Complex Matroids

Emanuele Delucchi
(joint work with Laura Anderson)
State University of New York at Binghamton

Centro De Giorgi, Scuola Normale Superiore Pisa, June 21, 2010

COMBINATORICS OF LINEAR DEPENDENCIES

$$
\text { Let } M:=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \text { be a } d \times n \text { matrix. }
$$

Let E be the set of column vectors of the matrix M.

COMBINATORICS OF LINEAR DEPENDENCIES

$$
\text { Let } M:=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \text { be a } d \times n \text { matrix. }
$$

Let E be the set of column vectors of the matrix M.

Maximal independent subsets of E :
Bases of Im M.
Fact: E contains a basis.
Theorem: Given bases $B_{1}, B_{2} \subseteq E$, $e_{1} \in B_{1} \backslash B_{2}$, there is $e_{2} \in B_{2} \backslash B_{1}$ s.t. $\left(B_{1} \backslash e_{1}\right) \cup e_{2}$ and $\left(B_{2} \backslash e_{2}\right) \cup e_{1}$ both are bases of V.
(Basis exchange)

COMBINATORICS OF LINEAR DEPENDENCIES

$$
\text { Let } M:=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \text { be a } d \times n \text { matrix. }
$$

Let E be the set of column vectors of the matrix M.

Maximal independent subsets of E : Bases of $\operatorname{Im} M$.

Minimal supports of nonzero elements of $\operatorname{ker} M$: Circuits.

Fact: E contains a basis.
Theorem: Given bases $B_{1}, B_{2} \subseteq E$, $e_{1} \in B_{1} \backslash B_{2}$, there is $e_{2} \in B_{2} \backslash B_{1}$ s.t. $\left(B_{1} \backslash e_{1}\right) \cup e_{2}$ and $\left(B_{2} \backslash e_{2}\right) \cup e_{1}$ both are bases of V.
(Basis exchange)

COMBINATORICS OF LINEAR DEPENDENCIES

Consider circuits $C_{1} \neq C_{2}$ and $e \in C_{1} \cap C_{2}$. With $E=\left\{e, v_{2}, \ldots, v_{n}\right\}$, this means that there are coefficients $\left(\lambda_{i}\right)_{\geq 2}$ and $\left(\mu_{i}\right)_{i \geq 2}$ with

$$
\begin{array}{rrr}
e+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n} & =0 & \text { (minimal lin. dep. } \\
-e+\mu_{2} v_{2}+\ldots+\mu_{n} v_{n} & =0 & (\text { minimal lin. dep.) } \\
& & \left.\mu_{i}=0 \text { if } v_{i} \notin C_{2}\right) \\
\hline\left(\lambda_{2}+\mu_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep. among } \\
& & \text { elements of } C_{1} \cup C_{2}
\end{array}
$$

COMBINATORICS OF LINEAR DEPENDENCIES

Consider circuits $C_{1} \neq C_{2}$ and $e \in C_{1} \cap C_{2}$. With $E=\left\{e, v_{2}, \ldots, v_{n}\right\}$, this means that there are coefficients $\left(\lambda_{i}\right)_{\geq 2}$ and $\left(\mu_{i}\right)_{i \geq 2}$ with

$$
\begin{array}{rrr}
e+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n} & =0 & \text { (minimal lin. dep. } \\
-e+\mu_{2} v_{2}+\ldots+\mu_{n} v_{n} & =0 & (\text { minimal lin. dep.) } \\
& & \left.\mu_{i}=0 \text { if } v_{i} \notin C_{2}\right) \\
\hline\left(\lambda_{2}+\mu_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep. among } \\
& & \text { elements of } C_{1} \cup C_{2}
\end{array}
$$

Then, there is

$$
\begin{aligned}
\nu_{2} v_{2}+\ldots+\nu_{n} v_{n}=0 & (\text { minimal lin. dep. }, \\
& \left.\quad \text { in }\left(C_{1} \cup C_{2}\right) \backslash e\right)
\end{aligned}
$$

COMBINATORICS OF LINEAR DEPENDENCIES

Consider circuits $C_{1} \neq C_{2}$ and $e \in C_{1} \cap C_{2}$. With $E=\left\{e, v_{2}, \ldots, v_{n}\right\}$, this means that there are coefficients $\left(\lambda_{i}\right)_{\geq 2}$ and $\left(\mu_{i}\right)_{i \geq 2}$ with

$$
\begin{array}{rrr}
e+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n} & =0 & \text { (minimal lin. dep., } \\
-e+\mu_{2} v_{2}+\ldots+\mu_{n} v_{n} & =0 & (\text { minimal lin. dep.) } \\
& & \left.\mu_{i}=0 \text { if } v_{i} \notin C_{2}\right) \\
\hline\left(\lambda_{2}+\mu_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep. among } \\
& & \text { elements of } C_{1} \cup C_{2}
\end{array}
$$

Then, there is

$$
\begin{aligned}
& \nu_{2} v_{2}+\ldots+\nu_{n} v_{n}=0 \quad(\text { minimal lin. dep. }, \\
&\text { in } \left.\left(C_{1} \cup C_{2}\right) \backslash e\right)
\end{aligned}
$$

Given circuits C_{1}, C_{2} and $e \in C_{1} \cap C_{2}$, there is a circuit C_{3} with $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash e$.

COMBINATORICS OF LINEAR DEPENDENCIES

$$
\text { Let } M:=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \text { be a } d \times n \text { matrix. }
$$

Let E be the set of column vectors of the matrix M.

Maximal independent subsets of E : Minimal supports of nonzero eleBases of $\operatorname{Im} M$.

Fact: E contains a basis. ments of $\operatorname{ker} M$: Circuits.
\emptyset is not a circuit.
Theorem: Given bases $B_{1}, B_{2} \subseteq E$, $e_{1} \in B_{1} \backslash B_{2}$, there is $e_{2} \in B_{2} \backslash B_{1}$ s.t. $\left(B_{1} \backslash e_{1}\right) \cup e_{2}$ and $\left(B_{2} \backslash e_{2}\right) \cup e_{1}$ both are bases of V.
(Basis exchange)
Given minimal dependent subsets $C_{1}, C_{2} \subset E$ and $e \in C_{1} \cap C_{2}$, $\left(C_{1} \cup C_{2}\right) \backslash e$ is dependent. So, there is $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash e$.
(Circuit elimination)

COMBINATORICS OF LINEAR DEPENDENCIES

COMBINATORICS OF LINEAR DEPENDENCIES

COMBINATORICS OF LINEAR DEPENDENCIES

a family \mathscr{B} of subsets of E such that:

- $\mathscr{B} \neq \emptyset$
- For all $B_{1}, B_{2} \in \mathscr{B}$ and any element $e_{1} \in B_{1} \backslash B_{2}$, there is $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash e_{1}\right) \cup e_{2},\left(B_{2} \backslash e_{2}\right) \cup e_{1} \in \mathscr{B}$ (Basis exchange axiom)

Minimal supports of nonzero elements of ker M: Circuits.
\emptyset is not a circuit.
Given minimal dependent subsets $C_{1}, C_{2} \subset E$ and $e \in C_{1} \cap C_{2}$, $\left(C_{1} \cup C_{2}\right) \backslash e$ is dependent. So, there is $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash e$. (Circuit elimination)

COMBINATORICS OF LINEAR DEPENDENCIES

a family \mathscr{B} of subsets of E such that:

- $\mathscr{B} \neq \emptyset$
- For all $B_{1}, B_{2} \in \mathscr{B}$ and any element $e_{1} \in B_{1} \backslash B_{2}$, there is $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash e_{1}\right) \cup e_{2},\left(B_{2} \backslash e_{2}\right) \cup e_{1} \in \mathscr{B}$ (Basis exchange axiom)
a family \mathscr{C} of incomparable subsets of E such that:

