A Tutte polynomial for toric arrangements

Luca Moci

Pisa, June, 212010

Real hyperplane arrangements

Take $V=\mathbb{R}^{n}$ and \mathcal{H} a collection of affine hyperplanes.

Problem

In how many regions V is divided by the hyperplanes?
Take $H \in \mathcal{H}$ and set: $\mathcal{H}_{1} \doteq \mathcal{H} \backslash\{H\}, \mathcal{H}_{2} \doteq\left\{H \cap K, K \in \mathcal{H}_{1}\right\}$ Clearly $\operatorname{reg}(\mathcal{H})$ is obtained from $\operatorname{reg}\left(\mathcal{H}_{1}\right)$ by adding the number of regions of \mathcal{H}_{1} which are cut in two parts by H. But this number equals $\operatorname{reg}\left(\mathcal{H}_{2}\right)$
Thus we have the recursive formula

$$
\operatorname{reg}(\mathcal{H})=\operatorname{reg}\left(\mathcal{H}_{1}\right)+\operatorname{reg}\left(\mathcal{H}_{2}\right) .
$$

This method is known as deletion-restriction.

Real hyperplane arrangements

Take $V=\mathbb{R}^{n}$ and \mathcal{H} a collection of affine hyperplanes.

Problem

In how many regions V is divided by the hyperplanes?
Take $H \in \mathcal{H}$ and set: $\mathcal{H}_{1} \doteq \mathcal{H} \backslash\{H\}, \mathcal{H}_{2} \doteq\left\{H \cap K, K \in \mathcal{H}_{1}\right\}$ Clearly $\operatorname{reg}(\mathcal{H})$ is obtained from $\operatorname{reg}\left(\mathcal{H}_{1}\right)$ by adding the number of regions of \mathcal{H}_{1} which are cut in two parts by H. But this number equals $\operatorname{reg}\left(\mathcal{H}_{2}\right)$ Thus we have the recursive formula

$$
\operatorname{reg}(\mathcal{H})=\operatorname{reg}\left(\mathcal{H}_{1}\right)+\operatorname{reg}\left(\mathcal{H}_{2}\right) .
$$

This method is known as deletion-restriction.

Real hyperplane arrangements

Take $V=\mathbb{R}^{n}$ and \mathcal{H} a collection of affine hyperplanes.

Problem
 In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_{1} \doteq \mathcal{H} \backslash\{H\}$, Clearly $\operatorname{reg}(\mathcal{H})$ is obtained from $\operatorname{reg}\left(\mathcal{H}_{1}\right)$ by adding the number of regions of \mathcal{H}_{1} which are cut in two parts by H. But this number equals $\operatorname{reg}\left(\mathcal{H}_{2}\right)$ Thus we have the recursive formula

$$
\operatorname{reg}(\mathcal{H})=\operatorname{reg}\left(\mathcal{H}_{1}\right)+\operatorname{reg}\left(\mathcal{H}_{2}\right) .
$$

This method is known as deletion-restriction.

Real hyperplane arrangements

Take $V=\mathbb{R}^{n}$ and \mathcal{H} a collection of affine hyperplanes.

Problem
 In how many regions V is divided by the hyperplanes?

Take $H \in \mathcal{H}$ and set: $\mathcal{H}_{1} \doteq \mathcal{H} \backslash\{H\}, \mathcal{H}_{2} \doteq\left\{H \cap K, K \in \mathcal{H}_{1}\right\}$.
Clearly $\operatorname{reg}(\mathcal{H})$ is obtained from $\operatorname{reg}\left(\mathcal{H}_{1}\right)$ by adding the number of regions of \mathcal{H}_{1} which are cut in two parts by H. But this number equals $\operatorname{reg}\left(\mathcal{H}_{2}\right)$ Thus we have the recursive formula

$$
\operatorname{reg}(\mathcal{H})=\operatorname{reg}\left(\mathcal{H}_{1}\right)+\operatorname{reg}\left(\mathcal{H}_{2}\right) .
$$

This method is known as deletion-restriction

Real hyperplane arrangements

Take $V=\mathbb{R}^{n}$ and \mathcal{H} a collection of affine hyperplanes.

