Complex Matroids

Emanuele Delucchi (joint work with Laura Anderson) State University of New York at Binghamton

Centro De Giorgi, Scuola Normale Superiore Pisa, June 21, 2010

Let E be the set of column vectors of the matrix M.

Let E be the set of column vectors of the matrix M.

Maximal independent subsets of E: Bases of Im M.

Fact: *E* contains a basis.

Theorem: Given bases $B_1, B_2 \subseteq E$, $e_1 \in B_1 \setminus B_2$, there is $e_2 \in B_2 \setminus B_1$ s.t. $(B_1 \setminus e_1) \cup e_2$ and $(B_2 \setminus e_2) \cup e_1$ both are bases of V.

(Basis exchange)

Let E be the set of column vectors of the matrix M.

Maximal independent subsets of E: Bases of Im M.

Minimal supports of nonzero elements of ker M: Circuits.

Fact: *E* contains a basis.

Theorem: Given bases $B_1, B_2 \subseteq E$, $e_1 \in B_1 \setminus B_2$, there is $e_2 \in B_2 \setminus B_1$ s.t. $(B_1 \setminus e_1) \cup e_2$ and $(B_2 \setminus e_2) \cup e_1$ both are bases of V.

(Basis exchange)

Consider circuits $C_1 \neq C_2$ and $e \in C_1 \cap C_2$. With $E = \{e, v_2, \ldots, v_n\}$, this means that there are coefficients $(\lambda_i)_{\geq 2}$ and $(\mu_i)_{i\geq 2}$ with

$$e + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0 \quad (\text{minimal lin. dep.}, \\ \lambda_i = 0 \text{ if } v_i \notin C_1)$$
$$-e + \mu_2 v_2 + \ldots + \mu_n v_n = 0 \quad (\text{minimal lin. dep.})$$
$$\mu_i = 0 \text{ if } v_i \notin C_2)$$
$$(\lambda_2 + \mu_2) v_2 + \ldots = 0 \quad (\text{lin. dep. among})$$
$$elements of $C_1 \cup C_2$$$

Consider circuits $C_1 \neq C_2$ and $e \in C_1 \cap C_2$. With $E = \{e, v_2, \ldots, v_n\}$, this means that there are coefficients $(\lambda_i)_{\geq 2}$ and $(\mu_i)_{i\geq 2}$ with

$$e + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0 \quad (\text{minimal lin. dep.}, \\ \lambda_i = 0 \text{ if } v_i \notin C_1)$$
$$-e + \mu_2 v_2 + \ldots + \mu_n v_n = 0 \quad (\text{minimal lin. dep.})$$
$$\mu_i = 0 \text{ if } v_i \notin C_2)$$
$$(\lambda_2 + \mu_2) v_2 + \ldots = 0 \quad (\text{lin. dep. among elements of } C_1 \cup C_2)$$

Then, there is

$$\nu_2 v_2 + \ldots + \nu_n v_n = 0 \quad (\text{minimal lin. dep.}, \\ \text{in } (C_1 \cup C_2) \setminus e)$$

Consider circuits $C_1 \neq C_2$ and $e \in C_1 \cap C_2$. With $E = \{e, v_2, \ldots, v_n\}$, this means that there are coefficients $(\lambda_i)_{\geq 2}$ and $(\mu_i)_{i\geq 2}$ with

$$e + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0 \quad (\text{minimal lin. dep.}, \\ \lambda_i = 0 \text{ if } v_i \notin C_1)$$
$$-e + \mu_2 v_2 + \ldots + \mu_n v_n = 0 \quad (\text{minimal lin. dep.})$$
$$\mu_i = 0 \text{ if } v_i \notin C_2)$$
$$(\lambda_2 + \mu_2) v_2 + \ldots = 0 \quad (\text{lin. dep. among elements of } C_1 \cup C_2)$$

Then, there is

$$\nu_2 \nu_2 + \ldots + \nu_n \nu_n = 0 \quad (\text{minimal lin. dep.}, \\ \text{in } (C_1 \cup C_2) \setminus e)$$

Given circuits C_1, C_2 and $e \in C_1 \cap C_2$, there is a circuit C_3 with $C_3 \subseteq (C_1 \cup C_2) \setminus e$.

