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Importance and Applications of fundamental groups

• Used by Chisini, Kulikov and Kulikov-Teicher in order to dis-

tinguish between connected components of the moduli space

of surfaces.

• The Zariski-Lefschetz hyperplane section theorem:

π1(CPN \ S) ∼= π1(H \ (H ∩ S)),

where S is an hypersurface and H is a generic 2-plane. This

invariant can be used also for computing the fundamental

group of complements of hypersurfaces in CPN .
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• Getting more examples of Zariski pairs: A pair of plane curves

is called a Zariski pair if they have the same combinatorics,

but their complements are not homeomorphic.

• Exploring new finite non-abelian groups which are serving

as fundamental groups of complements of plane curves in

general.

• Computing the fundamental group of the Galois cover of

a surface: By the fundamental group of a complement of

a branch curve of a surface, we can find the fundamental

group of the Galois cover of the surface, with respect to a

generic projection of the surface onto CP2.
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Graph of multiple points

Line arrangement in CP2: An algebraic curve in CP2 which is

a union of projective lines. An arrangement is called real if its

defining equations can be written with real coefficients.

G(L):
Vertices: Multiple points

Edges: Segments on lines with more than two multiple points.

(a) (b)
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Lattice of an arrangement
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A generic presentation of the fundamental group
(Arvola, Randell, Cohen-Suciu, ...)

Let L be an arrangement of n lines.

Then π1(C2 − L) is generated by x1, . . . , xn - the natural topo-

logical generators.

The relations: for each intersection point of multiplicity k:

x
sk
ik
x
sk−1
ik−1

· · ·xs1i1 = x
sk−1
ik−1

· · ·xs1i1x
sk
ik

= · · · = x
s1
i1
x
sk
ik

· · ·xs2i2
where ab = b−1ab and si are words in ⟨x1, . . . , xn⟩ (1 ≤ i ≤ k).
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A Conjugation-free geometric presentation of fundamental group

A conjugation-free geometric presentation of a fundamental group

is a presentation with the natural topological generators x1, . . . , xn

and the cyclic relations:

xikxik−1
· · ·xi1 = xik−1

· · ·xi1xik = · · · = xi1xik · · ·xi2
with no conjugations on the generators.

Main importance: For this family, the lattice determines the

fundamental group. Moreover, one can read this presentation

directly from the arrangement.
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Eliyahu-G-Teicher (2008): if G(L) is a union of disjoint cycles,

then π1(C2 − L) has a conjugation-free geometric presentation.

Family An:

Computationally proved: A5, A6 have a conjugation-free geo-

metric presentation. A3 (Ceva) and A7 have no conjugation-free

geometric presentation.
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Expansion of the conjugation-free geometric presentation’s family

A cycle-tree graph is a graph which consists of a cycle, where
each vertex of the cycle can be a root of a tree.

Eliyahu-G-Teicher (2010): if G(L) is a union of disjoint cycle-
tree graphs, then π1(C2 − L) has a conjugation-free geometric
presentation.

Idea of proof: Adding a line which does not close a new cycle,
preserves the conjugation-free property.
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Complemented presentations

Let (S,R) be a semigroup presentation: S is a nonempty set

and R is a family of pairs of nonempty words in the alphabet S
(relations).

⟨S|R⟩+ ∼= S∗/ ≡+
R is the monoid presented by (S,R).

Definition: A semigroup presentation (S,R) is called

complemented if, for each s ∈ S, there is no relation s . . . = s . . .

in R and, for s, s′ ∈ S, there is at most one relation s . . . = s′ . . .
in R.
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Lemma: A conjugation-free geometric presentation is a com-

plemented presentation.

Proof: Any pair of lines intersect exactly once, hence their cor-

responding generators appear as prefixes in exactly one relation.

Since there are no conjugations, this is their unique appearance

as a pair of prefixes.

Remarks:

1. It is not correct in general presentations of fundamental

groups (due to the conjugations).

2. This property does not hold in the homogeneous minimal

presentations introduced by Yoshinaga.
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Reversing

Definition: For (S,R) a semigroup presentation and
w,w′ ∈ S ∪ S−1, w reverses to w′ in one step, denoted w y1

R w′,
if there exist a relation sv′ = s′v of R and u, u′ satisfying:

w = us−1s′u′ and w′ = uv′v−1u′.

We say that w reverses to w′ in k steps, denoted w yk
R w′,

if there exist words w0, . . . , wk satisfying w0 = w,wk = w′ and
wi y1

R wi+1 for each i. The sequence (w0, . . . , wk) is called an
R-reversing sequence from w to w′.

We write w y w′, if w yk
R w′ holds for some k.

