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COMBINATORICS OF LINEAR DEPENDENCIES

Let M :=

 ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 be a d × n matrix.

Let E be the set of column vectors of the matrix M.
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Given circuits C1,C2 and e ∈ C1 ∩ C2,
there is a circuit C3 with C3 ⊆ (C1 ∪ C2) \ e.
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MATROIDS

Two subsets A,B ∈ F ⊆P(E ) are comodular if they are
a modular pair of atoms in the lattice of unions of elements of F

Theorem [D.‘09]. A matroid
on a finite ground set E is...

a family C of incomparable subsets
of E such that:

• ∅ 6∈ C
• Given C1,C2 ∈ C comodular and
e ∈ C1 ∩ C2, there is C3 ∈ C s.t.
C3 ⊆ (C1 ∪ C2) \ e .

(Modular elimination axiom)



DUALITY

Notice: If B is the set of bases of a matroid M on the ground set E ,
then

B∗ := {E \ B | B ∈ B}

is the set of bases of another matroid M ∗ called dual to the first.

Let C ∗ denote the set of circuits of M ∗.

Definition. For two subsets A1,A2 ⊆ E define

A1 ⊥ A2 ⇔ |A1 ∩ A2| 6= 1

Theorem.
C ∗ = min

⊆
{A ⊆ E | A ⊥ C for all C ∈ C }.
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Let M be a d × n matrix with real coefficients.

Let E := {v1, . . . , vn} be the set of column vectors of the matrix M.

E spans the space V = Im M

Every ordered element of B
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Order B ∈ B as {v1, . . . , vd},
then define

χ(v1, . . . , vd) := sgn det(v1, . . . , vd)

(Basis signature)

To every C ∈ C correspond
λi ∈ R with λ1v1 + . . .+ λnvn = 0
where λi 6= 0 iff vi ∈ C .

Given the λi s, define X : E→{0,±}
as

X (vi ) := sgn(λi )

(Signed circuits)
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BASIS SIGNATURE

Consider V as a d-dimensional linear subspace of Rn so that, for all i , vi
is the orthogonal projection of the standard basis vector ei on V .

Then V is an element of the real Grassmannian Gd,n(R), and as such it
satisfies the Grassmann-Plücker relations.

Given {x0, . . . , xd , y2, . . . , yd} ⊆ E ,

d∑
j=0

(−1)j det(x0, . . . , x̂j , . . . , xd) det(xj , y2, . . . , yd) = 0

For the sum to equal 0, the summands can’t be all positive, nor all
negative.
Let P := {(−1)lχ(x0, . . . , x̂l , . . . , xd)χ(xl , y2, . . . , yd) | 0 ≤ l ≤ d}.

If P 6= {0}, then {+1,−1} ⊆ P.
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SIGNED CIRCUITS

Consider real coefficients (λi )≥2 and (µi )i≥2 as above with

v1 + λ2v2 + . . .+ λnvn = 0 (minimal lin. dep.)
−v1 + µ2v2 + . . .+ µnvn = 0 (minimal lin. dep.)

(λ2 + µ2)v2 + . . . = 0 (lin. dep.)

N If sgnλ2 + sgnµ2 6= 0, sgnλ2 and sgnµ2 determine sgn(λ2 + µ2)

By Carathéodory’s theorem, there is

ν2v2 + . . .+ νnvn = 0 (minimal lin. dep.)

with sgn νi ≤ sgn(λi + µi ).

Given signed circuits X ,Y and i , j
with X (vi ) = −Y (vi ) 6= 0 and X (vj) 6= −Y (vj),

there is a signed circuit Z with Z (vi ) = 0, Z (vj) 6= 0
and, for all i , Z (vi ) ∈ {0,X (vi ),Y (vi )}.
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By Carathéodory’s theorem, there is

ν2v2 + . . .+ νnvn = 0 (minimal lin. dep.)

with sgn νi ≤ sgn(λi + µi ).

Given signed circuits X ,Y and i , j
with X (vi ) = −Y (vi ) 6= 0 and X (vj) 6= −Y (vj),

there is a signed circuit Z with Z (vi ) = 0, Z (vj) 6= 0
and, for all i , Z (vi ) ∈ {0,X (vi ),Y (vi )}.