Let E be the set of column vectors of the matrix M.

Maximal independent subsets of E: Bases of Im M.

Fact: *E* contains a basis.

Theorem: Given bases $B_1, B_2 \subseteq E$, $e_1 \in B_1 \setminus B_2$, there is $e_2 \in B_2 \setminus B_1$ s.t. $(B_1 \setminus e_1) \cup e_2$ and $(B_2 \setminus e_2) \cup e_1$ both are bases of V.

(Basis exchange)

Minimal supports of nonzero elements of ker *M*: *Circuits*.

 \emptyset is not a circuit.

C is minimal dependent iff

- $C \not\subseteq B$ for all bases B;
- $C \subseteq B \cup e$ for some $e \in E$

and some basis B.

Maximal independent subsets of *E*: Bases of Im *M*.

Fact: *E* contains a basis.

Theorem: Given bases $B_1, B_2 \subseteq E$, $e_1 \in B_1 \setminus B_2$, there is $e_2 \in B_2 \setminus B_1$ s.t. $(B_1 \setminus e_1) \cup e_2$ and $(B_2 \setminus e_2) \cup e_1$ both are bases of V.

(Basis exchange)

Minimal supports of nonzero elements of ker *M*: *Circuits*.

 \emptyset is not a circuit.

Maximal independent subsets of E: Bases of Im M. Minimal supports of nonzero elements of ker *M*: *Circuits*.

Fact: *E* contains a basis.

Theorem: Given bases $B_1, B_2 \subseteq E$, $e_1 \in B_1 \setminus B_2$, there is $e_2 \in B_2 \setminus B_1$ s.t. $(B_1 \setminus e_1) \cup e_2$ and $(B_2 \setminus e_2) \cup e_1$ both are bases of V.

(Basis exchange)

 \emptyset is not a circuit.

a family \mathscr{B} of subsets of E such that:

•
$$\mathscr{B} \neq \emptyset$$

• For all $B_1, B_2 \in \mathscr{B}$ and any element $e_1 \in B_1 \setminus B_2$, there is $e_2 \in B_2 \setminus B_1$ such that $(B_1 \setminus e_1) \cup e_2, (B_2 \setminus e_2) \cup e_1 \in \mathscr{B}$ (Basis exchange axiom) Minimal supports of nonzero elements of ker *M*: *Circuits*.

 \emptyset is not a circuit.

a family \mathscr{B} of subsets of *E* such that:

• $\mathscr{B} \neq \emptyset$

• For all $B_1, B_2 \in \mathscr{B}$ and any element $e_1 \in B_1 \setminus B_2$, there is $e_2 \in B_2 \setminus B_1$ such that $(B_1 \setminus e_1) \cup e_2, (B_2 \setminus e_2) \cup e_1 \in \mathscr{B}$ $C_3 \subset (C_1 \cup C_2) \setminus e$. (Basis exchange axiom)

a family \mathscr{C} of incomparable subsets of F such that:

• $\emptyset \notin \mathscr{C}$ • Given $C_1, C_2 \in \mathscr{C}, e \in C_1 \cap C_2$, there is $C_3 \in \mathscr{C}$ such that (Circuit elimination axiom)

a family \mathscr{B} of subsets of E such that:

• For all $B_1, B_2 \in \mathscr{B}$ and any ele-

there is $e_2 \in B_2 \setminus B_1$ such that

(Basis exchange axiom)

• $\mathscr{B} \neq \emptyset$

ment $e_1 \in B_1 \setminus B_2$,

- a family \mathscr{C} of incomparable subsets of F such that:
- $\emptyset \notin \mathscr{C}$ • Given $C_1, C_2 \in \mathscr{C}, e \in C_1 \cap C_2$, there is $C_3 \in \mathscr{C}$ such that $(B_1 \setminus e_1) \cup e_2, (B_2 \setminus e_2) \cup e_1 \in \mathscr{B} \qquad C_3 \subseteq (C_1 \cup C_2) \setminus e$. (Circuit elimination axiom)

a family \mathscr{B} of subsets of E such that:

• For all $B_1, B_2 \in \mathscr{B}$ and any ele-

there is $e_2 \in B_2 \setminus B_1$ such that

(Basis exchange axiom)

• $\mathscr{B} \neq \emptyset$

ment $e_1 \in B_1 \setminus B_2$,

a family \mathscr{C} of incomparable subsets of F such that:

• $\emptyset \notin \mathscr{C}$ • Given $C_1, C_2 \in \mathscr{C}, e \in C_1 \cap C_2$, there is $C_3 \in \mathscr{C}$ such that $(B_1 \setminus e_1) \cup e_2, (B_2 \setminus e_2) \cup e_1 \in \mathscr{B} \qquad C_3 \subseteq (C_1 \cup C_2) \setminus e$. (Circuit elimination axiom)

MATROIDS

Definition. A matroid on a finite ground set E is...

• $\mathscr{B} \neq \emptyset$ • For all $B_1, B_2 \in \mathscr{B}$ and any element $e_1 \in B_1 \setminus B_2$, there is $e_2 \in B_2 \setminus B_1$ such that $(B_1 \setminus e_1) \cup e_2, (B_2 \setminus e_2) \cup e_1 \in \mathscr{B}$ $C_3 \subset (C_1 \cup C_2) \setminus e$. (Basis exchange axiom)

a family \mathscr{B} of subsets of E such that: a family \mathscr{C} of incomparable subsets of F such that:

> • $\emptyset \notin \mathscr{C}$ • Given $C_1, C_2 \in \mathscr{C}, e \in C_1 \cap C_2$, there is $C_3 \in \mathscr{C}$ such that (Circuit elimination axiom)

MATROIDS

Two subsets $A, B \in \mathscr{F} \subseteq \mathscr{P}(E)$ are comodular if they are a modular pair of atoms in the lattice of unions of elements of \mathscr{F}

MATROIDS

Two subsets $A, B \in \mathscr{F} \subseteq \mathscr{P}(E)$ are comodular if they are a modular pair of atoms in the lattice of unions of elements of \mathscr{F}

Theorem [D.'09]. A matroid on a finite ground set E is... a family \mathscr{C} of incomparable subsets of E such that:

• $\emptyset \notin \mathscr{C}$ • Given $C_1, C_2 \in \mathscr{C}$ comodular and $e \in C_1 \cap C_2$, there is $C_3 \in \mathscr{C}$ s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus e$. (Modular elimination axiom)

Notice: If \mathcal{B} is the set of bases of a matroid \mathcal{M} on the ground set E, then

 $\mathscr{B}^* := \{ E \setminus B \mid B \in \mathscr{B} \}$

is the set of bases of another matroid \mathscr{M}^* called dual to the first.

Notice: If \mathcal{B} is the set of bases of a matroid \mathcal{M} on the ground set E, then

$$\mathscr{B}^* := \{ E \setminus B \mid B \in \mathscr{B} \}$$

is the set of bases of another matroid \mathscr{M}^* called dual to the first. Let \mathscr{C}^* denote the set of circuits of \mathscr{M}^* .

Notice: If \mathscr{B} is the set of bases of a matroid \mathscr{M} on the ground set E, then

$$\mathscr{B}^* := \{ E \setminus B \mid B \in \mathscr{B} \}$$

is the set of bases of another matroid \mathscr{M}^* called dual to the first. Let \mathscr{C}^* denote the set of circuits of \mathscr{M}^* .

Definition. For two subsets $A_1, A_2 \subseteq E$ define

 $A_1 \perp A_2 \Leftrightarrow |A_1 \cap A_2| \neq 1$

Notice: If \mathscr{B} is the set of bases of a matroid \mathscr{M} on the ground set E, then

$$\mathscr{B}^* := \{ E \setminus B \mid B \in \mathscr{B} \}$$

is the set of bases of another matroid \mathscr{M}^* called dual to the first. Let \mathscr{C}^* denote the set of circuits of \mathscr{M}^* .