Problem

In how many regions V is divided by the hyperplanes?
Take $H \in \mathcal{H}$ and set: $\mathcal{H}_{1} \doteq \mathcal{H} \backslash\{H\}, \mathcal{H}_{2} \doteq\left\{H \cap K, K \in \mathcal{H}_{1}\right\}$. Clearly $\operatorname{reg}(\mathcal{H})$ is obtained from $\operatorname{reg}\left(\mathcal{H}_{1}\right)$ by adding the number of regions of \mathcal{H}_{1} which are cut in two parts by H. Thus we have the recursive formula

$$
\operatorname{reg}(\mathcal{H})=\operatorname{reg}\left(\mathcal{H}_{1}\right)+\operatorname{reg}\left(\mathcal{H}_{2}\right) .
$$

[^0]
Real hyperplane arrangements

Take $V=\mathbb{R}^{n}$ and \mathcal{H} a collection of affine hyperplanes.

Problem

In how many regions V is divided by the hyperplanes?
Take $H \in \mathcal{H}$ and set: $\mathcal{H}_{1} \doteq \mathcal{H} \backslash\{H\}, \mathcal{H}_{2} \doteq\left\{H \cap K, K \in \mathcal{H}_{1}\right\}$. Clearly $\operatorname{reg}(\mathcal{H})$ is obtained from $\operatorname{reg}\left(\mathcal{H}_{1}\right)$ by adding the number of regions of \mathcal{H}_{1} which are cut in two parts by H. But this number equals reg $\left(\mathcal{H}_{2}\right)$.

$$
\operatorname{reg}(\mathcal{H})=\operatorname{reg}\left(\mathcal{H}_{1}\right)+\operatorname{reg}\left(\mathcal{H}_{2}\right) .
$$

[^1]
Real hyperplane arrangements

Take $V=\mathbb{R}^{n}$ and \mathcal{H} a collection of affine hyperplanes.

Problem

In how many regions V is divided by the hyperplanes?
Take $H \in \mathcal{H}$ and set: $\mathcal{H}_{1} \doteq \mathcal{H} \backslash\{H\}, \mathcal{H}_{2} \doteq\left\{H \cap K, K \in \mathcal{H}_{1}\right\}$. Clearly $\operatorname{reg}(\mathcal{H})$ is obtained from $\operatorname{reg}\left(\mathcal{H}_{1}\right)$ by adding the number of regions of \mathcal{H}_{1} which are cut in two parts by H. But this number equals reg $\left(\mathcal{H}_{2}\right)$. Thus we have the recursive formula

$$
\operatorname{reg}(\mathcal{H})=\operatorname{reg}\left(\mathcal{H}_{1}\right)+\operatorname{reg}\left(\mathcal{H}_{2}\right)
$$

This method is known as deletion-restriction.

Real hyperplane arrangements

Take $V=\mathbb{R}^{n}$ and \mathcal{H} a collection of affine hyperplanes.

Problem

In how many regions V is divided by the hyperplanes?
Take $H \in \mathcal{H}$ and set: $\mathcal{H}_{1} \doteq \mathcal{H} \backslash\{H\}, \mathcal{H}_{2} \doteq\left\{H \cap K, K \in \mathcal{H}_{1}\right\}$. Clearly $\operatorname{reg}(\mathcal{H})$ is obtained from $\operatorname{reg}\left(\mathcal{H}_{1}\right)$ by adding the number of regions of \mathcal{H}_{1} which are cut in two parts by H. But this number equals reg $\left(\mathcal{H}_{2}\right)$. Thus we have the recursive formula

$$
\operatorname{reg}(\mathcal{H})=\operatorname{reg}\left(\mathcal{H}_{1}\right)+\operatorname{reg}\left(\mathcal{H}_{2}\right)
$$

This method is known as deletion-restriction.

Complex hyperplane arrangements

If $V=\mathbb{C}^{n}$, removing hyperplanes does not disconnect V. In this way we get an object \mathcal{M} with a rich topology and geometry. Then one wants to compute invariants of the complement \mathcal{M}. These are related with the combinatorics of the intersection poset \mathcal{L}.

Problem
 Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L}
 Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial $T(x, y)$. (It was originally defined for graphs)
 In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

Complex hyperplane arrangements

If $V=\mathbb{C}^{n}$, removing hyperplanes does not disconnect V. In this way we get an object \mathcal{M} with a rich topology and geometry. Then one wants to compute invariants of the complement \mathcal{M}. These are related with the combinatorics of the intersection poset \mathcal{L}.