COMBINATORICS OF LINEAR DEPENDENCIES

$C \in \mathscr{C} \Leftrightarrow$

- $C \nsubseteq B$ for all bases B;
- $C \subseteq B \cup e$ for some $e \in E$ and some basis B.
a family \mathscr{B} of subsets of E such that:
a family \mathscr{C} of incomparable subsets of E such that:
- $\mathscr{B} \neq \emptyset$
- For all $B_{1}, B_{2} \in \mathscr{B}$ and any element $e_{1} \in B_{1} \backslash B_{2}$, there is $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash e_{1}\right) \cup e_{2},\left(B_{2} \backslash e_{2}\right) \cup e_{1} \in \mathscr{B}$
(Basis exchange axiom)
- $\emptyset \notin \mathscr{C}$
- Given $C_{1}, C_{2} \in \mathscr{C}, e \in C_{1} \cap C_{2}$, there is $C_{3} \in \mathscr{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash e$.
(Circuit elimination axiom)

COMBINATORICS OF LINEAR DEPENDENCIES

$$
\begin{aligned}
& B \in \mathscr{B} \Leftrightarrow \\
& (B \cup e) \text { contains a } C \in \mathscr{C} \text { iff } \\
& e \in E \backslash B .
\end{aligned}
$$

$C \in \mathscr{C} \Leftrightarrow$

- $C \nsubseteq B$ for all bases B;
- $C \subseteq B \cup e$ for some $e \in E$ and some basis B.

a family \mathscr{B} of subsets of E such that:
- $\mathscr{B} \neq \emptyset$
- For all $B_{1}, B_{2} \in \mathscr{B}$ and any element $e_{1} \in B_{1} \backslash B_{2}$, there is $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash e_{1}\right) \cup e_{2},\left(B_{2} \backslash e_{2}\right) \cup e_{1} \in \mathscr{B}$
(Basis exchange axiom)
a family \mathscr{C} of incomparable subsets of E such that:

Matroids

Definition. A matroid on a finite ground set E is...
a family \mathscr{B} of subsets of E such that:

- $\mathscr{B} \neq \emptyset$
- For all $B_{1}, B_{2} \in \mathscr{B}$ and any element $e_{1} \in B_{1} \backslash B_{2}$, there is $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash e_{1}\right) \cup e_{2},\left(B_{2} \backslash e_{2}\right) \cup e_{1} \in \mathscr{B}$
(Basis exchange axiom)
a family \mathscr{C} of incomparable subsets of E such that:
- $\emptyset \notin \mathscr{C}$
- Given $C_{1}, C_{2} \in \mathscr{C}, e \in C_{1} \cap C_{2}$, there is $C_{3} \in \mathscr{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash e$.
(Circuit elimination axiom)

MATROIDS

Two subsets $A, B \in \mathscr{F} \subseteq \mathscr{P}(E)$ are comodular if they are a modular pair of atoms in the lattice of unions of elements of \mathscr{F}

MATROIDS

Two subsets $A, B \in \mathscr{F} \subseteq \mathscr{P}(E)$ are comodular if they are a modular pair of atoms in the lattice of unions of elements of \mathscr{F}

Theorem [D. '09]. A matroid on a finite ground set E is...
a family \mathscr{C} of incomparable subsets of E such that:

- $\emptyset \notin \mathscr{C}$
- Given $C_{1}, C_{2} \in \mathscr{C}$ comodular and $e \in C_{1} \cap C_{2}$, there is $C_{3} \in \mathscr{C}$ s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash e$. (Modular elimination axiom)

DUALITY

Duality

Notice: If \mathscr{B} is the set of bases of a matroid \mathscr{M} on the ground set E, then

$$
\mathscr{B}^{*}:=\{E \backslash B \mid B \in \mathscr{B}\}
$$

is the set of bases of another matroid \mathscr{M}^{*} called dual to the first.

Duality

Notice: If \mathscr{B} is the set of bases of a matroid \mathscr{M} on the ground set E, then

$$
\mathscr{B}^{*}:=\{E \backslash B \mid B \in \mathscr{B}\}
$$

is the set of bases of another matroid \mathscr{M}^{*} called dual to the first.
Let \mathscr{C}^{*} denote the set of circuits of \mathscr{M}^{*}.

DUALITY

Notice: If \mathscr{B} is the set of bases of a matroid \mathscr{M} on the ground set E, then

$$
\mathscr{B}^{*}:=\{E \backslash B \mid B \in \mathscr{B}\}
$$

is the set of bases of another matroid \mathscr{M}^{*} called dual to the first.
Let \mathscr{C}^{*} denote the set of circuits of \mathscr{M}^{*}.
Definition. For two subsets $A_{1}, A_{2} \subseteq E$ define

$$
A_{1} \perp A_{2} \Leftrightarrow\left|A_{1} \cap A_{2}\right| \neq 1
$$

DUALITY

Notice: If \mathscr{B} is the set of bases of a matroid \mathscr{M} on the ground set E, then

$$
\mathscr{B}^{*}:=\{E \backslash B \mid B \in \mathscr{B}\}
$$

is the set of bases of another matroid \mathscr{M}^{*} called dual to the first.
Let \mathscr{C}^{*} denote the set of circuits of \mathscr{M}^{*}.
Definition. For two subsets $A_{1}, A_{2} \subseteq E$ define

$$
A_{1} \perp A_{2} \Leftrightarrow\left|A_{1} \cap A_{2}\right| \neq 1
$$

Theorem.

$$
\mathscr{C}^{*}=\min _{\subseteq}\{A \subseteq E \mid A \perp C \text { for all } C \in \mathscr{C}\}
$$

LINEAR DEPENDENCIES OVER \mathbb{R}

There is a very natural stratification of \mathbb{R} as:

LINEAR DEPENDENCIES OVER \mathbb{R}

There is a very natural stratification of \mathbb{R} as:

So we consider the following set of signs.
Definition. The set $\{-1,0,+1\}$ has a natural partial order coming from the stratification above

COMBINATORICS OF LINEAR DEPENDENCIES OVER \mathbb{R}

Let M be a $d \times n$ matrix with real coefficients.
Let $E:=\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of column vectors of the matrix M.
E spans the space $V=\operatorname{lm} M$

COMBINATORICS OF LINEAR DEPENDENCIES OVER \mathbb{R}

Let M be a $d \times n$ matrix with real coefficients.
Let $E:=\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of column vectors of the matrix M. E spans the space $V=\operatorname{Im} M$

Every ordered element of \mathscr{B} has a natural sign

Order $B \in \mathscr{B}$ as $\left\{v_{1}, \ldots, v_{d}\right\}$, then define
$\chi\left(v_{1}, \ldots, v_{d}\right):=\operatorname{sgn} \operatorname{det}\left(v_{1}, \ldots, v_{d}\right)$
(Basis signature)

COMBINATORICS OF LINEAR DEPENDENCIES OVER \mathbb{R}

Let M be a $d \times n$ matrix with real coefficients.
Let $E:=\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of column vectors of the matrix M.
E spans the space $V=\operatorname{Im} M$

Every ordered element of \mathscr{B} has a natural sign

Order $B \in \mathscr{B}$ as $\left\{v_{1}, \ldots, v_{d}\right\}$, then define
$\chi\left(v_{1}, \ldots, v_{d}\right):=\operatorname{sgn} \operatorname{det}\left(v_{1}, \ldots, v_{d}\right)$
(Basis signature)

To every $C \in \mathscr{C}$ correspond $\lambda_{i} \in \mathbb{R}$ with $\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}=0$ where $\lambda_{i} \neq 0$ iff $v_{i} \in C$.

Given the $\lambda_{i} \mathrm{~s}$, define $X: E \rightarrow\{0, \pm\}$ as

$$
X\left(v_{i}\right):=\operatorname{sgn}\left(\lambda_{i}\right)
$$

(Signed circuits)

BASIS SIGNATURE

Consider V as a d-dimensional linear subspace of \mathbb{R}^{n} so that, for all i, v_{i} is the orthogonal projection of the standard basis vector e_{i} on V.

