A Tutte polynomial for toric arrangements

Luca Moci

Pisa, June, 21 2010

Luca Moci ()

A Tutte polynomial for toric arrangements

Pisa, June, 21 2010

1 / 14

Problem

In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_1 \doteq \mathcal{H} \setminus \{H\}$, $\mathcal{H}_2 \doteq \{H \cap K, K \in \mathcal{H}_1\}$. Clearly $reg(\mathcal{H})$ is obtained from $reg(\mathcal{H}_1)$ by adding the number of regions of \mathcal{H}_1 which are cut in two parts by H. But this number equals $reg(\mathcal{H}_2)$. Thus we have the recursive formula

$$reg(\mathcal{H}) = reg(\mathcal{H}_1) + reg(\mathcal{H}_2).$$

Problem

In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_1 \doteq \mathcal{H} \setminus \{H\}$, $\mathcal{H}_2 \doteq \{H \cap K, K \in \mathcal{H}_1\}$. Clearly $reg(\mathcal{H})$ is obtained from $reg(\mathcal{H}_1)$ by adding the number of regions of \mathcal{H}_1 which are cut in two parts by H. But this number equals $reg(\mathcal{H}_2)$. Thus we have the recursive formula

$$reg(\mathcal{H}) = reg(\mathcal{H}_1) + reg(\mathcal{H}_2).$$

Problem

In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_1 \doteq \mathcal{H} \setminus \{H\}$, $\mathcal{H}_2 \doteq \{H \cap K, K \in \mathcal{H}_1\}$. Clearly $reg(\mathcal{H})$ is obtained from $reg(\mathcal{H}_1)$ by adding the number of regions of \mathcal{H}_1 which are cut in two parts by H. But this number equals $reg(\mathcal{H}_2)$. Thus we have the recursive formula

$$reg(\mathcal{H}) = reg(\mathcal{H}_1) + reg(\mathcal{H}_2).$$

Problem

In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_1 \doteq \mathcal{H} \setminus \{H\}$, $\mathcal{H}_2 \doteq \{H \cap K, K \in \mathcal{H}_1\}$.

Clearly $reg(\mathcal{H})$ is obtained from $reg(\mathcal{H}_1)$ by adding the number of regions of \mathcal{H}_1 which are cut in two parts by H. But this number equals $reg(\mathcal{H}_2)$. Thus we have the recursive formula

$$reg(\mathcal{H}) = reg(\mathcal{H}_1) + reg(\mathcal{H}_2).$$

Problem

In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_1 \doteq \mathcal{H} \setminus \{H\}$, $\mathcal{H}_2 \doteq \{H \cap K, K \in \mathcal{H}_1\}$. Clearly $reg(\mathcal{H})$ is obtained from $reg(\mathcal{H}_1)$ by adding the number of regions of \mathcal{H}_1 which are cut in two parts by H. But this number equals $reg(\mathcal{H}_2)$. Thus we have the recursive formula

$$reg(\mathcal{H}) = reg(\mathcal{H}_1) + reg(\mathcal{H}_2).$$

Problem

In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_1 \doteq \mathcal{H} \setminus \{H\}$, $\mathcal{H}_2 \doteq \{H \cap K, K \in \mathcal{H}_1\}$. Clearly $reg(\mathcal{H})$ is obtained from $reg(\mathcal{H}_1)$ by adding the number of regions of \mathcal{H}_1 which are cut in two parts by H. But this number equals $reg(\mathcal{H}_2)$. Thus we have the recursive formula

$$reg(\mathcal{H}) = reg(\mathcal{H}_1) + reg(\mathcal{H}_2).$$

Problem

In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_1 \doteq \mathcal{H} \setminus \{H\}$, $\mathcal{H}_2 \doteq \{H \cap K, K \in \mathcal{H}_1\}$. Clearly $reg(\mathcal{H})$ is obtained from $reg(\mathcal{H}_1)$ by adding the number of regions of \mathcal{H}_1 which are cut in two parts by H. But this number equals $reg(\mathcal{H}_2)$. Thus we have the recursive formula

$$reg(\mathcal{H}) = reg(\mathcal{H}_1) + reg(\mathcal{H}_2).$$

Problem

In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_1 \doteq \mathcal{H} \setminus \{H\}$, $\mathcal{H}_2 \doteq \{H \cap K, K \in \mathcal{H}_1\}$. Clearly $reg(\mathcal{H})$ is obtained from $reg(\mathcal{H}_1)$ by adding the number of regions of \mathcal{H}_1 which are cut in two parts by H. But this number equals $reg(\mathcal{H}_2)$. Thus we have the recursive formula

$$reg(\mathcal{H}) = reg(\mathcal{H}_1) + reg(\mathcal{H}_2).$$

If $V = \mathbb{C}^n$, removing hyperplanes does not disconnect V. In this way we get an object \mathcal{M} with a rich topology and geometry.