Definition. For two subsets $A_1, A_2 \subseteq E$ define

$$A_1\perp A_2 \Leftrightarrow |A_1\cap A_2|
eq 1$$

Theorem.

$$\mathscr{C}^* = \min_{\subseteq} \{ A \subseteq E \mid A \perp C \text{ for all } C \in \mathscr{C} \}.$$

LINEAR DEPENDENCIES OVER ${\mathbb R}$

There is a very natural stratification of $\ensuremath{\mathbb{R}}$ as:

LINEAR DEPENDENCIES OVER $\mathbb R$

So we consider the following set of signs.

Definition. The set $\{-1, 0, +1\}$ has a natural partial order coming from the stratification above

Combinatorics of linear dependencies over ${\mathbb R}$

Let M be a $d \times n$ matrix with real coefficients. Let $E := \{v_1, \dots, v_n\}$ be the set of column vectors of the matrix M. E spans the space V = Im M

COMBINATORICS OF LINEAR DEPENDENCIES OVER ${\mathbb R}$

Let M be a $d \times n$ matrix with real coefficients. Let $E := \{v_1, \dots, v_n\}$ be the set of column vectors of the matrix M. E spans the space V = Im M

Every ordered element of ${\mathscr B}$ has a natural sign

Order $B \in \mathscr{B}$ as $\{v_1, \ldots, v_d\}$, then define

 $\chi(v_1,\ldots,v_d) := \operatorname{sgn} \operatorname{det}(v_1,\ldots,v_d)$

(Basis signature)

Combinatorics of linear dependencies over ${\mathbb R}$

Let M be a $d \times n$ matrix with real coefficients. Let $E := \{v_1, \dots, v_n\}$ be the set of column vectors of the matrix M. E spans the space V = Im M

Every ordered element of \mathscr{B} has a natural sign

Order $B \in \mathscr{B}$ as $\{v_1, \ldots, v_d\}$, then define

$$\chi(v_1,\ldots,v_d) := \operatorname{sgn} \det(v_1,\ldots,v_d)$$

(Basis signature)

To every $C \in \mathscr{C}$ correspond $\lambda_i \in \mathbb{R}$ with $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0$ where $\lambda_i \neq 0$ iff $v_i \in C$.

Given the $\lambda_i {\bf s},$ define $X: E \to \{0,\pm\}$ as

 $X(v_i) := \operatorname{sgn}(\lambda_i)$

(Signed circuits)

Consider V as a *d*-dimensional linear subspace of \mathbb{R}^n so that, for all *i*, v_i is the orthogonal projection of the standard basis vector e_i on V.

Consider V as a *d*-dimensional linear subspace of \mathbb{R}^n so that, for all *i*, v_i is the orthogonal projection of the standard basis vector e_i on V.

Then V is an element of the real Grassmannian $G_{d,n}(\mathbb{R})$, and as such it satisfies the Grassmann-Plücker relations.

Consider V as a *d*-dimensional linear subspace of \mathbb{R}^n so that, for all *i*, v_i is the orthogonal projection of the standard basis vector e_i on V.

Then V is an element of the real Grassmannian $G_{d,n}(\mathbb{R})$, and as such it satisfies the Grassmann-Plücker relations.

Given $\{x_0,\ldots,x_d,y_2,\ldots,y_d\}\subseteq E$,

$$\sum_{j=0}^d (-1)^j \det(x_0,\ldots,\widehat{x_j},\ldots,x_d) \det(x_j,y_2,\ldots,y_d) = 0$$

Consider V as a *d*-dimensional linear subspace of \mathbb{R}^n so that, for all *i*, v_i is the orthogonal projection of the standard basis vector e_i on V.

Then V is an element of the real Grassmannian $G_{d,n}(\mathbb{R})$, and as such it satisfies the Grassmann-Plücker relations.

Given
$$\{x_0, \ldots, x_d, y_2, \ldots, y_d\} \subseteq E$$
,

$$\sum_{j=0}^d (-1)^j \det(x_0,\ldots,\widehat{x_j},\ldots,x_d) \det(x_j,y_2,\ldots,y_d) = 0$$

For the sum to equal 0, the summands can't be all positive, nor all negative.

Consider V as a *d*-dimensional linear subspace of \mathbb{R}^n so that, for all *i*, v_i is the orthogonal projection of the standard basis vector e_i on V.