BASIS SIGNATURE

Consider V as a d-dimensional linear subspace of \mathbb{R}^{n} so that, for all i, v_{i} is the orthogonal projection of the standard basis vector e_{i} on V.
Then V is an element of the real Grassmannian $G_{d, n}(\mathbb{R})$, and as such it satisfies the Grassmann-Plücker relations.

BASIS SIGNATURE

Consider V as a d-dimensional linear subspace of \mathbb{R}^{n} so that, for all i, v_{i} is the orthogonal projection of the standard basis vector e_{i} on V.
Then V is an element of the real Grassmannian $G_{d, n}(\mathbb{R})$, and as such it satisfies the Grassmann-Plücker relations.

Given $\left\{x_{0}, \ldots, x_{d}, y_{2}, \ldots, y_{d}\right\} \subseteq E$,

$$
\sum_{j=0}^{d}(-1)^{j} \operatorname{det}\left(x_{0}, \ldots, \widehat{x}_{j}, \ldots, x_{d}\right) \operatorname{det}\left(x_{j}, y_{2}, \ldots, y_{d}\right)=0
$$

BASIS SIGNATURE

Consider V as a d-dimensional linear subspace of \mathbb{R}^{n} so that, for all i, v_{i} is the orthogonal projection of the standard basis vector e_{i} on V.
Then V is an element of the real Grassmannian $G_{d, n}(\mathbb{R})$, and as such it satisfies the Grassmann-Plücker relations.

Given $\left\{x_{0}, \ldots, x_{d}, y_{2}, \ldots, y_{d}\right\} \subseteq E$,

$$
\sum_{j=0}^{d}(-1)^{j} \operatorname{det}\left(x_{0}, \ldots, \widehat{x}_{j}, \ldots, x_{d}\right) \operatorname{det}\left(x_{j}, y_{2}, \ldots, y_{d}\right)=0
$$

For the sum to equal 0 , the summands can't be all positive, nor all negative.

BASIS SIGNATURE

Consider V as a d-dimensional linear subspace of \mathbb{R}^{n} so that, for all i, v_{i} is the orthogonal projection of the standard basis vector e_{i} on V.
Then V is an element of the real Grassmannian $G_{d, n}(\mathbb{R})$, and as such it satisfies the Grassmann-Plücker relations.

Given $\left\{x_{0}, \ldots, x_{d}, y_{2}, \ldots, y_{d}\right\} \subseteq E$,

$$
\sum_{j=0}^{d}(-1)^{j} \operatorname{det}\left(x_{0}, \ldots, \widehat{x}_{j}, \ldots, x_{d}\right) \operatorname{det}\left(x_{j}, y_{2}, \ldots, y_{d}\right)=0
$$

For the sum to equal 0 , the summands can't be all positive, nor all negative.
Let $P:=\left\{(-1)^{\prime} \chi\left(x_{0}, \ldots, \widehat{x}_{l}, \ldots, x_{d}\right) \chi\left(x_{I}, y_{2}, \ldots, y_{d}\right) \mid 0 \leq I \leq d\right\}$.

$$
\text { If } P \neq\{0\} \text {, then }\{+1,-1\} \subseteq P \text {. }
$$

SIGNED CIRCUITS

Consider real coefficients $\left(\lambda_{i}\right)_{\geq 2}$ and $\left(\mu_{i}\right)_{i \geq 2}$ as above with

$$
\begin{array}{rrr}
v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
-v_{1}+\mu_{2} v_{2}+\ldots+\mu_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
\hline\left(\lambda_{2}+\mu_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep.) }
\end{array}
$$

SIGNED CIRCUITS

Consider real coefficients $\left(\lambda_{i}\right)_{\geq 2}$ and $\left(\mu_{i}\right)_{i \geq 2}$ as above with

$$
\begin{array}{rrr}
v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
-v_{1}+\mu_{2} v_{2}+\ldots+\mu_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
\hline\left(\lambda_{2}+\mu_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep.) }
\end{array}
$$

Δ If $\operatorname{sgn} \lambda_{2}+\operatorname{sgn} \mu_{2} \neq 0, \operatorname{sgn} \lambda_{2}$ and $\operatorname{sgn} \mu_{2}$ determine $\operatorname{sgn}\left(\lambda_{2}+\mu_{2}\right)$ By Carathéodory's theorem, there is

$$
\nu_{2} v_{2}+\ldots+\nu_{n} v_{n}=0 \quad \text { (minimal lin. dep.) }
$$

with $\operatorname{sgn} \nu_{i} \leq \operatorname{sgn}\left(\lambda_{i}+\mu_{i}\right)$.

SIGNED CIRCUITS

Consider real coefficients $\left(\lambda_{i}\right)_{\geq 2}$ and $\left(\mu_{i}\right)_{i \geq 2}$ as above with

$$
\begin{array}{rrr}
v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
-v_{1}+\mu_{2} v_{2}+\ldots+\mu_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
\hline\left(\lambda_{2}+\mu_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep.) }
\end{array}
$$

Δ If $\operatorname{sgn} \lambda_{2}+\operatorname{sgn} \mu_{2} \neq 0, \operatorname{sgn} \lambda_{2}$ and $\operatorname{sgn} \mu_{2}$ determine $\operatorname{sgn}\left(\lambda_{2}+\mu_{2}\right)$ By Carathéodory's theorem, there is

$$
\nu_{2} v_{2}+\ldots+\nu_{n} v_{n}=0 \quad \text { (minimal lin. dep.) }
$$

with $\operatorname{sgn} \nu_{i} \leq \operatorname{sgn}\left(\lambda_{i}+\mu_{i}\right)$.
Given signed circuits X, Y and i, j with $X\left(v_{i}\right)=-Y\left(v_{i}\right) \neq 0$ and $X\left(v_{j}\right) \neq-Y\left(v_{j}\right)$, there is a signed circuit Z with $Z\left(v_{i}\right)=0, Z\left(v_{j}\right) \neq 0$ and, for all $i, Z\left(v_{i}\right) \in\left\{0, X\left(v_{i}\right), Y\left(v_{i}\right)\right\}$.

Oriented matroids

Definition. An oriented matroid on the finite ground set E is...
an alternating function

$$
\chi: E^{d} \rightarrow\{-, 0,+\}
$$

Such that:
For $x_{0}, \ldots, x_{d}, y_{2}, \ldots, y_{d} \in E$
and the set P given by
$\left\{(-1)^{\prime} \chi\left(x_{0}, . ., \widehat{x}_{i}, . ., x_{d}\right) \chi\left(x_{i}, y_{2 .} ., y_{d}\right)\right\}$
either $P=\{0\}$ or $P \supseteq\{+,-\}$
(Chirotope axioms)
a subset $\mathcal{C} \subseteq\{-, 0,+\}^{E} \backslash \underline{0}$ such that for $X, Y \in \mathcal{C}$:

- $\operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X= \pm Y$
- for $e, f \in \operatorname{supp}(X) \cap \operatorname{supp}(Y)$ with $X(e)=-Y(e), X(f) \neq-Y(f)$, there is $Z \in \mathcal{C}$ with $f \in \operatorname{supp}(Z) \not \supset e$ $Z(g) \in\{0, X(g), Y(g)\}$ for all g.
(Signed circuit axioms)

Oriented matroids

Definition. An oriented matroid on the finite ground set E is...
an alternating function

$$
\chi: E^{d} \rightarrow\{-, 0,+\}
$$

Such that:
For $x_{0}, \ldots, x_{d}, y_{2}, \ldots, y_{d} \in E$
and the set P given by
$\left\{(-1)^{\prime} \chi\left(x_{0}, . ., \widehat{x}_{i}, . ., x_{d}\right) \chi\left(x_{i}, y_{2 .} ., y_{d}\right)\right\}$
either $P=\{0\}$ or $P \supseteq\{+,-\}$
(Chirotope axioms)
a subset $\mathcal{C} \subseteq\{-, 0,+\}^{E} \backslash \underline{0}$ such that for $X, Y \in \mathcal{C}$:

- $\operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X= \pm Y$
- for $e, f \in \operatorname{supp}(X) \cap \operatorname{supp}(Y)$ with $X(e)=-Y(e), X(f) \neq-Y(f)$, there is $Z \in \mathcal{C}$ with $f \in \operatorname{supp}(Z) \not \supset e$ $Z(g) \in\{0, X(g), Y(g)\}$ for all g.
(Signed circuit axioms)
$\underline{\mathcal{B}}=\left\{\left\{x_{1}, . ., x_{d}\right\} \mid\left(x_{1}, . ., x_{d}\right) \in \operatorname{supp}(\chi)\right\} \quad \underline{\mathcal{C}}:=\{\operatorname{supp}(X) \mid X \in \mathcal{C}\}$ are the set of bases, resp. circuits of the underlying matroid.

