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Real hyperplane arrangements

Take V = Rn and H a collection of affine hyperplanes.

Problem

In how many regions V is divided by the hyperplanes?

Take H ∈ H and set: H1
.

= H \ {H}, H2
.

= {H ∩ K ,K ∈ H1}.
Clearly reg(H) is obtained from reg(H1) by adding the number of regions
of H1 which are cut in two parts by H. But this number equals reg(H2).
Thus we have the recursive formula

reg(H) = reg(H1) + reg(H2).

This method is known as deletion-restriction.
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Complex hyperplane arrangements

If V = Cn, removing hyperplanes does not disconnect V .
In this way we get an object M with a rich topology and geometry.
Then one wants to compute invariants of the complement M.
These are related with the combinatorics of the intersection poset L.

Problem

Compute the Poincaré polynomial M and the characteristic polynomial L.

Also these polynomials can be computed by deletion-restriction.
Tutte’s idea: find the most general deletion-restriction invariant. This is a
polynomial T (x , y). (It was originally defined for graphs).
In this talk we will introduce another kind of arrangements, and provide an
analogue of the Tutte polynomial.
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An example

Take V = C2 with coordinates (x , y), T = C∗2 with coordinates (t, s),
and

X = {(2, 0), (0, 3), (1,−1)} ⊂ Λ = Z2.

We associate to X three objects:

1 a finite hyperplane arrangement H given in V by the equations

2x = 0, 3y = 0, x − y = 0;

2 a periodic hyperplane arrangement A given in in V by the conditions

2x ∈ Z, 3y ∈ Z, x − y ∈ Z;

3 a toric arrangement T given in T by the equations:

t2 = 1, s3 = 1, ts−1 = 1.
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Hyperplane and toric arrangements

Let X be a finite list of vectors in a lattice Λ. Assume X to span the
vector space U = Λ⊗ C.

A hyperplane arrangement in the complex vector space V = U∗

is a family of hyperplanes HX = {Uλ}λ∈X ,
where Uλ

.
= {v ∈ V |λ(v) = 0}.

A toric arrangement in the complex torus T = Hom(Λ,C∗)
is a family of hypersurfaces TX = {Tλ}λ∈X ,
where Tλ

.
= {t ∈ T |λ(t) = 1}.

Remark: if in the previous example (i.e. X = {(2, 0), (0, 3), (1,−1)})
we replace (2, 0) by (1, 0) or (5, 0), we get the same HX , but different TX .
So HX depends only on the linear algebra of X , whereas TX also depends
on its arithmetics.
In fact HX is related to a number of differentiable problems and objects,
TX with their discrete counterparts.
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The partition function

Problem

In how many ways an amount of k euro can be paid in 20 euro and 50
euro banknotes?

We call this number P(k), and we study the partition function k 7→ P(k).
On every equivalence class mod 100, P is a (linear) polynomial in k .

In general, given λ ∈ Λ, we define P(λ) as the number of solutions of the
equation

λ =
∑
λi∈X

xiλi , with xi ∈ N.

We say that a function Q : Λ→ C is quasipolynomial if there is a
sublattice of Λ such that the restriction of Q to every coset is polynomial.
P is piecewise quasipolynomial.
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Differential and difference operators

For every λ ∈ X , let ∂λ be the usual directional derivative

∂λf (x)
.

=
∂f

∂λ
(x)

and let ∇λ be the difference operator

∇λf (x)
.

= f (x)− f (x − λ).

Then for every A ⊂ X we define the differential operator

∂A
.

=
∏
λ∈A

∂λ

and the difference operator

∇A
.

=
∏
λ∈A
∇λ.
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Dahmen-Micchelli spaces

We can now define the differentiable Dahmen-Micchelli space

D(X )
.

= {f : U → C | ∂Af = 0 ∀A such that r(X \ A) < n}

and the discrete Dahmen-Micchelli space

DM(X )
.

= {f : Λ→ C | ∇Af = 0 ∀A such that r(X \ A) < n} .

D(X ) is a space of polynomials, introduced to study the box spline. This
space is naturally graded.
DM(X ) is a space of quasipolynomials, arising from the partition function.

D(X ) and DM(X ) are deeply related respectively with the HX and TX .
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Tutte polynomial

We recall that the Tutte polynomial associated to a list of vectors X is

TX (x , y)
.

=
∑
A⊆X

(x − 1)r(X )−r(A)(y − 1)|A|−r(A).

This polynomial embodies a lot of information on HX and D(X ):

1 The number of regions of the complement in Rn is TX (2, 0);

2 the Poincaré polynomial of the complement in Cn is qnTX (q+1
q , 0)
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Deletion-restriction for TX (x , y)

Moreover TX (x , y) can be computed by deletion-restriction:

TX (x , y) = TX1(x , y) + TX2(x , y)

where X1 is obtained from X by removing a linearly dependent vector λ,
and X2 is the quotient of X1 by λ.
The Tutte polynomial is the most general deletion-restriction invariant.
By these recurrence the coefficients of TX (x , y) are proved to be positive.
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Multiplicity Tutte polynomial

Problem

Define a ”Tutte polynomial” for TX and DM(X ).

Let be X ⊂ Λ. For every A ⊆ X let us define

m(A)
.

= [Λ ∩ 〈A〉Q : 〈A〉Z] .

Then we define a multiplicity Tutte polynomial MX (x , y):

M(x , y)
.

=
∑
A⊆X

m(A)(x − 1)r(X )−r(A)(y − 1)|A|−r(A).

EXAMPLE
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Relations with TX and DM(X )

Theorem
1 The number of regions of the complement in S1n is MX (1, 0);

2 the Poincaré polynomial of the complement in T is qnMX (2q+1
q , 0);

3 the characteristic polynomial of the connected intersections poset is
(−1)nMX (1− q, 0).

EXAMPLE

DM(X ) is isomorphic to a direct sum of spaces D(Xp), one for every
”point” p of TX .Thus also DM(X ) is a graded space.

Theorem

MX (1, y) =
∑
p

TXp(1, y).

Hence MX (1, y) is the Hilbert series of DM(X ).

Luca Moci () A Tutte polynomial for toric arrangements Pisa, June, 21 2010 12 / 14



Relations with TX and DM(X )

Theorem
1 The number of regions of the complement in S1n is MX (1, 0);
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Deletion-restriction and positivity for MX (x , y)

Theorem
1 MX (x , y) = MX1(x , y) + MX2(x , y);

2 MX (x , y) is a polynomial with positive coefficients.

Then the coefficients ”count something”. What?
Still open, but we can answer for the coefficients of MX (1, y), and also of
MX (x , 1)...
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The zonotope

Let UR be the real vector space spanned by the elements of X .
Then we define a convex polytope in UR

Z(X )
.

=

{∑
λ∈X

tλλ, 0 ≤ tλ ≤ 1

}
.

Theorem
1 MX (1, 1) equals the volume of the zonotope Z(X );

2 MX (2, 1) is the number of integral points of Z(X );

3 MX (x , 1) is the number of integral points of Z(X )− ε, collected
according to a suitable stratification.

EXAMPLE
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