> Problem
> Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L}
> Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial $T(x, y)$. (It was originally defined for graphs) In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

Complex hyperplane arrangements

If $V=\mathbb{C}^{n}$, removing hyperplanes does not disconnect V. In this way we get an object \mathcal{M} with a rich topology and geometry. Then one wants to compute invariants of the complement \mathcal{M}.
These are related with the combinatorics of the intersection poset \mathcal{L}.

Problem

Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L}.
Also these polynomials can be computed by deletion-restriction. Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial $T(x, y)$. (It was originally defined for graphs) In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial

Complex hyperplane arrangements

If $V=\mathbb{C}^{n}$, removing hyperplanes does not disconnect V.
In this way we get an object \mathcal{M} with a rich topology and geometry.
Then one wants to compute invariants of the complement \mathcal{M}.
These are related with the combinatorics of the intersection poset \mathcal{L}.

Problem

Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L}.
Also these polynomials can be computed by deletion-restriction.

> Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial $T(x, y)$. (It was originally defined for graphs) In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial

Complex hyperplane arrangements

If $V=\mathbb{C}^{n}$, removing hyperplanes does not disconnect V.
In this way we get an object \mathcal{M} with a rich topology and geometry.
Then one wants to compute invariants of the complement \mathcal{M}.
These are related with the combinatorics of the intersection poset \mathcal{L}.

Problem

Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L}.
Also these polynomials can be computed by deletion-restriction.
Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial $T(x, y)$. (It was originally defined for graphs)
In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial

Complex hyperplane arrangements

If $V=\mathbb{C}^{n}$, removing hyperplanes does not disconnect V.
In this way we get an object \mathcal{M} with a rich topology and geometry.
Then one wants to compute invariants of the complement \mathcal{M}.
These are related with the combinatorics of the intersection poset \mathcal{L}.

Problem

Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L}.
Also these polynomials can be computed by deletion-restriction.
Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial $T(x, y)$. (It was originally defined for graphs).
In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial

Complex hyperplane arrangements

If $V=\mathbb{C}^{n}$, removing hyperplanes does not disconnect V.
In this way we get an object \mathcal{M} with a rich topology and geometry.
Then one wants to compute invariants of the complement \mathcal{M}.
These are related with the combinatorics of the intersection poset \mathcal{L}.

Problem

Compute the Poincaré polynomial \mathcal{M} and the characteristic polynomial \mathcal{L}.
Also these polynomials can be computed by deletion-restriction.
Tutte's idea: find the most general deletion-restriction invariant. This is a polynomial $T(x, y)$. (It was originally defined for graphs).
In this talk we will introduce another kind of arrangements, and provide an analogue of the Tutte polynomial.

An example

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s),
and

$$
X=\{(2,0),(0,3),(1,-1)\} \subset \Lambda=\mathbb{Z}^{2} .
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H} given in V by the equations

$$
2 x=0,3 y=0, x-y=0
$$

(2) a periodic hyperplane arrangement \mathcal{A} given in in V by the conditions

$$
2 x \in \mathbb{Z}, 3 y \in \mathbb{Z}, x-y \in \mathbb{Z}
$$

(3) a toric arrangement \mathcal{T} given in T by the equations:

$$
t^{2}=1, s^{3}=1, s^{-1}=1
$$

An example

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s), and

$$
X=\{(2,0),(0,3),(1,-1)\} \subset \Lambda=\mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H} given in V by the equations

$$
2 x=0,3 y=0, x-y=0
$$

(2) a periodic hyperplane arrangement \mathcal{A} given in in V by the conditions

(3) a toric arrangement \mathcal{T} given in T by the equations:

An example

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s), and

$$
X=\{(2,0),(0,3),(1,-1)\} \subset \Lambda=\mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H} given in V by the equations

$$
2 x=0,3 y=0, x-y=0
$$

(2) a periodic hyperplane arrangement \mathcal{A} given in in V by the conditions

(3) a toric arrangement \mathcal{T} given in T by the equations:

An example

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s), and

$$
X=\{(2,0),(0,3),(1,-1)\} \subset \Lambda=\mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H} given in V by the equations

$$
2 x=0,3 y=0, x-y=0
$$

(2) a periodic hyperplane arrangement \mathcal{A} given in in V by the conditions

$$
2 x \in \mathbb{Z}, 3 y \in \mathbb{Z}, x-y \in \mathbb{Z}
$$

(3) a toric arrangement \mathcal{T} given in T by the equations:

An example

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s), and

$$
X=\{(2,0),(0,3),(1,-1)\} \subset \Lambda=\mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H} given in V by the equations

$$
2 x=0,3 y=0, x-y=0
$$

(2) a periodic hyperplane arrangement \mathcal{A} given in in V by the conditions

$$
2 x \in \mathbb{Z}, 3 y \in \mathbb{Z}, x-y \in \mathbb{Z}
$$

(3) a toric arrangement \mathcal{T} given in T by the equations:

$$
t^{2}=1, s^{3}=1, t s^{-1}=1
$$

Hyperplane and toric arrangements

Let X be a finite list of vectors in a lattice Λ. Assume X to span the vector space $U=\Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V=U^{*}$ is a family of hyperplanes $\mathcal{H}_{X}=\left\{U_{\lambda}\right\}_{\lambda \in X}$, where $U_{\lambda} \doteq\{v \in V \mid \lambda(v)=0\}$.

we replace $(2,0)$ by $(1,0)$ or $(5,0)$, we get the same \mathcal{H}_{X}, but different \mathcal{T}_{X} So \mathcal{H}_{X} depends only on the linear algebra of X, whereas \mathcal{T}_{X} also depends on its arithmetics.
In fact \mathcal{H}_{X} is related to a number of differentiable problems and objects, \mathcal{T}_{X} with their discrete counterparts.

Hyperplane and toric arrangements

Let X be a finite list of vectors in a lattice Λ. Assume X to span the vector space $U=\Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V=U^{*}$ is a family of hyperplanes $\mathcal{H}_{X}=\left\{U_{\lambda}\right\}_{\lambda \in X}$, where $U_{\lambda} \doteq\{v \in V \mid \lambda(v)=0\}$.
A toric arrangement in the complex torus $T=\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right)$ is a family of hypersurfaces $\mathcal{T}_{X}=\left\{T_{\lambda}\right\}_{\lambda \in X}$, where $T_{\lambda} \doteq\{t \in T \mid \lambda(t)=1\}$.

Hyperplane and toric arrangements

Let X be a finite list of vectors in a lattice Λ. Assume X to span the vector space $U=\Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V=U^{*}$ is a family of hyperplanes $\mathcal{H}_{X}=\left\{U_{\lambda}\right\}_{\lambda \in X}$,
where $U_{\lambda} \doteq\{v \in V \mid \lambda(v)=0\}$.
A toric arrangement in the complex torus $T=\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right)$
is a family of hypersurfaces $\mathcal{T}_{X}=\left\{T_{\lambda}\right\}_{\lambda \in X}$,
where $T_{\lambda} \doteq\{t \in T \mid \lambda(t)=1\}$.
Remark: if in the previous example (i.e. $X=\{(2,0),(0,3),(1,-1)\})$ we replace $(2,0)$ by $(1,0)$ or $(5,0)$, we get the same \mathcal{H}_{X}, but different \mathcal{T}_{X}.

So \mathcal{H}_{X} depends only on the linear algebra of X, whereas \mathcal{T}_{X} also depends
 on its arithmetics.
 In fact \mathcal{H}_{x} is related to a number of differentiable problems and objects,

Tx with their discrete counterparts.

Hyperplane and toric arrangements

Let X be a finite list of vectors in a lattice Λ. Assume X to span the vector space $U=\Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V=U^{*}$ is a family of hyperplanes $\mathcal{H}_{X}=\left\{U_{\lambda}\right\}_{\lambda \in X}$,
where $U_{\lambda} \doteq\{v \in V \mid \lambda(v)=0\}$.
A toric arrangement in the complex torus $T=\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right)$
is a family of hypersurfaces $\mathcal{T}_{X}=\left\{T_{\lambda}\right\}_{\lambda \in X}$,
where $T_{\lambda} \doteq\{t \in T \mid \lambda(t)=1\}$.
Remark: if in the previous example (i.e. $X=\{(2,0),(0,3),(1,-1)\})$ we replace $(2,0)$ by $(1,0)$ or $(5,0)$, we get the same \mathcal{H}_{X}, but different \mathcal{T}_{X}. So \mathcal{H}_{X} depends only on the linear algebra of X, whereas \mathcal{T}_{X} also depends on its arithmetics.
In fact \mathcal{H}_{X} is related to a number of differentiable problems and objects, T_{x} with their discrete counterparts.

Hyperplane and toric arrangements

Let X be a finite list of vectors in a lattice Λ. Assume X to span the vector space $U=\Lambda \otimes \mathbb{C}$.