Then V is an element of the real Grassmannian $G_{d,n}(\mathbb{R})$, and as such it satisfies the Grassmann-Plücker relations.

Given
$$\{x_0, \ldots, x_d, y_2, \ldots, y_d\} \subseteq E$$
,

$$\sum_{j=0}^d (-1)^j \det(x_0, \ldots, \widehat{x_j}, \ldots, x_d) \det(x_j, y_2, \ldots, y_d) = 0$$

For the sum to equal 0, the summands can't be all positive, nor all negative.

Let
$$P := \{(-1)^{l} \chi(x_0, \ldots, \widehat{x_l}, \ldots, x_d) \chi(x_l, y_2, \ldots, y_d) \mid 0 \le l \le d\}.$$

If
$$P \neq \{0\}$$
, then $\{+1, -1\} \subseteq P$.

SIGNED CIRCUITS

Consider real coefficients $(\lambda_i)_{\geq 2}$ and $(\mu_i)_{i\geq 2}$ as above with

$$\begin{array}{rl} \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n &= \mathbf{0} \quad (\text{minimal lin. dep.}) \\ \hline -\mathbf{v}_1 + \mu_2 \mathbf{v}_2 + \ldots + \mu_n \mathbf{v}_n &= \mathbf{0} \quad (\text{minimal lin. dep.}) \\ \hline (\lambda_2 + \mu_2) \mathbf{v}_2 + \ldots &= \mathbf{0} \quad (\text{lin. dep.}) \end{array}$$

SIGNED CIRCUITS

Consider real coefficients $(\lambda_i)_{\geq 2}$ and $(\mu_i)_{i\geq 2}$ as above with

$$\begin{array}{rl} v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n &= 0 \quad (\text{minimal lin. dep.}) \\ \hline -v_1 + \mu_2 v_2 + \ldots + \mu_n v_n &= 0 \quad (\text{minimal lin. dep.}) \\ \hline (\lambda_2 + \mu_2) v_2 + \ldots &= 0 \quad (\text{lin. dep.}) \end{array}$$

▲ If sgn λ_2 + sgn $\mu_2 \neq 0$, sgn λ_2 and sgn μ_2 determine sgn($\lambda_2 + \mu_2$) By Carathéodory's theorem, there is

$$\nu_2 \nu_2 + \ldots + \nu_n \nu_n = 0$$
 (minimal lin. dep.)

with sgn $\nu_i \leq \text{sgn}(\lambda_i + \mu_i)$.

SIGNED CIRCUITS

Consider real coefficients $(\lambda_i)_{\geq 2}$ and $(\mu_i)_{i\geq 2}$ as above with

$$\begin{array}{rcl} v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n &= 0 & (\text{minimal lin. dep.}) \\ -v_1 + \mu_2 v_2 + \ldots + \mu_n v_n &= 0 & (\text{minimal lin. dep.}) \\ \hline (\lambda_2 + \mu_2) v_2 + \ldots &= 0 & (\text{lin. dep.}) \end{array}$$

▲ If sgn λ_2 + sgn $\mu_2 \neq 0$, sgn λ_2 and sgn μ_2 determine sgn($\lambda_2 + \mu_2$) By Carathéodory's theorem, there is

$$\nu_2 \nu_2 + \ldots + \nu_n \nu_n = 0$$
 (minimal lin. dep.)

with sgn $\nu_i \leq \operatorname{sgn}(\lambda_i + \mu_i)$.

Given signed circuits X, Y and i, j with $X(v_i) = -Y(v_i) \neq 0$ and $X(v_j) \neq -Y(v_j)$, there is a signed circuit Z with $Z(v_i) = 0$, $Z(v_j) \neq 0$ and, for all i, $Z(v_i) \in \{0, X(v_i), Y(v_i)\}$.