Then one wants to compute invariants of the complement \mathcal{M} . These are related with the combinatorics of the intersection poset \mathcal{L} .

Problem

Compute the Poincaré polynomial $\mathcal M$ and the characteristic polynomial $\mathcal L$.

Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial T(x, y). (It was originally defined for graphs). In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

Problem

Compute the Poincaré polynomial $\mathcal M$ and the characteristic polynomial $\mathcal L$.

Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial T(x, y). (It was originally defined for graphs). In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

- 4 同 6 4 日 6 4 日

Problem

Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L} .

Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial T(x, y). (It was originally defined for graphs). In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

Problem

Compute the Poincaré polynomial $\mathcal M$ and the characteristic polynomial $\mathcal L$.

Also these polynomials can be computed by deletion-restriction.

Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial T(x, y). (It was originally defined for graphs). In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

Problem

Compute the Poincaré polynomial $\mathcal M$ and the characteristic polynomial $\mathcal L$.

Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial T(x, y). (It was originally defined for graphs). In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

Problem

Compute the Poincaré polynomial $\mathcal M$ and the characteristic polynomial $\mathcal L$.

Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial T(x, y). (It was originally defined for graphs). In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

Problem

Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L} .

Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial T(x, y). (It was originally defined for graphs). In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

$$X = \{(2,0), (0,3), (1,-1)\} \subset \Lambda = \mathbb{Z}^2.$$

We associate to X three objects:

 ${f 0}$ a finite hyperplane arrangement ${\cal H}$ given in V by the equations

$$2x = 0, 3y = 0, x - y = 0;$$

② a periodic hyperplane arrangement ${\mathcal A}$ given in in V by the conditions

$$2x \in \mathbb{Z}, 3y \in \mathbb{Z}, x - y \in \mathbb{Z};$$

) a toric arrangement $\mathcal T$ given in $\mathcal T$ by the equations:

$$t^2 = 1, s^3 = 1, ts^{-1} = 1.$$

Luca Moci ()

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

$$X = \{(2,0), (0,3), (1,-1)\} \subset \Lambda = \mathbb{Z}^2.$$

We associate to X three objects:

 $lacksymbol{0}$ a finite hyperplane arrangement $\mathcal H$ given in V by the equations

$$2x = 0, 3y = 0, x - y = 0;$$

② a periodic hyperplane arrangement ${\mathcal A}$ given in in V by the conditions

$$2x \in \mathbb{Z}, 3y \in \mathbb{Z}, x - y \in \mathbb{Z};$$

0 a toric arrangement $\mathcal T$ given in $\mathcal T$ by the equations:

$$t^2 = 1, s^3 = 1, ts^{-1} = 1.$$

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

$$X = \{(2,0), (0,3), (1,-1)\} \subset \Lambda = \mathbb{Z}^2.$$

We associate to X three objects:

() a finite hyperplane arrangement \mathcal{H} given in V by the equations

$$2x = 0, 3y = 0, x - y = 0;$$

② a periodic hyperplane arrangement ${\mathcal A}$ given in in V by the conditions

$$2x \in \mathbb{Z}, 3y \in \mathbb{Z}, x - y \in \mathbb{Z};$$

④ a toric arrangement ${\mathcal T}$ given in ${\mathcal T}$ by the equations:

$$t^2 = 1, s^3 = 1, ts^{-1} = 1.$$

Luca Moci ()

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

$$X = \{(2,0), (0,3), (1,-1)\} \subset \Lambda = \mathbb{Z}^2.$$

We associate to X three objects:

() a finite hyperplane arrangement \mathcal{H} given in V by the equations

$$2x = 0, 3y = 0, x - y = 0;$$

2) a periodic hyperplane arrangement \mathcal{A} given in in V by the conditions

$$2x \in \mathbb{Z}, 3y \in \mathbb{Z}, x - y \in \mathbb{Z};$$

④ a toric arrangement ${\mathcal T}$ given in ${\mathcal T}$ by the equations:

$$t^2 = 1, s^3 = 1, ts^{-1} = 1.$$

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

$$X = \{(2,0), (0,3), (1,-1)\} \subset \Lambda = \mathbb{Z}^2.$$

We associate to X three objects:

() a finite hyperplane arrangement \mathcal{H} given in V by the equations

$$2x = 0, 3y = 0, x - y = 0;$$

2) a periodic hyperplane arrangement \mathcal{A} given in in V by the conditions

$$2x \in \mathbb{Z}, 3y \in \mathbb{Z}, x - y \in \mathbb{Z};$$

(3) a toric arrangement \mathcal{T} given in \mathcal{T} by the equations:

$$t^2 = 1, s^3 = 1, ts^{-1} = 1.$$

Let X be a finite list of vectors in a lattice Λ . Assume X to span the vector space $U = \Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V = U^*$ is a family of hyperplanes $\mathcal{H}_X = \{U_\lambda\}_{\lambda \in X}$, where $U_\lambda \doteq \{v \in V | \lambda(v) = 0\}$. A toric arrangement in the complex torus $T = Hom(\Lambda, \mathbb{C}^*)$ is a family of hypersurfaces $\mathcal{T}_X = \{T_\lambda\}_{\lambda \in X}$, where $T_\lambda \doteq \{t \in T | \lambda(t) = 1\}$.

Remark: if in the previous example (i.e. $X = \{(2,0), (0,3), (1,-1)\})$ we replace (2,0) by (1,0) or (5,0), we get the same \mathcal{H}_X , but different \mathcal{T}_X . So \mathcal{H}_X depends only on the linear algebra of X, whereas \mathcal{T}_X also depends on its arithmetics.

In fact \mathcal{H}_X is related to a number of differentiable problems and objects, \mathcal{T}_X with their discrete counterparts.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let X be a finite list of vectors in a lattice Λ . Assume X to span the vector space $U = \Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V = U^*$ is a family of hyperplanes $\mathcal{H}_X = \{U_\lambda\}_{\lambda \in X}$, where $U_\lambda \doteq \{v \in V | \lambda(v) = 0\}$. A toric arrangement in the complex torus $T = Hom(\Lambda, \mathbb{C}^*)$ is a family of hypersurfaces $\mathcal{T}_X = \{T_\lambda\}_{\lambda \in X}$, where $T_\lambda \doteq \{t \in T | \lambda(t) = 1\}$.

Remark: if in the previous example (i.e. $X = \{(2,0), (0,3), (1,-1)\}\}$ we replace (2,0) by (1,0) or (5,0), we get the same \mathcal{H}_X , but different \mathcal{T}_X . So \mathcal{H}_X depends only on the linear algebra of X, whereas \mathcal{T}_X also depends on its arithmetics.

In fact \mathcal{H}_X is related to a number of differentiable problems and objects, \mathcal{T}_X with their discrete counterparts.

(日) (四) (日) (日) (日)

Let X be a finite list of vectors in a lattice Λ . Assume X to span the vector space $U = \Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V = U^*$ is a family of hyperplanes $\mathcal{H}_X = \{U_\lambda\}_{\lambda \in X}$, where $U_\lambda \doteq \{v \in V | \lambda(v) = 0\}$. A toric arrangement in the complex torus $T = Hom(\Lambda, \mathbb{C}^*)$ is a family of hypersurfaces $\mathcal{T}_X = \{T_\lambda\}_{\lambda \in X}$, where $T_\lambda \doteq \{t \in T | \lambda(t) = 1\}$.

Remark: if in the previous example (i.e. $X = \{(2,0), (0,3), (1,-1)\})$ we replace (2,0) by (1,0) or (5,0), we get the same \mathcal{H}_X , but different \mathcal{T}_X . So \mathcal{H}_X depends only on the linear algebra of X, whereas \mathcal{T}_X also depends on its arithmetics.