A hyperplane arrangement in the complex vector space $V=U^{*}$ is a family of hyperplanes $\mathcal{H}_{X}=\left\{U_{\lambda}\right\}_{\lambda \in X}$,
where $U_{\lambda} \doteq\{v \in V \mid \lambda(v)=0\}$.
A toric arrangement in the complex torus $T=\operatorname{Hom}\left(\Lambda, \mathbb{C}^{*}\right)$
is a family of hypersurfaces $\mathcal{T}_{X}=\left\{T_{\lambda}\right\}_{\lambda \in X}$,
where $T_{\lambda} \doteq\{t \in T \mid \lambda(t)=1\}$.
Remark: if in the previous example (i.e. $X=\{(2,0),(0,3),(1,-1)\})$ we replace $(2,0)$ by $(1,0)$ or $(5,0)$, we get the same \mathcal{H}_{X}, but different \mathcal{T}_{X}. So \mathcal{H}_{X} depends only on the linear algebra of X, whereas \mathcal{T}_{X} also depends on its arithmetics.
In fact \mathcal{H}_{X} is related to a number of differentiable problems and objects, \mathcal{T}_{X} with their discrete counterparts.

The partition function

Problem
 In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$ On every equivalence class $\bmod 100, \mathcal{P}$ is a (linear) polynomial in k

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

We say that a function $\mathcal{Q}: \Lambda \rightarrow \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial \mathcal{P} is piecewise quasipolynomial.

The partition function

Problem

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class mod $100, \mathcal{P}$ is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

We say that a function $\mathcal{Q}: \Lambda \rightarrow \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

The partition function

Problem

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class $\bmod 100, \mathcal{P}$ is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

We say that a function $\mathcal{Q}: \Lambda \rightarrow \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial \mathcal{P} is piecewise quasipolynomial.

The partition function

Problem

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class $\bmod 100, \mathcal{P}$ is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$
\lambda=\sum_{\lambda_{i} \in X} x_{i} \lambda_{i}, \text { with } x_{i} \in \mathbb{N} .
$$

We say that a function $\mathcal{Q}: \Lambda \rightarrow \mathbb{C}$ is quasipolynomial if there is a
sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

The partition function

Problem

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class $\bmod 100, \mathcal{P}$ is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$
\lambda=\sum_{\lambda_{i} \in X} x_{i} \lambda_{i}, \text { with } x_{i} \in \mathbb{N} .
$$

We say that a function $\mathcal{Q}: \Lambda \rightarrow \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial.

The partition function

Problem

In how many ways an amount of k euro can be paid in 20 euro and 50 euro banknotes?

We call this number $\mathcal{P}(k)$, and we study the partition function $k \mapsto \mathcal{P}(k)$. On every equivalence class $\bmod 100, \mathcal{P}$ is a (linear) polynomial in k.

In general, given $\lambda \in \Lambda$, we define $\mathcal{P}(\lambda)$ as the number of solutions of the equation

$$
\lambda=\sum_{\lambda_{i} \in X} x_{i} \lambda_{i}, \text { with } x_{i} \in \mathbb{N} .
$$

We say that a function $\mathcal{Q}: \Lambda \rightarrow \mathbb{C}$ is quasipolynomial if there is a sublattice of Λ such that the restriction of \mathcal{Q} to every coset is polynomial. \mathcal{P} is piecewise quasipolynomial.

Differential and difference operators

For every $\lambda \in X$, let ∂_{λ} be the usual directional derivative

$$
\partial_{\lambda} f(x) \doteq \frac{\partial f}{\partial \lambda}(x)
$$

and let ∇_{λ} be the difference operator

$$
\nabla_{\lambda} f(x) \doteq f(x)-f(x-\lambda) .
$$

Then for every $A \subset X$ we define the differential operator

and the difference operator

Differential and difference operators

For every $\lambda \in X$, let ∂_{λ} be the usual directional derivative

$$
\partial_{\lambda} f(x) \doteq \frac{\partial f}{\partial \lambda}(x)
$$

and let ∇_{λ} be the difference operator

$$
\nabla_{\lambda} f(x) \doteq f(x)-f(x-\lambda) .
$$

Then for every $A \subset X$ we define the differential operator

$$
\partial_{A} \doteq \prod_{\lambda \in A} \partial_{\lambda}
$$

and the difference operator

$$
\nabla_{A} \doteq \prod_{\lambda \in A} \nabla_{\lambda}
$$

Dahmen-Micchelli spaces

We can now define the differentiable Dahmen-Micchelli space

$$
D(X) \doteq\left\{f: U \rightarrow \mathbb{C} \mid \partial_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