Orthogonality

Definition. Two signed vectors $X, Y: E \rightarrow\{-, 0,+\}$ are orthogonal if

$$
\text { for } P:=\{X(e) Y(e) \mid e \in E\} \text {, either } P=\{0\} \text { or } P \supseteq\{+,-\} \text {. }
$$

ORTHOGONALITY

Definition. Two signed vectors $X, Y: E \rightarrow\{-, 0,+\}$ are orthogonal if

$$
\text { for } P:=\{X(e) Y(e) \mid e \in E\} \text {, either } P=\{0\} \text { or } P \supseteq\{+,-\} \text {. }
$$

Given $\mathcal{C} \subseteq\{-, 0,+\}^{E}$, define

$$
\mathcal{C}^{\perp}:=\left\{X \in\{-, 0,+\}^{E} \mid X \perp Y \text { for all } Y \in \mathcal{C}\right\}
$$

ORTHOGONALITY

Definition. Two signed vectors $X, Y: E \rightarrow\{-, 0,+\}$ are orthogonal if

$$
\text { for } P:=\{X(e) Y(e) \mid e \in E\} \text {, either } P=\{0\} \text { or } P \supseteq\{+,-\} \text {. }
$$

Given $\mathcal{C} \subseteq\{-, 0,+\}^{E}$, define

$$
\mathcal{C}^{\perp}:=\left\{X \in\{-, 0,+\}^{E} \mid X \perp Y \text { for all } Y \in \mathcal{C}\right\}
$$

Theorem. If $\mathcal{C} \subseteq\{-, 0,+\}^{E}$ is the set of signed circuits of an oriented matroid M, then

$$
\mathcal{D}:=\min _{\text {supp }} \mathcal{C}^{\perp}
$$

is the set of signed circuits of an oriented matroid M^{*}.

ORTHOGONALITY

Definition. Two signed vectors $X, Y: E \rightarrow\{-, 0,+\}$ are orthogonal if

$$
\text { for } P:=\{X(e) Y(e) \mid e \in E\} \text {, either } P=\{0\} \text { or } P \supseteq\{+,-\} \text {. }
$$

Given $\mathcal{C} \subseteq\{-, 0,+\}^{E}$, define

$$
\mathcal{C}^{\perp}:=\left\{X \in\{-, 0,+\}^{E} \mid X \perp Y \text { for all } Y \in \mathcal{C}\right\}
$$

Theorem. If $\mathcal{C} \subseteq\{-, 0,+\}^{E}$ is the set of signed circuits of an oriented matroid M, then

$$
\mathcal{D}:=\min _{\text {supp }} \mathcal{C}^{\perp}
$$

is the set of signed circuits of an oriented matroid M^{*}. M^{*} is called dual to M, and if M represents $V \in G_{d, n}(\mathbb{R})$, then M^{*} represents the orthogonal complement $V^{\perp} \in G_{n-d, n}(\mathbb{R})$.

AN ORIENTED MATROID IS...

a pair of families $\mathcal{C}, \mathcal{D} \subset\{-, 0,+\}^{E}$ such that

- For $X, Y \in \mathcal{C}($ or in $\mathcal{D}), \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X= \pm Y$
- $\mathcal{C}=-\mathcal{C}, \mathcal{D}=-\mathcal{D}$
- $\underline{\mathcal{C}}, \underline{\mathcal{D}}$ satisfy the axioms for the set of circuits of a matroid.
- $\mathcal{C} \perp \mathcal{D}$

AN ORIENTED MATROID IS...

a pair of families $\mathcal{C}, \mathcal{D} \subset\{-, 0,+\}^{E}$ such that

- For $X, Y \in \mathcal{C}($ or in $\mathcal{D}), \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X= \pm Y$
- $\mathcal{C}=-\mathcal{C}, \mathcal{D}=-\mathcal{D}$
- $\underline{\mathcal{C}}, \underline{\mathcal{D}}$ satisfy the axioms for the set of circuits of a matroid.
- $\mathcal{C} \perp \mathcal{D}$

Chirotope axioms
Circuit axioms

GEOMETRY AND TOPOLOGY
Given a set $E=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{d}$, consider $\Phi: \mathbb{R}^{d} \rightarrow\{-, 0,+\}^{E}$ $\Phi: x \mapsto\left(\operatorname{sgn}\left(<x \mid v_{1}>\right), \ldots, \operatorname{sgn}\left(<x \mid v_{n}>\right)\right)$.

Geometry and topology

Given a set $E=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{d}$, consider $\Phi: \mathbb{R}^{d} \rightarrow\{-, 0,+\}^{E}$

$$
\Phi: x \mapsto\left(\operatorname{sgn}\left(<x \mid v_{1}>\right), \ldots, \operatorname{sgn}\left(<x \mid v_{n}>\right)\right) .
$$

GEOMETRY AND TOPOLOGY
Given a set $E=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{d}$, consider $\Phi: \mathbb{R}^{d} \rightarrow\{-, 0,+\}^{E}$
$\Phi: x \mapsto\left(\operatorname{sgn}\left(<x \mid v_{1}>\right), \ldots, \operatorname{sgn}\left(<x \mid v_{n}>\right)\right)$.

$$
\operatorname{Im} \Phi=\mathcal{C}^{\perp}
$$

Geometry and topology

Given a set $E=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{d}$, consider $\Phi: \mathbb{R}^{d} \rightarrow\{-, 0,+\}^{E}$

$$
\Phi: x \mapsto\left(\operatorname{sgn}\left(<x \mid v_{1}>\right), \ldots, \operatorname{sgn}\left(<x \mid v_{n}>\right)\right) .
$$

$$
\operatorname{Im} \Phi=\mathcal{C}^{\perp} \quad \text { (covectors) }
$$

Geometry and topology

Given a set $E=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{d}$, consider $\Phi: \mathbb{R}^{d} \rightarrow\{-, 0,+\}^{E}$

$$
\Phi: x \mapsto\left(\operatorname{sgn}\left(<x \mid v_{1}>\right), \ldots, \operatorname{sgn}\left(<x \mid v_{n}>\right)\right)
$$

$\operatorname{Im} \Phi=\mathcal{C}^{\perp}$ (covectors)

GEOMETRY AND TOPOLOGY
Given a set $E=\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \mathbb{R}^{d}$, consider $\Phi: \mathbb{R}^{d} \rightarrow\{-, 0,+\}^{E}$
$\Phi: x \mapsto\left(\operatorname{sgn}\left(<x \mid v_{1}>\right), \ldots, \operatorname{sgn}\left(<x \mid v_{n}>\right)\right)$.