In fact \mathcal{H}_X is related to a number of differentiable problems and objects, \mathcal{T}_X with their discrete counterparts.

(日) (四) (日) (日) (日)

Let X be a finite list of vectors in a lattice Λ . Assume X to span the vector space $U = \Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V = U^*$ is a family of hyperplanes $\mathcal{H}_X = \{U_\lambda\}_{\lambda \in X}$, where $U_\lambda \doteq \{v \in V | \lambda(v) = 0\}$. A toric arrangement in the complex torus $T = Hom(\Lambda, \mathbb{C}^*)$ is a family of hypersurfaces $\mathcal{T}_X = \{T_\lambda\}_{\lambda \in X}$, where $T_\lambda \doteq \{t \in T | \lambda(t) = 1\}$.

Remark: if in the previous example (i.e. $X = \{(2,0), (0,3), (1,-1)\})$ we replace (2,0) by (1,0) or (5,0), we get the same \mathcal{H}_X , but different \mathcal{T}_X . So \mathcal{H}_X depends only on the linear algebra of X, whereas \mathcal{T}_X also depends on its arithmetics.

In fact \mathcal{H}_X is related to a number of differentiable problems and objects, \mathcal{T}_X with their discrete counterparts.

Let X be a finite list of vectors in a lattice Λ . Assume X to span the vector space $U = \Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V = U^*$ is a family of hyperplanes $\mathcal{H}_X = \{U_\lambda\}_{\lambda \in X}$, where $U_\lambda \doteq \{v \in V | \lambda(v) = 0\}$. A toric arrangement in the complex torus $T = Hom(\Lambda, \mathbb{C}^*)$ is a family of hypersurfaces $\mathcal{T}_X = \{T_\lambda\}_{\lambda \in X}$, where $T_\lambda \doteq \{t \in T | \lambda(t) = 1\}$.

Remark: if in the previous example (i.e. $X = \{(2,0), (0,3), (1,-1)\})$ we replace (2,0) by (1,0) or (5,0), we get the same \mathcal{H}_X , but different \mathcal{T}_X . So \mathcal{H}_X depends only on the linear algebra of X, whereas \mathcal{T}_X also depends on its arithmetics.

In fact \mathcal{H}_X is related to a number of differentiable problems and objects, \mathcal{T}_X with their discrete counterparts.

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class *mod* 100, \mathcal{P} is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$\lambda = \sum_{\lambda_i \in X} x_i \lambda_i$$
 , with $x_i \in \mathbb{N}$.

We say that a function $\mathcal{Q} : \Lambda \to \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class *mod* 100, \mathcal{P} is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$\lambda = \sum_{\lambda_i \in X} x_i \lambda_i$$
 , with $x_i \in \mathbb{N}$.

We say that a function $\mathcal{Q} : \Lambda \to \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

< 口 > < 同 > < 三 > < 三

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class *mod* 100, \mathcal{P} is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$\lambda = \sum_{\lambda_i \in X} x_i \lambda_i$$
 , with $x_i \in \mathbb{N}$.

We say that a function $Q : \Lambda \to \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of Q to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class *mod* 100, \mathcal{P} is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$\lambda = \sum_{\lambda_i \in X} x_i \lambda_i$$
 , with $x_i \in \mathbb{N}.$

We say that a function $\mathcal{Q} : \Lambda \to \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class *mod* 100, \mathcal{P} is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$\lambda = \sum_{\lambda_i \in X} x_i \lambda_i$$
 , with $x_i \in \mathbb{N}.$

We say that a function $\mathcal{Q} : \Lambda \to \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class *mod* 100, \mathcal{P} is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$\lambda = \sum_{\lambda_i \in X} x_i \lambda_i$$
 , with $x_i \in \mathbb{N}.$

We say that a function $\mathcal{Q} : \Lambda \to \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