Example: if ac = ca, then:

abc−1a y abac−1.

Page 12



Complete presentations (Dehornoy)

Definition (Dehornoy): A semigroup presentation (S,R) is

called complete if, for all words w,w′ ∈ S∗:

w ≡+
R w′ ⇒ w−1w′ yR ε.

Advantages of complete presentations (Dehornoy, 2003):

• Every monoid that admits a complete complemented presen-

tation is left-cancellative (i.e. xy = xz ⇒ y = z).

• Assume that (S,R) is a complete semigroup presentation. If

(S,R) is complemented, then the monoid ⟨S|R⟩+ admits least

common multiples.
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• Assume that (S,R) is a complete semigroup presentation and

there exists Ŝ ⊆ S∗ that includes S and satisfies the conditions:

(1) ∀u, u′ ∈ Ŝ ∃v, v′ ∈ Ŝ (u−1u′ yR v′v−1),

(2) ∀u, u′ ∈ Ŝ ∀v, v′ ∈ S∗ (u−1u′ yR v′v−1 ⇒ v, v′ ∈ Ŝ).
Then every R-reversing sequence leads in finitely many steps to

a positive–negative word. If Ŝ is finite, then the word problem

of the presented monoid ⟨S|R⟩+ is solvable in exponential time,

and in quadratic time if (S,R) is complemented.

If, in addition, the monoid ⟨S|R⟩+ is right-cancellative, the word

problem of the presented group ⟨S|R⟩ is solvable in exponential

time, and in quadratic time if (S,R) is complemented.
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• A monoid M is called Garside if:

(1) it is cancellative,

(2) it contains no invertible element except 1,

(3) any two elements admit a left and right least common mul-

tiples and greatest common divisors.

(4) there exist an element ∆ ∈ M such that the left and right

divisors of ∆ coincide, generate M , and are finite in number.

In the case of complemented presentations:

completeness ⇒ cancellativity, existence of least common multi-

ples.

For having a Garside structure, we need the existence of Garside

element, which can be achieved by the longest element in the

smallest set of words that includes S and is closed under the

complement and right-lcm operations (Dehornoy, 2002).
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Completeness of conjugation-free geometric presentations

Eliyahu-G-Teicher (2010)

Proposition: Let L be a real arrangement whose fundamental

group has a conjugation-free geometric presentation and G(L) is

a triangle-free graph. Then, the presentation of the correspond-

ing monoid is complete (and complemented).

Consequences: The corresponding monoid is cancellative and

has least common multiples. May help for verifying if the word

problem is solvable and having a Garside structure.
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Idea of proof

The cube condition: Assume that (S,R) is a semigroup pre-
sentation, and u, u′, u′′ ∈ S∗. We say that (S,R) satisfies the
cube condition for (u, u′, u′′) if:

u−1u′′u′′−1u′ yR v′v−1 ⇒ (uv′)−1(vu′) yR ε.

For X ⊆ S∗, we say that (S,R) satisfies the cube condition on X
if it satisfies the cube condition for every triple (u, u′, u′′) where
u, u′, u′′ ∈ X.

u

u’’

u’

v

v’

u’’

u

v’

u’ v
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Definition: A semigroup presentation (S,R) is said to be

homogeneous if there exists an ≡+
R-invariant mapping λ : S∗ → N

satisfying, for every letter s ∈ S and every word w ∈ S∗,

λ(sw) > λ(w).

Proposition (Dehornoy, 2003): Assume that (S,R) is a homo-

geneous semigroup presentation. Then:

(S,R) is complete ⇔ it satisfies the cube condition on S.

Page 18



Definition: For (S,R) a complemented semigroup presentation
and w,w′ ∈ S∗, the R-complement of w′ in w, denoted w\w′, (“w
under w′”), is the unique word v′ ∈ S∗ such that w−1w′ reverses
to v′v−1 for some v ∈ S∗, if such a word exists.

Proposition (Dehornoy, 2003): Assume that (S,R) is a comple-
mented semigroup presentation. Then, for all words
u, u′, u′′ ∈ S∗, the following are equivalent:
(1) (S,R) satisfies the cube condition on {u, u′, u′′}
(2) either (u\u′)\(u\u′′) and (u′\u)\(u′\u′′) are R-equivalent or
they are not defined, and the same holds for all permutations of
u, u′, u′′.

Idea of our proof: We have verified the equivalent version
of the cube condition ((u\u′)\(u\u′′) and (u′\u)\(u′\u′′) are R-
equivalent) for any triple of generators u, u′, u′′. In case of a
triangle, it crashed.
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THE END

Thank you!!!
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