$\Phi^{-1}\left(\mathcal{C}^{\perp} \backslash \underline{0}\right)$

GeOMETRY AND TOPOLOGY

Define a partial order on $\mathcal{C}^{\perp} \backslash \underline{0}$ by

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right) \leq\left(\sigma_{1}^{\prime}, \ldots, \sigma_{n}^{\prime}\right) \Leftrightarrow \sigma_{i} \leq \sigma_{i}^{\prime} \text { for all } i,
$$

where signs are ordered as in the poset

GeOMETRY AND TOPOLOGY

Define a partial order on $\mathcal{C}^{\perp} \backslash \underline{0}$ by

$$
\begin{aligned}
& \qquad\left(\sigma_{1}, \ldots, \sigma_{n}\right) \leq\left(\sigma_{1}^{\prime}, \ldots, \sigma_{n}^{\prime}\right) \Leftrightarrow \sigma_{i} \leq \sigma_{i}^{\prime} \text { for all } i \text {, } \\
& \text { where signs are ordered as in the poset }
\end{aligned}
$$

Theorem [Folkman, Lawrence, '78]. If \mathcal{C} is the set of signed circuits of an oriented matroid (of rank d), then

$$
\Delta\left(\mathcal{C}^{\perp} \backslash \underline{0}\right) \stackrel{h o m}{\cong} S^{d-1}
$$

(In fact, Oriented Matroids are cryptomorphic to arrangements of pseudospheres...)

CRYPTOMORPHISMS

Axioms for dual pairs

Chirotope axioms

Circuit axioms

"Covector Axioms"

COMBINATORICS OF LINEAR DEPENDENCIES OVER \mathbb{C}

Various attempts have been made at building an analogous theory.

COMBINATORICS OF LINEAR DEPENDENCIES OVER \mathbb{C}

Various attempts have been made at building an analogous theory.
G. M. Ziegler; "What is a complex matroid?" Discrete Comput. Geom. 10 (1993), no. 3, 313-348.

Focus: Covectors, Topological realization.

COMBINATORICS OF LINEAR DEPENDENCIES OVER \mathbb{C}

Various attempts have been made at building an analogous theory.
G. M. Ziegler; "What is a complex matroid?" Discrete Comput. Geom. 10 (1993), no. 3, 313-348.

Focus: Covectors, Topological realization.
A. Below; V. Krummeck; J. Richter-Gebert; Complex matroids, phirotopes and their realizations in rank 2. Discrete and computational geometry, 203-233, Algorithms Combin., 25, Springer, Berlin, 2003.

Focus: "Chirotopes", rank 2 realizability

COMBINATORICS OF LINEAR DEPENDENCIES OVER \mathbb{C}

Various attempts have been made at building an analogous theory.
G. M. Ziegler; "What is a complex matroid?" Discrete Comput. Geom. 10 (1993), no. 3, 313-348.

Focus: Covectors, Topological realization.
A. Below; V. Krummeck; J. Richter-Gebert; Complex matroids, phirotopes and their realizations in rank 2. Discrete and computational geometry, 203-233, Algorithms Combin., 25, Springer, Berlin, 2003.

Focus: "Chirotopes", rank 2 realizability
E. D.; On generalizing complex matroids to a complex setting.

Diploma thesis, ETH Zurich, 2003.
Focus: Orthogonality, Circuit duality, equivalence with Phirotopes.

THE TASK
? - Cryptomorphisms?

APPROACHING THE PROBLEM

1. - What are "complex signs?"

APPROACHING THE PROBLEM

1. - What are "complex signs?"

Ziegler: $\{0,+1,-1, i,-i\}$, thus stratifying

APPROACHING THE PROBLEM

1. - What are "complex signs?"

Ziegler: $\{0,+1,-1, i,-i\}$, thus stratifying
B.,K.,R.-G. / D.: $S^{1} \cup\{0\} \subset \mathbb{C}$, as

.

APPROACHING THE PROBLEM

1. - What are "complex signs?"

Ziegler: $\{0,+1,-1, i,-i\}$, thus stratifying

$$
\text { B.,K.,R.-G. / D.: } S^{1} \cup\{0\} \subset \mathbb{C} \text {, as }
$$

0

Our choice: Consider $S^{1} \cup\{0\} \subset \mathbb{C}$ and let

$$
\begin{aligned}
& \mathrm{ph}: \mathbb{C} \rightarrow S^{1} \cup\{0\} \\
& \operatorname{ph}(z):= \begin{cases}0 & \text { if } z=0 \\
e^{i \theta} & \text { if } z=r e^{i \theta} \text { for } r \in \mathbb{R}_{>0}\end{cases}
\end{aligned}
$$

APPROACHING THE PROBLEM

2 - How to express orthogonality?

Two vectors $v, w \in \mathbb{C}^{n}$ are orthogonal if
$0=<v \mid w>=\sum_{i=1}^{n} v_{i} \overline{w_{i}}=\sum_{i=1}^{n} \lambda_{i} \operatorname{ph}\left(v_{i} \overline{w_{i}}\right)$
For positive real numbers λ_{i} with $\sum_{i} \lambda_{i}=1$ (after rescaling)

APPROACHING THE PROBLEM

2 - How to express orthogonality?

Two vectors $v, w \in \mathbb{C}^{n}$ are orthogonal if $0=<v \mid w>=\sum_{i=1}^{n} v_{i} \overline{w_{i}}=\sum_{i=1}^{n} \lambda_{i} \mathrm{ph}\left(v_{i} \overline{w_{i}}\right)$ For positive real numbers λ_{i} with $\sum_{i} \lambda_{i}=1$ (after rescaling)

APPROACHING THE PROBLEM

2 - How to express orthogonality?

Two vectors $v, w \in \mathbb{C}^{n}$ are orthogonal if $0=<v \mid w>=\sum_{i=1}^{n} v_{i} \overline{w_{i}}=\sum_{i=1}^{n} \lambda_{i} \mathrm{ph}\left(v_{i} \overline{w_{i}}\right)$ For positive real numbers λ_{i} with $\sum_{i} \lambda_{i}=1$ (after rescaling)

Our choice: Given $X, Y \in\left(S^{1} \cup\{0\}\right)^{E}$, we say $X \perp Y$ if

$$
0 \in \operatorname{relint} \operatorname{conv}\left\{\left.\frac{X(e)}{Y(e)} \right\rvert\, e \in \operatorname{supp}(X) \cup \operatorname{supp}(Y)\right\}
$$

APPROACHING THE PROBLEM

2 - How to express orthogonality?

Two vectors $v, w \in \mathbb{C}^{n}$ are orthogonal if $0=<v|w\rangle=\sum_{i=1}^{n} v_{i} \overline{w_{i}}=\sum_{i=1}^{n} \lambda_{i} \mathrm{ph}\left(v_{i} \overline{w_{i}}\right)$ For positive real numbers λ_{i} with $\sum_{i} \lambda_{i}=1$ (after rescaling)

Our choice: Given $X, Y \in\left(S^{1} \cup\{0\}\right)^{E}$, we say $X \perp Y$ if

$$
0 \in \operatorname{relint} \operatorname{conv}\left\{\left.\frac{X(e)}{Y(e)} \right\rvert\, e \in \operatorname{supp}(X) \cup \operatorname{supp}(Y)\right\}
$$

BASES

We start by mimicking the Grassmann-Plücker relations in $G_{d, n}(\mathbb{C})$. Definition [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$
\varphi: E^{d} \rightarrow S^{1} \cup\{0\}
$$

such that for all $x_{0}, x_{1}, \ldots, x_{d}, y_{2}, \ldots, y_{d}$,

$$
0 \in \operatorname{relint} \operatorname{conv}\left\{(-1)^{i} \varphi\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{d}\right) \varphi\left(x_{i}, y_{2}, \ldots, y_{d}\right) \mid 0 \leq i \leq d\right\} .
$$

BASES

We start by mimicking the Grassmann-Plücker relations in $G_{d, n}(\mathbb{C})$. Definition [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$
\varphi: E^{d} \rightarrow S^{1} \cup\{0\}
$$

such that for all $x_{0}, x_{1}, \ldots, x_{d}, y_{2}, \ldots, y_{d}$,

$$
\begin{array}{r}
0 \in \operatorname{relint} \operatorname{conv}\left\{(-1)^{i} \varphi\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{d}\right) \varphi\left(x_{i}, y_{2}, \ldots, y_{d}\right) \mid 0 \leq i \leq d\right\} . \\
\text { (Phirotope axioms) }
\end{array}
$$