Differential and difference operators

For every $\lambda \in X$, let ∂_{λ} be the usual directional derivative

$$\partial_{\lambda}f(x)\doteqrac{\partial f}{\partial\lambda}(x)$$

and let $abla_{\lambda}$ be the difference operator

$$\nabla_{\lambda}f(x) \doteq f(x) - f(x - \lambda).$$

Then for every $A \subset X$ we define the differential operator

$$\partial_A \doteq \prod_{\lambda \in A} \partial_\lambda$$

and the difference operator

$$\nabla_A \doteq \prod_{\lambda \in A} \nabla_\lambda.$$

Differential and difference operators

For every $\lambda \in X$, let ∂_{λ} be the usual directional derivative

$$\partial_{\lambda}f(x)\doteq rac{\partial f}{\partial\lambda}(x)$$

and let $abla_{\lambda}$ be the difference operator

$$abla_{\lambda}f(x)\doteq f(x)-f(x-\lambda).$$

Then for every $A \subset X$ we define the differential operator

$$\partial_{\mathcal{A}} \doteq \prod_{\lambda \in \mathcal{A}} \partial_{\lambda}$$

and the difference operator

$$\nabla_{\mathcal{A}} \doteq \prod_{\lambda \in \mathcal{A}} \nabla_{\lambda}.$$

We can now define the differentiable Dahmen-Micchelli space

 $D(X) \doteq \{f : U \to \mathbb{C} \mid \partial_A f = 0 \ \forall A \text{ such that } r(X \setminus A) < n\}$

and the discrete Dahmen-Micchelli space

 $DM(X) \doteq \{ f : \Lambda \to \mathbb{C} \mid \nabla_A f = 0 \ \forall A \text{ such that } r(X \setminus A) < n \}.$

D(X) is a space of polynomials, introduced to study the *box spline*. This space is naturally graded. DM(X) is a space of quasipolynomials, arising from the *partition function*.

D(X) and DM(X) are deeply related respectively with the \mathcal{H}_X and \mathcal{T}_X .

We can now define the differentiable Dahmen-Micchelli space

 $D(X) \doteq \{f : U \to \mathbb{C} \mid \partial_A f = 0 \ \forall A \text{ such that } r(X \setminus A) < n\}$

and the discrete Dahmen-Micchelli space

 $DM(X) \doteq \{f : \Lambda \to \mathbb{C} \mid \nabla_A f = 0 \ \forall A \text{ such that } r(X \setminus A) < n\}.$

D(X) is a space of polynomials, introduced to study the *box spline*. This space is naturally graded. DM(X) is a space of quasipolynomials, arising from the *partition function*.

D(X) and DM(X) are deeply related respectively with the \mathcal{H}_X and \mathcal{T}_X .

We can now define the differentiable Dahmen-Micchelli space

 $D(X) \doteq \{f : U \to \mathbb{C} \mid \partial_A f = 0 \ \forall A \text{ such that } r(X \setminus A) < n\}$

and the discrete Dahmen-Micchelli space

 $\mathsf{DM}(\mathsf{X}) \doteq \{ f : \Lambda \to \mathbb{C} \mid \nabla_{\mathsf{A}} f = 0 \ \forall \mathsf{A} \text{ such that } r(\mathsf{X} \setminus \mathsf{A}) < n \}.$

D(X) is a space of polynomials, introduced to study the *box spline*. This space is naturally graded. DM(X) is a space of quasipolynomials, arising from the *partition function*.

D(X) and DM(X) are deeply related respectively with the \mathcal{H}_X and \mathcal{T}_X .

We can now define the differentiable Dahmen-Micchelli space

 $D(X) \doteq \{f : U \to \mathbb{C} \mid \partial_A f = 0 \ \forall A \text{ such that } r(X \setminus A) < n\}$

and the discrete Dahmen-Micchelli space

$$\mathsf{DM}(\mathsf{X}) \doteq \{ f : \Lambda \to \mathbb{C} \mid \nabla_{\mathsf{A}} f = 0 \ \forall \mathsf{A} \text{ such that } r(\mathsf{X} \setminus \mathsf{A}) < n \}.$$

D(X) is a space of polynomials, introduced to study the *box spline*. This space is naturally graded. DM(X) is a space of quasipolynomials, arising from the *partition function*.

D(X) and DM(X) are deeply related respectively with the \mathcal{H}_X and \mathcal{T}_X .