ORIENTED MATROIDS

Definition. An oriented matroid on the finite ground set E is...

an alternating function

χ : E d → {−, 0,+}

Such that:

For x0, . . . , xd , y2, . . . , yd ∈ E

and the set P given by

{(−1)lχ(x0,.., x̂i ,.., xd)χ(xi , y2.., yd)}
either P = {0} or P ⊇ {+,−}

(Chirotope axioms)

a subset C ⊆ {−, 0,+}E \ 0
such that for X ,Y ∈ C:

• supp(X ) = supp(Y )⇒ X = ±Y
• for e, f ∈ supp(X ) ∩ supp(Y ) with

X (e)=−Y (e), X (f ) 6=−Y (f ),

there is Z ∈ C with f ∈ supp(Z) 63 e

Z(g) ∈ {0,X (g),Y (g)} for all g .

(Signed circuit axioms)

B={{x1,.., xd}|(x1,.., xd)∈supp(χ)} C :={supp(X ) | X ∈ C}
are the set of bases, resp. circuits of the underlying matroid.
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ORTHOGONALITY

Definition. Two signed vectors X ,Y : E → {−, 0,+} are orthogonal if

for P := {X (e)Y (e) | e ∈ E}, either P = {0} or P ⊇ {+,−}.

Given C ⊆ {−, 0,+}E , define

C⊥ := {X ∈ {−, 0,+}E | X ⊥ Y for all Y ∈ C}

Theorem. If C ⊆ {−, 0,+}E is the set of signed circuits of an oriented
matroid M, then

D := min
supp
C⊥

is the set of signed circuits of an oriented matroid M∗.

M∗ is called dual to M, and if M represents V ∈ Gd,n(R), then M∗

represents the orthogonal complement V⊥ ∈ Gn−d,n(R).
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AN ORIENTED MATROID IS...

a pair of families C,D ⊂ {−, 0,+}E such that
• For X ,Y ∈ C (or in D), supp(X )=supp(Y )⇒X =±Y
• C = −C, D = −D
• C, D satisfy the axioms for the set of circuits of a matroid.
• C ⊥ D

(Axioms for dual pairs)
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Φ : x 7→ (sgn(< x | v1 >), . . . , sgn(< x | vn >)).



GEOMETRY AND TOPOLOGY

Given a set E = {v1, . . . , vn} ⊆ Rd , consider Φ : Rd → {−, 0,+}E

Φ : x 7→ (sgn(< x | v1 >), . . . , sgn(< x | vn >)).



GEOMETRY AND TOPOLOGY

Given a set E = {v1, . . . , vn} ⊆ Rd , consider Φ : Rd → {−, 0,+}E

Φ : x 7→ (sgn(< x | v1 >), . . . , sgn(< x | vn >)).

(+,+,+)

(+,−,+)

(+,+,−)

(0,+,−)

(+,+,0)

(0,0,0)

(0,−,+)

(−,+,−)(−,0,−)

(−,−,0)

(−,−,+)

(−,−,−)

(+,0,+)

Im Φ = C⊥

(covectors)



GEOMETRY AND TOPOLOGY

Given a set E = {v1, . . . , vn} ⊆ Rd , consider Φ : Rd → {−, 0,+}E

Φ : x 7→ (sgn(< x | v1 >), . . . , sgn(< x | vn >)).

(+,+,+)

(+,−,+)

(+,+,−)

(0,+,−)

(+,+,0)

(0,0,0)

(0,−,+)

(−,+,−)(−,0,−)

(−,−,0)

(−,−,+)

(−,−,−)

(+,0,+)

Im Φ = C⊥ (covectors)



GEOMETRY AND TOPOLOGY

Given a set E = {v1, . . . , vn} ⊆ Rd , consider Φ : Rd → {−, 0,+}E

Φ : x 7→ (sgn(< x | v1 >), . . . , sgn(< x | vn >)).

(+,+,+)

(+,−,+)

(+,+,−)

(0,+,−)

(+,+,0)

(0,0,0)

(0,−,+)

(−,+,−)

(−,−,0)

(−,−,+)

(−,−,−)

(−,0,−)

(+,0,+)

Im Φ = C⊥ (covectors)



GEOMETRY AND TOPOLOGY

Given a set E = {v1, . . . , vn} ⊆ Rd , consider Φ : Rd → {−, 0,+}E

Φ : x 7→ (sgn(< x | v1 >), . . . , sgn(< x | vn >)).