and the discrete Dahmen-Micchelli space $D M(X) \doteq\left\{f: \Lambda \rightarrow \mathbb{C} \mid \nabla_{A} f=0 \forall A\right.$ such that $\left.r(X \backslash A)<n\right\}$.
$D(X)$ is a space of polynomials, introduced to study the box spline. This space is naturally graded.
$D M(X)$ is a space of quasipolynomials, arising from the partition function.
$D(X)$ and $D M(X)$ are deeply related respectively with the \mathcal{H}_{X} and \mathcal{T}_{X}

Dahmen-Micchelli spaces

We can now define the differentiable Dahmen-Micchelli space

$$
D(X) \doteq\left\{f: U \rightarrow \mathbb{C} \mid \partial_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

and the discrete Dahmen-Micchelli space

$$
D M(X) \doteq\left\{f: \Lambda \rightarrow \mathbb{C} \mid \nabla_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

$D(X)$ is a space of polynomials, introduced to study the box spline. This space is naturally graded
$D M(X)$ is a space of quasipolynomials, arising from the partition function.
$D(X)$ and $D M(X)$ are deeply related respectively with the \mathcal{H}_{X} and \mathcal{T}_{X}

Dahmen-Micchelli spaces

We can now define the differentiable Dahmen-Micchelli space

$$
D(X) \doteq\left\{f: U \rightarrow \mathbb{C} \mid \partial_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

and the discrete Dahmen-Micchelli space

$$
D M(X) \doteq\left\{f: \Lambda \rightarrow \mathbb{C} \mid \nabla_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

$D(X)$ is a space of polynomials, introduced to study the box spline. This space is naturally graded.
$D M(X)$ is a space of quasipolynomials, arising from the partition function.
$D(X)$ and $D M(X)$ are deeply related respectively with the \mathcal{H}_{X} and \mathcal{T}_{X}

Dahmen-Micchelli spaces

We can now define the differentiable Dahmen-Micchelli space

$$
D(X) \doteq\left\{f: U \rightarrow \mathbb{C} \mid \partial_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

and the discrete Dahmen-Micchelli space

$$
D M(X) \doteq\left\{f: \Lambda \rightarrow \mathbb{C} \mid \nabla_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

$D(X)$ is a space of polynomials, introduced to study the box spline. This space is naturally graded.
$D M(X)$ is a space of quasipolynomials, arising from the partition function.
$D(X)$ and $D M(X)$ are deeply related respectively with the \mathcal{H}_{X} and \mathcal{T}_{X}

Dahmen-Micchelli spaces

We can now define the differentiable Dahmen-Micchelli space

$$
D(X) \doteq\left\{f: U \rightarrow \mathbb{C} \mid \partial_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

and the discrete Dahmen-Micchelli space

$$
D M(X) \doteq\left\{f: \Lambda \rightarrow \mathbb{C} \mid \nabla_{A} f=0 \forall A \text { such that } r(X \backslash A)<n\right\}
$$

$D(X)$ is a space of polynomials, introduced to study the box spline. This space is naturally graded.
$D M(X)$ is a space of quasipolynomials, arising from the partition function.
$D(X)$ and $D M(X)$ are deeply related respectively with the \mathcal{H}_{X} and \mathcal{T}_{X}.

Tutte polynomial

We recall that the Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^{n} T_{X}(1-q, 0)$;
(0) the Hilbert series of $D(X)$ is $T_{X}(1, y)$

EXAMPLE

Tutte polynomial

We recall that the Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^{n} T_{X}(1-q, 0)$;
(9) the Hilbert series of $D(X)$ is $T_{X}(1, y)$

EXAMPLE

Tutte polynomial

We recall that the Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^{n} T_{X}(1-q, 0)$;
(-) the Hilbert series of $D(X)$ is $T_{X}(1, y)$
EXAMPLE

Tutte polynomial

We recall that the Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^{n} T_{X}(1-q, 0)$; (-) the Hilbert series of $D(X)$ is $T_{X}(1, y)$
EXAMPLE

Tutte polynomial

We recall that the Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^{n} T_{X}(1-q, 0)$;

Tutte polynomial

We recall that the Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^{n} T_{X}(1-q, 0)$;
(9) the Hilbert series of $D(X)$ is $T_{X}(1, y)$.