ORIENTED MATROIDS

Definition. An oriented matroid on the finite ground set E is...

an alternating function

 $\chi: E^d \to \{-,0,+\}$

Such that:

For $x_0, \ldots, x_d, y_2, \ldots, y_d \in E$ and the set P given by $\{(-1)^l \chi(x_0, \ldots, \widehat{x_i}, \ldots, x_d) \chi(x_i, y_2, \ldots, y_d)\}$ either $P = \{0\}$ or $P \supseteq \{+, -\}$ (Chirotope axioms) a subset $C \subseteq \{-, 0, +\}^E \setminus \underline{0}$ such that for $X, Y \in C$: • supp(X) =supp $(Y) \Rightarrow X = \pm Y$ • for $e, f \in$ supp $(X) \cap$ supp(Y) with $X(e) = -Y(e), X(f) \neq -Y(f),$ there is $Z \in C$ with $f \in$ supp $(Z) \not\ni e$ $Z(g) \in \{0, X(g), Y(g)\}$ for all g.

(Signed circuit axioms)
ORIENTED MATROIDS

Definition. An oriented matroid on the finite ground set E is...

an alternating function

 $\chi: E^d \to \{-, 0, +\}$

Such that:

For $x_0, ..., x_d, y_2, ..., y_d \in E$ and the set P given by $\{(-1)^{l}\chi(x_{0},...,\widehat{x_{i}},...,x_{d})\chi(x_{i},y_{2}...,y_{d})\}$ either $P = \{0\}$ or $P \supset \{+, -\}$ (Chirotope axioms)

a subset $\mathcal{C} \subseteq \{-, 0, +\}^E \setminus \underline{0}$ such that for $X, Y \in C$: • $supp(X) = supp(Y) \Rightarrow X = \pm Y$ • for $e, f \in \text{supp}(X) \cap \text{supp}(Y)$ with $X(e) = -Y(e), X(f) \neq -Y(f),$ there is $Z \in \mathcal{C}$ with $f \in \text{supp}(Z) \not\ni e$ $Z(g) \in \{0, X(g), Y(g)\}$ for all g.

(Signed circuit axioms)

 $\mathcal{B} = \{\{x_1, \dots, x_d\} \mid (x_1, \dots, x_d) \in \operatorname{supp}(\chi)\} \quad \mathcal{C} := \{\operatorname{supp}(X) \mid X \in \mathcal{C}\}$ are the set of bases, resp. circuits of the underlying matroid.

Definition. Two signed vectors $X, Y : E \to \{-, 0, +\}$ are orthogonal if for $P := \{X(e)Y(e) \mid e \in E\}$, either $P = \{0\}$ or $P \supseteq \{+, -\}$.

Definition. Two signed vectors $X, Y : E \to \{-, 0, +\}$ are orthogonal if for $P := \{X(e)Y(e) \mid e \in E\}$, either $P = \{0\}$ or $P \supseteq \{+, -\}$. Given $C \subseteq \{-, 0, +\}^E$, define $C^{\perp} := \{X \in \{-, 0, +\}^E \mid X \perp Y \text{ for all } Y \in C\}$

Definition. Two signed vectors $X, Y : E \to \{-, 0, +\}$ are orthogonal if for $P := \{X(e)Y(e) \mid e \in E\}$, either $P = \{0\}$ or $P \supseteq \{+, -\}$. Given $C \subseteq \{-, 0, +\}^E$, define $C^{\perp} := \{X \in \{-, 0, +\}^E \mid X \perp Y \text{ for all } Y \in C\}$ **Theorem.** If $C \subseteq \{-, 0, +\}^E$ is the set of signed circuits of an oriented matroid M, then $D := \min C^{\perp}$

 $\mathcal{D} := \min_{\mathsf{supp}} \mathcal{C}^{\perp}$

is the set of signed circuits of an oriented matroid M*.

Definition. Two signed vectors $X, Y : E \to \{-, 0, +\}$ are orthogonal if for $P := \{X(e)Y(e) \mid e \in E\}$, either $P = \{0\}$ or $P \supseteq \{+, -\}$. Given $C \subseteq \{-, 0, +\}^E$, define $C^{\perp} := \{X \in \{-, 0, +\}^E \mid X \perp Y \text{ for all } Y \in C\}$

Theorem. If $C \subseteq \{-, 0, +\}^E$ is the set of signed circuits of an oriented matroid M, then

$$\mathcal{D}:=\min_{\mathsf{supp}}\mathcal{C}^{\perp}$$

is the set of signed circuits of an oriented matroid M*.