We can now define the differentiable Dahmen-Micchelli space

 $D(X) \doteq \{f : U \to \mathbb{C} \mid \partial_A f = 0 \ \forall A \text{ such that } r(X \setminus A) < n\}$

and the discrete Dahmen-Micchelli space

$$\mathsf{DM}(\mathsf{X}) \doteq \{ f : \Lambda \to \mathbb{C} \mid \nabla_{\mathsf{A}} f = 0 \ \forall \mathsf{A} \text{ such that } r(\mathsf{X} \setminus \mathsf{A}) < n \}.$$

D(X) is a space of polynomials, introduced to study the *box spline*. This space is naturally graded. DM(X) is a space of quasipolynomials, arising from the *partition function*.

D(X) and DM(X) are deeply related respectively with the \mathcal{H}_X and \mathcal{T}_X .

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- (2) the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- (3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^n T_X(1-q,0)$;
- the Hilbert series of D(X) is $T_X(1, y)$.

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

In the number of regions of the complement in \mathbb{R}^n is $\mathcal{T}_X(2,0)$;

- (2) the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- (3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^n T_X(1-q, 0)$;
- (a) the Hilbert series of D(X) is $T_X(1, y)$.

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}.$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- **(**) The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- (2) the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- (3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^n \mathcal{T}_X(1-q,0)$;
- the Hilbert series of D(X) is $T_X(1, y)$.

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}.$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- **()** The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- **2** the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- **(3)** the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^n \mathcal{T}_X(1-q,0)$;
- the Hilbert series of D(X) is $T_X(1, y)$.

EXAMPLE

9 / 14

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- **()** The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- 2 the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- **③** the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^n \mathcal{T}_X(1-q,0)$;
- the Hilbert series of D(X) is T_X(1, y).
 EXAMPLE

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- 2 the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- **③** the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^n \mathcal{T}_X(1-q,0)$;
- the Hilbert series of D(X) is $T_X(1, y)$.

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{r(X)-r(A)} (y-1)^{|A|-r(A)}$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- 2 the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- **③** the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^n T_X(1-q,0)$;
- the Hilbert series of D(X) is $T_X(1, y)$.

Moreover $T_X(x, y)$ can be computed by deletion-restriction:

$$T_X(x,y) = T_{X_1}(x,y) + T_{X_2}(x,y)$$

where X_1 is obtained from X by removing a linearly dependent vector λ , and X_2 is the quotient of X_1 by λ .

The Tutte polynomial is the most general deletion-restriction invariant. By these recurrence the coefficients of $T_X(x, y)$ are proved to be positive. Moreover $T_X(x, y)$ can be computed by deletion-restriction:

$$T_X(x,y) = T_{X_1}(x,y) + T_{X_2}(x,y)$$

where X_1 is obtained from X by removing a linearly dependent vector λ , and X_2 is the quotient of X_1 by λ .

The Tutte polynomial is the most general deletion-restriction invariant. By these recurrence the coefficients of $T_X(x, y)$ are proved to be positive Moreover $T_X(x, y)$ can be computed by deletion-restriction:

$$T_X(x,y) = T_{X_1}(x,y) + T_{X_2}(x,y)$$

where X_1 is obtained from X by removing a linearly dependent vector λ , and X_2 is the quotient of X_1 by λ .

The Tutte polynomial is the most general deletion-restriction invariant. By these recurrence the coefficients of $T_X(x, y)$ are proved to be positive.

Define a "Tutte polynomial" for \mathcal{T}_X and DM(X).

Let be $X \subset \Lambda$. For every $A \subseteq X$ let us define

 $m(A) \doteq [\Lambda \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$

Then we define a multiplicity Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}$$

EXAMPLE

11 / 14

Define a "Tutte polynomial" for T_X and DM(X).

Let be $X \subset \Lambda$. For every $A \subseteq X$ let us define

$$m(A) \doteq [\Lambda \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$$

Then we define a multiplicity Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}$$

EXAMPLE

11 / 14

Define a "Tutte polynomial" for T_X and DM(X).

Let be $X \subset \Lambda$. For every $A \subseteq X$ let us define

$$m(A) \doteq [\Lambda \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$$

Then we define a multiplicity Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}$$

Define a "Tutte polynomial" for T_X and DM(X).