(+,+,+)

(+,−,+)

(+,+,−)

(0,+,−)

(+,+,0)

(+,0,+)
(0,−,+)

(−,+,−)(−,0,−)

(−,−,0)

(−,−,+)

(−,−,−)

Φ−1(C⊥ \ 0)



GEOMETRY AND TOPOLOGY

Define a partial order on C⊥ \ 0 by

(σ1, . . . , σn) ≤ (σ′1, . . . , σ
′
n)⇔ σi ≤ σ′i for all i ,

where signs are ordered as in the poset
0

+1 −1

Theorem [Folkman, Lawrence, ’78]. If C is the set of signed circuits
of an oriented matroid (of rank d), then

∆(C⊥ \ 0)
hom∼= Sd−1

(In fact, Oriented Matroids are cryptomorphic to arrangements of
pseudospheres...)
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CRYPTOMORPHISMS

Axioms for dual pairs

Chirotope axioms Circuit axioms

“Covector Axioms”



COMBINATORICS OF LINEAR DEPENDENCIES OVER C

Various attempts have been made at building an analogous theory.

G. M. Ziegler; “What is a complex matroid?”
Discrete Comput. Geom. 10 (1993), no. 3, 313–348.

Focus: Covectors, Topological realization.

A. Below; V. Krummeck; J. Richter-Gebert; Complex matroids,
phirotopes and their realizations in rank 2. Discrete and computational
geometry, 203–233, Algorithms Combin., 25, Springer, Berlin, 2003.

Focus: “Chirotopes”, rank 2 realizability

E. D.; On generalizing complex matroids to a complex setting.
Diploma thesis, ETH Zurich, 2003.

Focus: Orthogonality, Circuit duality, equivalence with Phirotopes.
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THE TASK

? – Cryptomorphisms?

???

??? ???

???



APPROACHING THE PROBLEM

1. – What are “complex signs?”

Ziegler: {0,+1,−1, i ,−i}, thus stratifying

i

−i

+

B.,K.,R.-G. / D.: S1 ∪ {0} ⊂ C, as

0

Our choice: Consider S1 ∪ {0} ⊂ C and let

ph : C→ S1 ∪ {0}

ph(z) :=

{
0 if z = 0
e iθ if z = re iθ for r ∈ R>0
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APPROACHING THE PROBLEM

2 – How to express orthogonality?

Two vectors v ,w ∈ Cn are orthogonal if
0 =< v | w >=

∑n
i=1 viwi =

∑n
i=1 λi ph(viwi )

For positive real numbers λi with
∑

i λi = 1
(after rescaling)

ph(ziwi )

Our choice: Given X ,Y ∈ (S1 ∪ {0})E , we say X ⊥ Y if

0 ∈ relint conv

{
X (e)

Y (e)

∣∣∣∣e ∈ supp(X ) ∪ supp(Y )

}
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BASES

We start by mimicking the Grassmann-Plücker relations in Gd,n(C).

Definition [B.,K.,R.-G.’03]. A complex matroid of rank d on the
ground set E is an alternating function

ϕ : E d → S1 ∪ {0}

such that for all x0, x1, . . . , xd , y2, . . . , yd ,

0 ∈ relint conv{(−1)iϕ(x0, . . . , x̂i , . . . , xd)ϕ(xi , y2, . . . , yd) | 0 ≤ i ≤ d}.

(Phirotope axioms)
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ι ◦ χ is a (complexified) phirotope.
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Definition [B.,K.,R.-G.’03]. A complex matroid of rank d on the
ground set E is an alternating function

ϕ : E d → S1 ∪ {0}

such that for all x0, x1, . . . , xd , y2, . . . , yd ,
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Remarks:
• There are nonrealizable complex matroids

• A dual phirotope ϕ∗ can be defined in terms of ϕ (as in O.M. theory)

• Any phirotope ϕ uniquely defines the set Cϕ of phased circuits XC

associated to ϕ



DUAL PAIRS

Consider a phirotope ϕ. The associated Cϕ satisfies

(1) For all X ,Y ∈ Cϕ, supp(X )=supp(Y )⇒ X = µY for µ ∈ S1.

(2) Cϕ = µCϕ for all µ ∈ S1

(3) Cϕ is the set of circuits of a matroid.

(∗) Cϕ ⊥ Cϕ∗

Theorem [Anderson, D., ’09]. (Axioms for dual pairs)

Given a finite set E , consider two families C,D ⊆ (S1 ∪ {0})E .