Examples:

- Given $v_{1}, . ., v_{n}$ in $\mathbb{C}^{d}, \varphi:=\operatorname{ph} \operatorname{det}\left(v_{1}, . ., v_{d}\right)$ is a phirotope

BASES

We start by mimicking the Grassmann-Plücker relations in $G_{d, n}(\mathbb{C})$.
Definition [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$
\varphi: E^{d} \rightarrow S^{1} \cup\{0\}
$$

such that for all $x_{0}, x_{1}, \ldots, x_{d}, y_{2}, \ldots, y_{d}$,

$$
0 \in \operatorname{relint} \operatorname{conv}\left\{(-1)^{i} \varphi\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{d}\right) \varphi\left(x_{i}, y_{2}, \ldots, y_{d}\right) \mid 0 \leq i \leq d\right\}
$$

(Phirotope axioms)

Examples:

- Given $v_{1}, . ., v_{n}$ in $\mathbb{C}^{d}, \varphi:=\operatorname{ph} \operatorname{det}\left(v_{1}, . ., v_{d}\right)$ is a phirotope
- For χ a chirotope and $\iota:\{0, \pm 1\} \rightarrow S^{1} \cup\{0\}$ the natural inclusion, $\iota \circ \chi$ is a (complexified) phirotope.

BASES

We start by mimicking the Grassmann-Plücker relations in $G_{d, n}(\mathbb{C})$.
Definition [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$
\varphi: E^{d} \rightarrow S^{1} \cup\{0\}
$$

such that for all $x_{0}, x_{1}, \ldots, x_{d}, y_{2}, \ldots, y_{d}$,

$$
0 \in \operatorname{relint} \operatorname{conv}\left\{(-1)^{i} \varphi\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{d}\right) \varphi\left(x_{i}, y_{2}, \ldots, y_{d}\right) \mid 0 \leq i \leq d\right\} .
$$

(Phirotope axioms)
Remarks:

- There are nonrealizable complex matroids

BASES

We start by mimicking the Grassmann-Plücker relations in $G_{d, n}(\mathbb{C})$.
Definition [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$
\varphi: E^{d} \rightarrow S^{1} \cup\{0\}
$$

such that for all $x_{0}, x_{1}, \ldots, x_{d}, y_{2}, \ldots, y_{d}$,

$$
0 \in \operatorname{relint} \operatorname{conv}\left\{(-1)^{i} \varphi\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{d}\right) \varphi\left(x_{i}, y_{2}, \ldots, y_{d}\right) \mid 0 \leq i \leq d\right\}
$$

(Phirotope axioms)
Remarks:

- There are nonrealizable complex matroids
- A dual phirotope φ^{*} can be defined in terms of φ (as in O.M. theory)

BASES

We start by mimicking the Grassmann-Plücker relations in $G_{d, n}(\mathbb{C})$.
Definition [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$
\varphi: E^{d} \rightarrow S^{1} \cup\{0\}
$$

such that for all $x_{0}, x_{1}, \ldots, x_{d}, y_{2}, \ldots, y_{d}$,

$$
0 \in \operatorname{relint} \operatorname{conv}\left\{(-1)^{i} \varphi\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{d}\right) \varphi\left(x_{i}, y_{2}, \ldots, y_{d}\right) \mid 0 \leq i \leq d\right\} .
$$

(Phirotope axioms)

Remarks:

- There are nonrealizable complex matroids
- A dual phirotope φ^{*} can be defined in terms of φ (as in O.M. theory)
- Any phirotope φ uniquely defines the set \mathcal{C}_{φ} of phased circuits X_{C} associated to φ

DUAL PAIRS

Consider a phirotope φ. The associated \mathcal{C}_{φ} satisfies
(1) For all $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.

DUAL PAIRS

Consider a phirotope φ. The associated \mathcal{C}_{φ} satisfies
(1) For all $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.
(2) $\mathcal{C}_{\varphi}=\mu \mathcal{C}_{\varphi}$ for all $\mu \in S^{1}$

DUAL PAIRS

Consider a phirotope φ. The associated \mathcal{C}_{φ} satisfies
(1) For all $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.
(2) $\mathcal{C}_{\varphi}=\mu \mathcal{C}_{\varphi}$ for all $\mu \in S^{1}$
(3) \mathcal{C}_{φ} is the set of circuits of a matroid.

DUAL PAIRS

Consider a phirotope φ. The associated \mathcal{C}_{φ} satisfies
(1) For all $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.
(2) $\mathcal{C}_{\varphi}=\mu \mathcal{C}_{\varphi}$ for all $\mu \in S^{1}$
(3) \mathcal{C}_{φ} is the set of circuits of a matroid.
(*) $\mathcal{C}_{\varphi} \perp \mathcal{C}_{\varphi^{*}}$

DUAL PAIRS

Consider a phirotope φ. The associated \mathcal{C}_{φ} satisfies
(1) For all $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.
(2) $\mathcal{C}_{\varphi}=\mu \mathcal{C}_{\varphi}$ for all $\mu \in S^{1}$
(3) $\underline{\mathcal{C}}_{\varphi}$ is the set of circuits of a matroid.
(*) $\mathcal{C}_{\varphi} \perp \mathcal{C}_{\varphi^{*}}$
Theorem [Anderson, D., '09]. (Axioms for dual pairs) Given a finite set E, consider two families $\mathcal{C}, \mathcal{D} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$. If both \mathcal{C} and \mathcal{D} satisfy (1),(2),(3), and if $\mathcal{C} \perp \mathcal{D}$, then there is a phirotope φ such that $\mathcal{C}=\mathcal{C}_{\varphi}, \mathcal{D}=\mathcal{C}_{\varphi^{*}}$.

DUAL PAIRS

Consider a phirotope φ. The associated \mathcal{C}_{φ} satisfies
(1) For all $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.
(2) $\mathcal{C}_{\varphi}=\mu \mathcal{C}_{\varphi}$ for all $\mu \in S^{1}$
(3) $\underline{\mathcal{C}}_{\varphi}$ is the set of circuits of a matroid.
(*) $\mathcal{C}_{\varphi} \perp \mathcal{C}_{\varphi^{*}}$
Theorem [Anderson, D., '09]. (Axioms for dual pairs)
Given a finite set E, consider two families $\mathcal{C}, \mathcal{D} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$. If both \mathcal{C} and \mathcal{D} satisfy (1),(2),(3), and if $\mathcal{C} \perp \mathcal{D}$, then there is a phirotope φ such that $\mathcal{C}=\mathcal{C}_{\varphi}, \mathcal{D}=\mathcal{C}_{\varphi^{*}}$.
Remark. It follows that, as is the case for oriented matroids,

$$
\mathcal{C}_{\varphi^{*}}=\min _{\text {supp }} \mathcal{C}^{\perp}
$$

Phased CIRCUITS

Let us go back to the realizable case for inspiration.

Phased CIRCUITS

Let us go back to the realizable case for inspiration.
Consider complex numbers $\left(\zeta_{i}\right)_{\geq 2}$ and $\left(\xi_{i}\right)_{i \geq 2}$

$$
\begin{array}{rrr}
v_{1}+\zeta_{2} v_{2}+\ldots+\zeta_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
-v_{1}+\xi_{2} v_{2}+\ldots+\xi_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
\hline\left(\zeta_{2}+\xi_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep.) }
\end{array}
$$

Phased CIRCUITS

Let us go back to the realizable case for inspiration.
Consider complex numbers $\left(\zeta_{i}\right)_{\geq 2}$ and $\left(\xi_{i}\right)_{i \geq 2}$

$$
\begin{array}{rrr}
v_{1}+\zeta_{2} v_{2}+\ldots+\zeta_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
-v_{1}+\xi_{2} v_{2}+\ldots+\xi_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
\hline\left(\zeta_{2}+\xi_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep.) }
\end{array}
$$

There should be

$$
\nu_{2} v_{2}+\ldots+\nu_{n} v_{n}=0 \quad \text { (minimal lin. dep.) }
$$

with $\mathrm{ph} \nu_{i}$ in some way determined by $\mathrm{ph} \zeta_{i}, \mathrm{ph} \xi_{i}$.