Tutte polynomial

We recall that the Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the characteristic polynomial of $\mathcal{L}(X)$ is $(-1)^{n} T_{X}(1-q, 0)$;
(9) the Hilbert series of $D(X)$ is $T_{X}(1, y)$.

EXAMPLE

Deletion-restriction for $T_{X}(x, y)$

Moreover $T_{X}(x, y)$ can be computed by deletion-restriction:

$$
T_{X}(x, y)=T_{X_{1}}(x, y)+T_{X_{2}}(x, y)
$$

where X_{1} is obtained from X by removing a linearly dependent vector λ, and X_{2} is the quotient of X_{1} by λ.
The Tutte polynomial is the most general deletion-restriction invariant. By these recurrence the coefficients of $T_{X}(x, y)$ are proved to be positive.

Deletion-restriction for $T_{x}(x, y)$

Moreover $T_{X}(x, y)$ can be computed by deletion-restriction:

$$
T_{X}(x, y)=T_{X_{1}}(x, y)+T_{X_{2}}(x, y)
$$

where X_{1} is obtained from X by removing a linearly dependent vector λ, and X_{2} is the quotient of X_{1} by λ.
The Tutte polynomial is the most general deletion-restriction invariant.
By these recurrence the coefficients of $T_{X}(x, y)$ are proved to be positive.

Deletion-restriction for $T_{x}(x, y)$

Moreover $T_{X}(x, y)$ can be computed by deletion-restriction:

$$
T_{X}(x, y)=T_{X_{1}}(x, y)+T_{X_{2}}(x, y)
$$

where X_{1} is obtained from X by removing a linearly dependent vector λ, and X_{2} is the quotient of X_{1} by λ.
The Tutte polynomial is the most general deletion-restriction invariant. By these recurrence the coefficients of $T_{X}(x, y)$ are proved to be positive.

Multiplicity Tutte polynomial

Problem
 Define a "Tutte polynomial" for \mathcal{T}_{X} and $\operatorname{DM}(X)$.

Let be $X \subset \Lambda$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\Lambda \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define a multiplicity Tutte polynomial $M_{X}(x, y)$:

Multiplicity Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $\operatorname{DM}(X)$.
Let be $X \subset \Lambda$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\Lambda \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define a multiplicity Tutte polynomial $M_{X}(x, y)$:

Multiplicity Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $D M(X)$.
Let be $X \subset \Lambda$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\Lambda \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define a multiplicity Tutte polynomial $M_{X}(x, y)$:

$$
M(x, y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

EXAMPLE

Multiplicity Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $D M(X)$.
Let be $X \subset \Lambda$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\Lambda \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define a multiplicity Tutte polynomial $M_{X}(x, y)$:

$$
M(x, y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r(X)-r(A)}(y-1)^{|A|-r(A)}
$$

EXAMPLE

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;
(3) the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$.

EXAMPLE

$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space.

Theorem

Hence $M_{X}(1, y)$ is the Hilbert series of $D M(X)$

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(- the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$; (3) the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$
\square
EXAMPLE
$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space

Theorem

Hence $M_{X}(1, y)$ is the Hilbert series of $D M(X)$

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(3) the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;

- the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$.
$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space.

Theorem

\square

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(3) the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;

- the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$.

EXAMPLE
$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space.

Theorem

\square

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;
(3) the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$.

EXAMPLE

$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space.

Theorem

\square

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(3) the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;

- the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$.

EXAMPLE

$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every "point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space

Hence $M_{X}(1, y)$ is the Hilbert series of $D M(X)$

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;
(3) the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$.

EXAMPLE

$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every "point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space.

Theorem

Hence $M_{X}(1, y)$ is the Hilbert series of $D M(X)$

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;
(3) the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$.

EXAMPLE

$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every "point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space.

Theorem

$$
M_{X}(1, y)=\sum_{p} T_{X_{p}}(1, y)
$$

Hence $M_{X}(1, y)$ is the Hilbert series of $D M(X)$.

Relations with \mathcal{T}_{X} and $D M(X)$

Theorem

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complement in T is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;
(3) the characteristic polynomial of the connected intersections poset is $(-1)^{n} M_{X}(1-q, 0)$.

EXAMPLE

$D M(X)$ is isomorphic to a direct sum of spaces $D\left(X_{p}\right)$, one for every "point" p of \mathcal{T}_{X}. Thus also $D M(X)$ is a graded space.