If both C and D satisfy (1),(2),(3), and if C ⊥ D, then there is a
phirotope ϕ such that C = Cϕ, D = Cϕ∗ .

Remark. It follows that, as is the case for oriented matroids,

Cϕ∗ = minsupp C⊥
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PHASED CIRCUITS

Let us go back to the realizable case for inspiration.

Consider complex numbers (ζi )≥2 and (ξi )i≥2

v1 + ζ2v2 + . . .+ ζnvn = 0 (minimal lin. dep.)
−v1 + ξ2v2 + . . .+ ξnvn = 0 (minimal lin. dep.)

(ζ2 + ξ2)v2 + . . . = 0 (lin. dep.)

There should be

ν2v2 + . . .+ νnvn = 0 (minimal lin. dep.)

with ph νi in some way determined by ph ζi , ph ξi .

... shouldn’t there ?
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THERE ISN’T

Consider these 7 vectors in C4:

v1 :=


1
2
−i
−1

 v2 :=


0

−1
0
0

 v3 :=


−1
0
−i
0

 v4 :=


0

−1
0
−i

 v5 :=


0
0
2i

i + 1

 v6 :=


i

−i
−i
0

 v7 :=


1 − i
3 + i
−2i
−2



The following minimal linear dependencies hold:
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NEVER, EVER?

We look closer at the problem.

First let us describe the phase of a sum of complex numbers.

Let z ,w ∈ C.

• If w = 0, then ph(z + w) = ph(z). If z = 0, ph(z + w) = ph(w)

• If zw 6= 0, let α = ph(z), β = ph(w).

For α, β ∈ S1 define [[α, β]] as follows.

α = β α = −β α 6= ±β

...so that ph(z + w) ∈ [[ph(z), ph(w)]].
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WELL, SOMETIMES

For C ⊆ (S1 ∪ {0})E , let C := {supp(C ) | C ∈ C}.

Theorem [Anderson, D., ’09]. Let ϕ be a phirotope on the set E .

(1) Cϕ = µCϕ for all µ ∈ S1.

(2) For X ,Y ∈ Cϕ, supp(X ) = supp(Y )⇒ X = µY for µ ∈ S1.

(ME) For X ,Y ∈ Cϕ with supp(X ), supp(Y ) comodular in Cϕ
and e, f ∈ E with X (e) = −Y (e) 6= 0 and X (f ) 6= −Y (f ),

there is Z ∈ Cϕ with f ∈ supp(Z ) ⊆ (supp(X ) ∪ supp(Y )) \ e and

for all g ∈ supp(Z ): Z (g) ∈ [[X (g),Y (g)]] ∪ {0}.

Oriented Matroids also admit an axiomatization via Modular Elimination.
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SUMMARY

Theorem [Anderson, D., ’09]. A subset C ⊆ (S1 ∪ {0})E is the set of
phased circuits of a complex matroid if and only if ∅ 6∈ C and it satisfies
(1), (2), (ME) above.

Cryptomorphisms:

Circuit axioms

Phirotope axioms Axioms for dual pairs

???
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HOWEVER,

Given a configuration of n vectors v1, . . . , vn in Cd , consider the
stratification of Cd induced by

Φ : z 7→ (ph < z | vi >)i .

The structure of Im(Φ) carries more information than
the corresponding set C of phased circuits.

Thus, no cryptomorphism is possible!

In fact, there are two configurations V2, V2 (each of 4 vectors in C2)
such that

• The two configuration have the same sets of signed circuits (CV1 =CV2)

• For Φ as above, Im(ΦV1) 6= Im(ΦV2).
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GOING FORWARD (AND WHY AT ALL)

I Is there any kind of “topological representation” for complex
matroids?

I What topological information about the complement of a hyperplane
arrangement is contained in its complex matroid? (what about π1?)

I Can one use it to compute characteristic classes of complex
manifolds (along the lines of [Anderson, Davis ’02] in the real case)?

I How exactly do complex matroids relate to Ziegler’s Complex
Oriented Matroids?

I What are the “minimal nonrealizable” configurations in complex
projective geometry? (Analog to Pappus’ and Desargues’ in real
geometry?)

I Can complex matroids be related to Complex Linear Programming,
as Oriented matroids are to (Real) LP [Ben Israeli ’69, Levinson ’66]?
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