquely reconstructed from the sheaf $\widetilde{\Omega}^1(\mathcal{A})$.

1. Logarithmic sheaves

The sheaves of logarithmic differential forms with poles along a divisor were defined by P. Deligne [1] for a divisor with normal crossings, and by K. Saito [6] for an arbitrary divisor. Let X be a smooth complex algebraic variety and D a divisor on X. The sheaf of logarithmic forms $\Omega^1_X(\log D)$ consists of the meromorphic differential forms ω on X such that both ω and $d\omega$ have at most a first-order pole along D. Deligne's $\Omega^1_X(\log D)$ is a locally free sheaf, whereas Saito's is not so in general, unless X is a surface.

In [2], Dolgachev introduced a sub-sheaf $\widetilde{\Omega}_X^1(\log D)$ of $\Omega_X^1(\log D)$, that although may not be locally free even for divisors on surfaces, enjoys other useful properties, particularly when D is a hyperplane arrangement divisor.

By definition, one always has a residue exact sequence

$$0 \to \Omega_X^1 \to \widetilde{\Omega}_X^1(\log D) \to \nu_* \mathcal{O}_{\widetilde{D}} \to 0,$$

where $\nu: \widetilde{D} \to D$ is a resolution of singularities of D.

Since the cokernel of the inclusion $\widetilde{\Omega}_X^1(\log D) \to \Omega_X^1(\log D)$ is supported at a closed subset of codimension ≥ 2 , we have that the double duals of the two sheaves coincide

$$\widetilde{\Omega}_X^1(\log D)^{**} \cong \Omega_X^1(\log D)^{**} = \Omega_X^1(\log D).$$

Moreover, if D is a normal crossing divisor in codimension ≤ 2 , then

$$\widetilde{\Omega}^1_X(\log D) \cong \Omega^1_X(\log D).$$

Date: July 12, 2010.

Key words and phrases. hyperplane arrangements, logarithmic forms, rational normal curve.

2. Torelli Arrangements

An arrangement of hyperplanes in \mathbb{P}^n is a finite collection $\mathcal{A} = \{H_1, \ldots, H_m\}$ of distinct hyperplanes. The union of the hyperplanes in \mathcal{A} is a divisor D in \mathbb{P}^n . We will denote $\Omega^1(\mathcal{A}) := \Omega^1_{\mathbb{P}^n}(\log D)$, and $\widetilde{\Omega}^1(\mathcal{A}) := \widetilde{\Omega}^1_{\mathbb{P}^n}(\log D)$.

The subject of the Torelli type properties of arrangements was started by I. Dolgachev and M. Kapranov in [4]. They considered there divisors D in \mathbb{P}^n which are unions of $m \geq 2n+3$ distinct hyperplanes in general position. The main result of [4] determines precisely which such hyperplane arrangements \mathcal{A} can be uniquely reconstructed from the locally free sheaf $\Omega^1(\mathcal{A})$, that is, they are of Torelli type. This result has been later extended by J. Vallès in [7] to arrangements of $m \geq n+2$ hyperplanes.

Theorem 2.1 (Dolgachev-Kapranov, Vallès). An arrangement \mathcal{A} of $m \geq n+2$ hyperplanes in \mathbb{P}^n in general position can be uniquely reconstructed from $\Omega^1(\mathcal{A})$, unless the hyperplanes in \mathcal{A} osculate the same rational normal curve C.

In [2], Dolgachev revisited and generalized the previous approach to the Torelli type arrangements using the logarithmic sheaves $\widetilde{\Omega}^1(\mathcal{A})$.

Let $\mathcal{A} = \{H_1, \dots, H_m\}$ be an arrangement of $m \geq n+2$ hyperplanes in \mathbb{P}^n . The sub-sheaf $\widetilde{\Omega}^1(\mathcal{A})$ of $\Omega^1(\mathcal{A})$ is characterized by the exact sequence

$$0 \to \Omega^1_{\mathbb{P}^n} \to \widetilde{\Omega}^1(\mathcal{A}) \to \bigoplus_{i=1}^m \mathcal{O}_{H_i} \to 0.$$

The following properties of $\widetilde{\Omega}^1(\mathcal{A})$ are derived by Dolgachev in [2]:

- $\widetilde{\Omega}^1(\mathcal{A})$ is a locally free sheaf if and only if \mathcal{A} is a general position arrangement;
- $\widetilde{\Omega}^1(\mathcal{A}) = \Omega^1(\mathcal{A})$ if and only if \mathcal{A} is a normal crossing divisor in codimension ≤ 2 ;
- $\widetilde{\Omega}^1(\mathcal{A})$ is a Steiner sheaf, admitting a projective resolution

$$0 \to \mathcal{O}_{\mathbb{P}^n}(-1)^{m-n-1} \to \mathcal{O}_{\mathbb{P}^n}^{m-1} \to \widetilde{\Omega}^1(\mathcal{A}) \to 0,$$

in particular, its Chern polynomial depends only on m and n.

In order to define the notion of Torelli for arbitrary hyperplane arrangements, Dolgachev uses Vallès's notion of unstable hyperplanes.