Phased CIRCUITS

Let us go back to the realizable case for inspiration.
Consider complex numbers $\left(\zeta_{i}\right)_{\geq 2}$ and $\left(\xi_{i}\right)_{i \geq 2}$

$$
\begin{array}{rrr}
v_{1}+\zeta_{2} v_{2}+\ldots+\zeta_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
-v_{1}+\xi_{2} v_{2}+\ldots+\xi_{n} v_{n} & =0 & \text { (minimal lin. dep.) } \\
\hline\left(\zeta_{2}+\xi_{2}\right) v_{2}+\ldots & =0 & \text { (lin. dep.) }
\end{array}
$$

There should be

$$
\nu_{2} v_{2}+\ldots+\nu_{n} v_{n}=0 \quad \text { (minimal lin. dep.) }
$$

with $\mathrm{ph} \nu_{i}$ in some way determined by $\mathrm{ph} \zeta_{i}, \mathrm{ph} \xi_{i}$.
... shouldn't there ?

THERE ISN'T

Consider these 7 vectors in \mathbb{C}^{4} :

$$
v_{1}:=\left[\begin{array}{c}
1 \\
2 \\
-i \\
-1
\end{array}\right] v_{2}:=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right] v_{3}:=\left[\begin{array}{c}
-1 \\
0 \\
-i \\
0
\end{array}\right] v_{4}:=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
-i
\end{array}\right] v_{5}:=\left[\begin{array}{c}
0 \\
0 \\
2 i \\
i+1
\end{array}\right] v_{6}:=\left[\begin{array}{c}
i \\
-i \\
-i \\
0
\end{array}\right] v_{7}:=\left[\begin{array}{c}
1-i \\
3+i \\
-2 i \\
-2
\end{array}\right]
$$

THERE ISN'T

Consider these 7 vectors in \mathbb{C}^{4} :

$$
v_{1}:=\left[\begin{array}{c}
1 \\
2 \\
-i \\
-1
\end{array}\right] v_{2}:=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right] \quad v_{3}:=\left[\begin{array}{c}
-1 \\
0 \\
-i \\
0
\end{array}\right] \quad v_{4}:=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
-i
\end{array}\right] v_{5}:=\left[\begin{array}{c}
0 \\
0 \\
2 i \\
i+1
\end{array}\right] v_{6}:=\left[\begin{array}{c}
i \\
-i \\
-i \\
0
\end{array}\right] v_{7}:=\left[\begin{array}{c}
1-i \\
3+i \\
-2 i \\
-2
\end{array}\right]
$$

The following minimal linear dependencies hold:

$$
v_{1}+v_{2}+v_{3}+v_{4}+v_{5}=0,-v_{1}+v_{4}+v_{5}+v_{6}+v_{7}=0
$$

THERE ISN'T

Consider these 7 vectors in \mathbb{C}^{4} :

$$
v_{1}:=\left[\begin{array}{c}
1 \\
2 \\
-i \\
-1
\end{array}\right] \quad v_{2}:=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right] \quad v_{3}:=\left[\begin{array}{c}
-1 \\
0 \\
-i \\
0
\end{array}\right] \quad v_{4}:=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
-i
\end{array}\right] \quad v_{5}:=\left[\begin{array}{c}
0 \\
0 \\
2 i \\
i+1
\end{array}\right] v_{6}:=\left[\begin{array}{c}
i \\
-i \\
-i \\
0
\end{array}\right] v_{7}:=\left[\begin{array}{c}
1-i \\
3+i \\
-2 i \\
-2
\end{array}\right]
$$

The following minimal linear dependencies hold:

$$
v_{1}+v_{2}+v_{3}+v_{4}+v_{5}=0,-v_{1}+v_{4}+v_{5}+v_{6}+v_{7}=0
$$

... but none of the minimal linear dependencies not containing v_{1} has all real coefficients:

THERE ISN'T

Consider these 7 vectors in \mathbb{C}^{4} :

$$
v_{1}:=\left[\begin{array}{c}
1 \\
2 \\
-i \\
-1
\end{array}\right] \quad v_{2}:=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right] \quad v_{3}:=\left[\begin{array}{c}
-1 \\
0 \\
-i \\
0
\end{array}\right] \quad v_{4}:=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
-i
\end{array}\right] \quad v_{5}:=\left[\begin{array}{c}
0 \\
0 \\
2 i \\
i+1
\end{array}\right] v_{6}:=\left[\begin{array}{c}
i \\
-i \\
-i \\
0
\end{array}\right] v_{7}:=\left[\begin{array}{c}
1-i \\
3+i \\
-2 i \\
-2
\end{array}\right]
$$

The following minimal linear dependencies hold:

$$
v_{1}+v_{2}+v_{3}+v_{4}+v_{5}=0,-v_{1}+v_{4}+v_{5}+v_{6}+v_{7}=0
$$

... but none of the minimal linear dependencies not containing v_{1} has all real coefficients:

$$
\begin{aligned}
& v_{4}+i v_{3}-(1+i) v_{2}+\left(\frac{1}{2}+\frac{i}{2}\right) v_{5}+v_{6}=0, \\
& v_{4}+(1-i) v_{3}+(2+i) v_{2}+\left(\frac{3}{2}-\frac{1}{2}\right) v_{5}+v_{7}=0, \\
& v_{4}+\left(-1+\frac{1}{2}\right) v_{3}-\frac{5 i}{2} v_{2}+\left(1+\frac{i}{2}\right) v_{6}-\frac{i}{2} v_{7}=0, \\
& v_{4}+\left(\frac{7}{13}+\frac{4}{13} i\right) v_{3}+\left(\frac{25}{26}+\frac{5}{26} i\right) v_{5}+\left(\frac{8}{13}-\frac{1}{13} i\right) v_{6}+\left(\frac{5}{13}+\frac{i}{13}\right) v_{7}=0, \\
& v_{4}+\left(\frac{3}{5}-\frac{4}{5} i\right) v_{2}+\left(\frac{7}{10}-\frac{i}{10}\right) v_{5}+\left(\frac{3}{5}+\frac{i}{5}\right) v_{6}+\left(\frac{2}{5}-\frac{i}{5}\right) v_{7}=0, \\
& v_{5}+\left(\frac{3}{2}-\frac{i}{2}\right) v_{3}+\left(\frac{1}{2}+\frac{5}{2} i\right) v_{2}-\left(\frac{1}{2}+\frac{i}{2}\right) v_{6}+\left(\frac{1}{2}+\frac{i}{2}\right) v_{7}=0 .
\end{aligned}
$$

NEVER, EVER?

We look closer at the problem.

NeVER, EVER?

We look closer at the problem.
First let us describe the phase of a sum of complex numbers.
Let $z, w \in \mathbb{C}$.

Never, EVER?

We look closer at the problem.
First let us describe the phase of a sum of complex numbers.
Let $z, w \in \mathbb{C}$.

- If $w=0$, then $\operatorname{ph}(z+w)=\operatorname{ph}(z)$. If $z=0, \operatorname{ph}(z+w)=\operatorname{ph}(w)$

Never, EVER?

We look closer at the problem.
First let us describe the phase of a sum of complex numbers.
Let $z, w \in \mathbb{C}$.

- If $w=0$, then $\operatorname{ph}(z+w)=\operatorname{ph}(z)$. If $z=0, \operatorname{ph}(z+w)=\operatorname{ph}(w)$
- If $z w \neq 0$, let $\alpha=\operatorname{ph}(z), \beta=\operatorname{ph}(w)$.

Never, EVER?

We look closer at the problem.
First let us describe the phase of a sum of complex numbers.
Let $z, w \in \mathbb{C}$.