Let be $X \subset \Lambda$. For every $A \subseteq X$ let us define

$$m(A) \doteq [\Lambda \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$$

Then we define a multiplicity Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}$$

EXAMPLE

11 / 14

Theorem

• The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;

Ithe Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{a}, 0)$

the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y) = \sum_p T_{X_p}(1,y).$$

Theorem

• The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;

2 the Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{q}, 0)$;

the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y) = \sum_p T_{X_p}(1,y).$$

Theorem

- The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;
- 3 the Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{q}, 0)$;
- the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y) = \sum_p T_{X_p}(1,y).$$

Theorem

- The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;
- 3 the Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{q}, 0)$;
- the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y) = \sum_p T_{X_p}(1,y).$$

Theorem

- The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;
- 3 the Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{q}, 0)$;
- the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y) = \sum_p T_{X_p}(1,y).$$

Theorem

- The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;
- **a** the Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{q}, 0)$;
- the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y) = \sum_p T_{X_p}(1,y).$$

Theorem

- The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;
- **a** the Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{q}, 0)$;
- the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y) = \sum_p T_{X_p}(1,y).$$

Theorem

- The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;
- **a** the Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{q}, 0)$;
- the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y)=\sum_p T_{X_p}(1,y).$$

Theorem

- The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;
- **a** the Poincaré polynomial of the complement in T is $q^n M_X(\frac{2q+1}{q}, 0)$;
- the characteristic polynomial of the connected intersections poset is (-1)ⁿM_X(1 - q, 0).

EXAMPLE

DM(X) is isomorphic to a direct sum of spaces $D(X_p)$, one for every "point" p of \mathcal{T}_X . Thus also DM(X) is a graded space.

Theorem

$$M_X(1,y)=\sum_p T_{X_p}(1,y).$$

• $M_X(x,y) = M_{X_1}(x,y) + M_{X_2}(x,y);$

M_X(x, y) is a polynomial with positive coefficients.

1
$$M_X(x,y) = M_{X_1}(x,y) + M_{X_2}(x,y);$$

2 $M_X(x, y)$ is a polynomial with positive coefficients.

1
$$M_X(x,y) = M_{X_1}(x,y) + M_{X_2}(x,y);$$

2 $M_X(x, y)$ is a polynomial with positive coefficients.

1
$$M_X(x,y) = M_{X_1}(x,y) + M_{X_2}(x,y);$$

2 $M_X(x, y)$ is a polynomial with positive coefficients.

Then the coefficients "count something". What?

Still open, but we can answer for the coefficients of $M_X(1, y)$, and also of $M_X(x, 1)$...

1
$$M_X(x,y) = M_{X_1}(x,y) + M_{X_2}(x,y);$$

2 $M_X(x, y)$ is a polynomial with positive coefficients.

$$\mathcal{Z}(X) \doteq \left\{ \sum_{\lambda \in X} t_\lambda \lambda, 0 \leq t_\lambda \leq 1
ight\}.$$

Theorem

- In $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- (a) $M_X(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
- $M_X(x,1)$ is the number of integral points of $\mathcal{Z}(X) \varepsilon$, collected according to a suitable stratification.

$$\mathcal{Z}(X) \doteq \left\{ \sum_{\lambda \in X} t_\lambda \lambda, 0 \leq t_\lambda \leq 1
ight\}.$$

Theorem

• $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;

2 $M_X(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;

M_X(x,1) is the number of integral points of Z(X) - ε, collected according to a suitable stratification.

$$\mathcal{Z}(X) \doteq \left\{ \sum_{\lambda \in X} t_\lambda \lambda, 0 \leq t_\lambda \leq 1
ight\}.$$

Theorem

- $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- **2** $M_X(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
- M_X(x,1) is the number of integral points of Z(X) ε, collected according to a suitable stratification.

EXAMPLE

14 / 14

・ 何 ト ・ ヨ ト ・ ヨ ト

$$\mathcal{Z}(X) \doteq \left\{ \sum_{\lambda \in X} t_\lambda \lambda, 0 \leq t_\lambda \leq 1
ight\}.$$

Theorem

- $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- **2** $M_X(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
- $M_X(x,1)$ is the number of integral points of $\mathcal{Z}(X) \varepsilon$, collected according to a suitable stratification.

$$\mathcal{Z}(X) \doteq \left\{ \sum_{\lambda \in X} t_\lambda \lambda, 0 \leq t_\lambda \leq 1
ight\}.$$

Theorem

- $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- **2** $M_X(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
- $M_X(x,1)$ is the number of integral points of $\mathcal{Z}(X) \varepsilon$, collected according to a suitable stratification.