Definition 2.2. Let \mathcal{A} be a hyperplane arrangement in \mathbb{P}^n . The set of unstable hyperplanes $W(\mathcal{A})$ is defined as the following cohomology non-vanishing locus

$$W(\mathcal{A}) := \left\{ H \subset \mathbb{P}^n \mid H^{n-1}(H, \mathcal{F}(-n)_{|H}) \neq 0 \right\},\,$$

where \mathcal{F} is the rank n Steiner sheaf $\widetilde{\Omega}^1(\mathcal{A})$.

Then Dolgachev [2] shows the inclusion $\mathcal{A} \subseteq W(\mathcal{A})$, and makes the following definition.

Definition 2.3. An arrangement \mathcal{A} of $m \geq n+2$ hyperplanes in \mathbb{P}^n is a *Torelli arrangement* if $W(\mathcal{A})$ consists of precisely the hyperplanes in \mathcal{A} .

In [2], the following conjecture is made on the Torelli arrangements \mathcal{A} for which $\widetilde{\Omega}^1(\mathcal{A})$ is a semi-stable sheaf.

Conjecture 2.4 (Dolgachev). A semi-stable arrangement of $m \ge n+2$ hyperplanes in \mathbb{P}^n is Torelli unless the corresponding points in the dual space $\check{\mathbb{P}}^n$ lie on a stably normal rational curve C of degree n, that is a connected, reduced curve of arithmetic genus 0 whose components C_1, \ldots, C_s are smooth rational curves of degrees d_i such that $n = d_1 + \cdots + d_s$ and C_i spans a linear subspace of dimension d_i .

The conjecture is verified in [2] for line arrangements in \mathbb{P}^2 of $m \leq 6$ lines.

3. Main theorem

Our main result is a resolution of Dolgachev's conjecture, with some necessary modifications of the statement.

Theorem 3.1. Let \mathcal{A} be an arrangement of $m \geq n+2$ hyperplanes in \mathbb{P}^n , and let Z be the corresponding set of m points in $\check{\mathbb{P}}^n$. Then the arrangement \mathcal{A} is Torelli unless the set Z is contained in a subvariety of \mathbb{P}^n of the form

$$W = C \cup L_1 \cup \cdots \cup L_s$$
,

where L_i are proper linear subspaces of dimension $n_i \geq 0$, and C is a smooth rational curve of degree d, with $0 \leq d \leq n$, spanning a linear subspace $L = \langle C \rangle$ of dimension d, such that

- (1) space L meets each L_i at a single point of C,
- (2) spaces L_i are mutually disjoint and $n = d + n_1 + \cdots + d_s$,

where d = 0 means $C = \{p\}$, and L_i meet only at the point p.

The key feature of the proof is reducing the unstable hyperplane condition to the existence of a global section, of a certain sheaf, which vanishes along the set Z. The vanishing of that section along Z is equivalent to Z being contained in the locus W cut by the 2×2 minors of a $2 \times n$ matrix M of linear forms

$$M = \begin{pmatrix} f_1 & f_2 & \dots & f_n \\ g_1 & g_2 & \dots & g_n \end{pmatrix}.$$

Such matrices M and their loci W, are classical objects, and in the generic case, are discussed for example in the monographs of D. Eisenbud [3] and J. Harris [5]. In general, the determinantal variety W is of the form described in our main theorem, as a consequence of the Kronecker-Weierstrass theory of canonical forms for pairs of matrices.

The conjecture proposed by Dolgachev needs to be modified due to examples of the following type.

Example 3.2. Let $Z = Z_1 \cup Z_2$ be a set of seven points in $\check{\mathbb{P}}^3$, five of which Z_1 are contained in a plane P, and the rest of two Z_2 span a line L transverse to P. Moreover, the points in Z_1 are situated on a conic $D \subset P$ disjoint from L, and no three of them are collinear. Then Z is contained in $W = L \cup P$, thus it is not Torelli, and the unstable set of Z consists of the entire line L.

References

- [1] P. Deligne, Equations Différentielles à points singuliers réguliers, Lect. Notes in Math. 163, 1970.
- [2] I. Dolgachev, Logarithmic sheaves attached to arrangements, J. Math. Kyoto Univ., 47 (2007), 35-64.
- [3] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, Vol. 150, Springer, 1995.
- [4] I. Dolgachev, M. Kapranov, Arrangements of hyperplanes and vector bundles on \mathbb{P}^n , Duke Math. J., 71 (1993), 633–664.
- [5] J. Harris, Algebraic geometry: a first course, Graduate Texts in Mathematics, Vol. 133, Springer, 1992.
- [6] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265–291.
- [7] J. Vallès, Nombre maximal d'hyperplanes instables pour une fibré de Steiner, Math. Zeit., 233 (2000), 507–514.

Université de Pau et des Pays de l'Adour, Avenue de l'Université - BP 576 - 64012 PAU Cedex - France

 $E ext{-}mail\ address: daniele.faenzi@univ-pau.fr}$

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, RO-014700, Bucharest, Romania

E-mail address: dmatei@imar.ro

Université de Pau et des Pays de l'Adour, Avenue de l'Université - BP 576 - 64012 PAU Cedex - France

E-mail address: jean.valles@univ-pau.fr