Theorem

$$
M_{X}(1, y)=\sum_{p} T_{X_{p}}(1, y)
$$

Hence $M_{X}(1, y)$ is the Hilbert series of $D M(X)$.

Deletion-restriction and positivity for $M_{x}(x, y)$

Theorem

(1) $M_{X}(x, y)=M_{X_{1}}(x, y)+M_{X_{2}}(x, y)$;
(3) $M_{X}(x, y)$ is a polynomial with positive coefficients.

Then the coefficients "count something". What?
Still open, but we can answer for the coefficients of $M_{X}(1, y)$, and also of $M_{X}(x, 1)$.

Deletion-restriction and positivity for $M_{x}(x, y)$

Theorem

(1) $M_{X}(x, y)=M_{X_{1}}(x, y)+M_{X_{2}}(x, y)$;
(2) $M_{X}(x, y)$ is a polynomial with positive coefficients.

Then the coefficients "count something". What?
Still open, but we can answer for the coefficients of $M_{X}(1, y)$, and also of $M_{X}(x, 1)$.

Deletion-restriction and positivity for $M_{x}(x, y)$

Theorem

(1) $M_{X}(x, y)=M_{X_{1}}(x, y)+M_{X_{2}}(x, y)$;
(2) $M_{X}(x, y)$ is a polynomial with positive coefficients.

Then the coefficients "count something". What?
Still open, but we can answer for the coefficients of $M_{X}(1, y)$, and also of $M_{X}(x, 1)$.

Deletion-restriction and positivity for $M_{x}(x, y)$

Theorem

(1) $M_{X}(x, y)=M_{X_{1}}(x, y)+M_{X_{2}}(x, y)$;
(2) $M_{X}(x, y)$ is a polynomial with positive coefficients.

Then the coefficients "count something". What?

Deletion-restriction and positivity for $M_{x}(x, y)$

Theorem

(1) $M_{X}(x, y)=M_{X_{1}}(x, y)+M_{X_{2}}(x, y)$;
(2) $M_{X}(x, y)$ is a polynomial with positive coefficients.

Then the coefficients "count something". What?
Still open, but we can answer for the coefficients of $M_{X}(1, y)$, and also of $M_{X}(x, 1) \ldots$

The zonotope

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define a convex polytope in $U_{\mathbb{R}}$

$$
\mathcal{Z}(X) \doteq\left\{\sum_{\lambda \in X} t_{\lambda} \lambda, 0 \leq t_{\lambda} \leq 1\right\}
$$

Theorem

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathbb{Z}(X)$,
(2) $M_{X}(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
(3) $M_{X}(x, 1)$ is the number of integral points of $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.

EXAMPLE

The zonotope

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define a convex polytope in $U_{\mathbb{R}}$

$$
\mathcal{Z}(X) \doteq\left\{\sum_{\lambda \in X} t_{\lambda} \lambda, 0 \leq t_{\lambda} \leq 1\right\}
$$

Theorem

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(2) $M_{X}(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
(3) $M_{X}(x, 1)$ is the number of integral points of $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.

The zonotope

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define a convex polytope in $U_{\mathbb{R}}$

$$
\mathcal{Z}(X) \doteq\left\{\sum_{\lambda \in X} t_{\lambda} \lambda, 0 \leq t_{\lambda} \leq 1\right\}
$$

Theorem

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(2) $M_{X}(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
(3) $M_{X}(x, 1)$ is the number of integral points of $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.

The zonotope

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define a convex polytope in $U_{\mathbb{R}}$

$$
\mathcal{Z}(X) \doteq\left\{\sum_{\lambda \in X} t_{\lambda} \lambda, 0 \leq t_{\lambda} \leq 1\right\}
$$

Theorem

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(2) $M_{X}(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
(3) $M_{X}(x, 1)$ is the number of integral points of $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.

The zonotope

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define a convex polytope in $U_{\mathbb{R}}$

$$
\mathcal{Z}(X) \doteq\left\{\sum_{\lambda \in X} t_{\lambda} \lambda, 0 \leq t_{\lambda} \leq 1\right\}
$$

Theorem

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(2) $M_{X}(2,1)$ is the number of integral points of $\mathcal{Z}(X)$;
(3) $M_{X}(x, 1)$ is the number of integral points of $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.

EXAMPLE

[^0]: This method is known as deletion-restriction.

[^1]: This method is known as deletion-restriction.