- If $w=0$, then $\operatorname{ph}(z+w)=\operatorname{ph}(z)$. If $z=0, \operatorname{ph}(z+w)=\operatorname{ph}(w)$
- If $z w \neq 0$, let $\alpha=\operatorname{ph}(z), \beta=\operatorname{ph}(w)$.

For $\alpha, \beta \in S^{1}$ define $[[\alpha, \beta]]$ as follows.

Never, EVER?

We look closer at the problem.
First let us describe the phase of a sum of complex numbers.
Let $z, w \in \mathbb{C}$.

- If $w=0$, then $\operatorname{ph}(z+w)=\operatorname{ph}(z)$. If $z=0, \operatorname{ph}(z+w)=\operatorname{ph}(w)$
- If $z w \neq 0$, let $\alpha=\operatorname{ph}(z), \beta=\operatorname{ph}(w)$.

For $\alpha, \beta \in S^{1}$ define $[[\alpha, \beta]]$ as follows.

WELL, SOMETIMES

For $\mathcal{C} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$, let $\underline{\mathcal{C}}:=\{\operatorname{supp}(C) \mid C \in \mathcal{C}\}$.

WELL, SOMETIMES

For $\mathcal{C} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$, let $\underline{\mathcal{C}}:=\{\operatorname{supp}(C) \mid C \in \mathcal{C}\}$.
Theorem [Anderson, D., '09]. Let φ be a phirotope on the set E.
(1) $\mathcal{C}_{\varphi}=\mu \mathcal{C}_{\varphi}$ for all $\mu \in S^{1}$.
(2) For $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.

WELL, SOMETIMES

For $\mathcal{C} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$, let $\underline{\mathcal{C}}:=\{\operatorname{supp}(C) \mid C \in \mathcal{C}\}$.
Theorem [Anderson, D., '09]. Let φ be a phirotope on the set E.
(1) $\mathcal{C}_{\varphi}=\mu \mathcal{C}_{\varphi}$ for all $\mu \in S^{1}$.
(2) For $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.
(ME) For $X, Y \in \mathcal{C}_{\varphi}$ with $\operatorname{supp}(X), \operatorname{supp}(Y)$ comodular in \mathcal{C}_{φ} and $e, f \in E$ with $X(e)=-Y(e) \neq 0$ and $X(f) \neq-Y(f)$, there is $Z \in \mathcal{C}_{\varphi}$ with $f \in \operatorname{supp}(Z) \subseteq(\operatorname{supp}(X) \cup \operatorname{supp}(Y)) \backslash e$ and for all $g \in \operatorname{supp}(Z): Z(g) \in[[X(g), Y(g)]] \cup\{0\}$.

WELL, SOMETIMES

For $\mathcal{C} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$, let $\underline{\mathcal{C}}:=\{\operatorname{supp}(C) \mid C \in \mathcal{C}\}$.
Theorem [Anderson, D., '09]. Let φ be a phirotope on the set E.
(1) $\mathcal{C}_{\varphi}=\mu \mathcal{C}_{\varphi}$ for all $\mu \in S^{1}$.
(2) For $X, Y \in \mathcal{C}_{\varphi}, \operatorname{supp}(X)=\operatorname{supp}(Y) \Rightarrow X=\mu Y$ for $\mu \in S^{1}$.
(ME) For $X, Y \in \mathcal{C}_{\varphi}$ with $\operatorname{supp}(X), \operatorname{supp}(Y)$ comodular in \mathcal{C}_{φ} and $e, f \in E$ with $X(e)=-Y(e) \neq 0$ and $X(f) \neq-Y(f)$, there is $Z \in \mathcal{C}_{\varphi}$ with $f \in \operatorname{supp}(Z) \subseteq(\operatorname{supp}(X) \cup \operatorname{supp}(Y)) \backslash e$ and for all $g \in \operatorname{supp}(Z): Z(g) \in[[X(g), Y(g)]] \cup\{0\}$.

Oriented Matroids also admit an axiomatization via Modular Elimination.

SUMMARY

Theorem [Anderson, D., '09]. A subset $\mathcal{C} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$ is the set of phased circuits of a complex matroid if and only if $\emptyset \notin \mathcal{C}$ and it satisfies (1), (2), (ME) above.

SUMMARY

Theorem [Anderson, D., '09]. A subset $\mathcal{C} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$ is the set of phased circuits of a complex matroid if and only if $\emptyset \notin \mathcal{C}$ and it satisfies (1), (2), (ME) above.

Cryptomorphisms:

Circuit axioms

SUMMARY

Theorem [Anderson, D., '09]. A subset $\mathcal{C} \subseteq\left(S^{1} \cup\{0\}\right)^{E}$ is the set of phased circuits of a complex matroid if and only if $\emptyset \notin \mathcal{C}$ and it satisfies (1), (2), (ME) above.

Cryptomorphisms:

Circuit axioms

However,

Given a configuration of n vectors v_{1}, \ldots, v_{n} in \mathbb{C}^{d}, consider the stratification of \mathbb{C}^{d} induced by

$$
\Phi: z \mapsto\left(\mathrm{ph}<z \mid v_{i}>\right)_{i} .
$$

However,

Given a configuration of n vectors v_{1}, \ldots, v_{n} in \mathbb{C}^{d}, consider the stratification of \mathbb{C}^{d} induced by

$$
\Phi: z \mapsto\left(\mathrm{ph}<z \mid v_{i}>\right)_{i} .
$$

The structure of $\operatorname{Im}(\Phi)$ carries more information than the corresponding set \mathcal{C} of phased circuits.

Thus, no cryptomorphism is possible!

However,

Given a configuration of n vectors v_{1}, \ldots, v_{n} in \mathbb{C}^{d}, consider the stratification of \mathbb{C}^{d} induced by

$$
\Phi: z \mapsto\left(\mathrm{ph}<z \mid v_{i}>\right)_{i} .
$$

The structure of $\operatorname{Im}(\Phi)$ carries more information than the corresponding set \mathcal{C} of phased circuits.

Thus, no cryptomorphism is possible!
In fact, there are two configurations V_{2}, V_{2} (each of 4 vectors in \mathbb{C}^{2}) such that

- The two configuration have the same sets of signed circuits $\left(\mathcal{C}_{V_{1}}=\mathcal{C}_{V_{2}}\right)$
- For Φ as above, $\operatorname{Im}\left(\Phi_{V_{1}}\right) \neq \operatorname{Im}\left(\Phi_{V_{2}}\right)$.

GOING FORWARD (AND WHY AT ALL)

- Is there any kind of "topological representation" for complex matroids?

GOING FORWARD (AND WHY AT ALL)

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π_{1} ?)

GOING FORWARD (AND WHY AT ALL)

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π_{1} ?)
- Can one use it to compute characteristic classes of complex manifolds (along the lines of [Anderson, Davis '02] in the real case)?

GOING FORWARD (AND WHY AT ALL)

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π_{1} ?)
- Can one use it to compute characteristic classes of complex manifolds (along the lines of [Anderson, Davis '02] in the real case)?
- How exactly do complex matroids relate to Ziegler's Complex Oriented Matroids?

GOING FORWARD (AND WHY AT ALL)

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π_{1} ?)
- Can one use it to compute characteristic classes of complex manifolds (along the lines of [Anderson, Davis '02] in the real case)?
- How exactly do complex matroids relate to Ziegler's Complex Oriented Matroids?
- What are the "minimal nonrealizable" configurations in complex projective geometry? (Analog to Pappus' and Desargues' in real geometry?)

GOING FORWARD (AND WHY AT ALL)

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π_{1} ?)
- Can one use it to compute characteristic classes of complex manifolds (along the lines of [Anderson, Davis '02] in the real case)?
- How exactly do complex matroids relate to Ziegler's Complex Oriented Matroids?
- What are the "minimal nonrealizable" configurations in complex projective geometry? (Analog to Pappus' and Desargues' in real geometry?)
- Can complex matroids be related to Complex Linear Programming, as Oriented matroids are to (Real) LP [Ben Israeli '69, Levinson '66]?