 M^* is called dual to M, and if M represents $V \in G_{d,n}(\mathbb{R})$, then M^* represents the orthogonal complement $V^{\perp} \in G_{n-d,n}(\mathbb{R})$.

AN ORIENTED MATROID IS...

AN ORIENTED MATROID IS...

Given a set $E = \{v_1, \dots, v_n\} \subseteq \mathbb{R}^d$, consider $\Phi : \mathbb{R}^d \to \{-, 0, +\}^E$ $\Phi : x \mapsto (\operatorname{sgn}(\langle x \mid v_1 \rangle), \dots, \operatorname{sgn}(\langle x \mid v_n \rangle)).$

Given a set $E = \{v_1, \dots, v_n\} \subseteq \mathbb{R}^d$, consider $\Phi : \mathbb{R}^d \to \{-, 0, +\}^E$ $\Phi : x \mapsto (\operatorname{sgn}(\langle x \mid v_1 \rangle), \dots, \operatorname{sgn}(\langle x \mid v_n \rangle)).$

Given a set $E = \{v_1, \dots, v_n\} \subseteq \mathbb{R}^d$, consider $\Phi : \mathbb{R}^d \to \{-, 0, +\}^E$ $sgn(< x | v_1 > j, .$ (0, -, +) (+, -, +) / (+, 0, +) (+, -, +) / (+, 0, +) (+, +, +) $\Phi: x \mapsto (\operatorname{sgn}(\langle x \mid v_1 \rangle), \ldots, \operatorname{sgn}(\langle x \mid v_n \rangle)).$ (-,-,-)(+,+,0) (+,+,-) (-,+,-)_(0,+,-) $\operatorname{Im} \Phi = \mathcal{C}^{\perp}$

Given a set $E = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$, consider $\Phi : \mathbb{R}^d \to \{-, 0, +\}^E$ $\Phi: x \mapsto (\operatorname{sgn}(\langle x \mid v_1 \rangle), \ldots, \operatorname{sgn}(\langle x \mid v_n \rangle)).$ (0,-,+) (+,-,+) / (+,0,+)(-,-,+) (+,+,+) (+,+,+)(+,+,+) (+,+,+) (+,+,+) (+,+,+)(0,0,0) (-,-,-)(+,+,0) (+,+,-) (-,+,-)_(0,+,-) Im $\Phi = C^{\perp}$ (covectors)

Im $\Phi = C^{\perp}$ (covectors)

Define a partial order on $C^{\perp} \setminus \underline{0}$ by $(\sigma_1, \dots, \sigma_n) \leq (\sigma'_1, \dots, \sigma'_n) \Leftrightarrow \sigma_i \leq \sigma'_i \text{ for all } i,$ where signs are ordered as in the poset

Define a partial order on $\mathcal{C}^{\perp} \setminus \underline{0}$ by $(\sigma_1, \ldots, \sigma_n) \leq (\sigma'_1, \ldots, \sigma'_n) \Leftrightarrow \sigma_i \leq \sigma'_i \text{ for all } i,$ where signs are ordered as in the poset

Theorem [Folkman, Lawrence, '78]. If *C* is the set of signed circuits of an oriented matroid (of rank d), then

$$\Delta(\mathcal{C}^{\perp} \setminus \underline{0}) \stackrel{hom}{\cong} S^{d-1}$$

(In fact, Oriented Matroids are cryptomorphic to arrangements of pseudospheres...)

CRYPTOMORPHISMS

Combinatorics of linear dependencies over $\mathbb C$

Various attempts have been made at building an analogous theory.

COMBINATORICS OF LINEAR DEPENDENCIES OVER $\mathbb C$

Various attempts have been made at building an analogous theory.

G. M. Ziegler; *"What is a complex matroid?"* Discrete Comput. Geom. 10 (1993), no. 3, 313–348. Focus: Covectors, Topological realization.

Combinatorics of linear dependencies over $\mathbb C$

Various attempts have been made at building an analogous theory.

G. M. Ziegler; *"What is a complex matroid?"* Discrete Comput. Geom. 10 (1993), no. 3, 313–348. Focus: Covectors, Topological realization.

A. Below; V. Krummeck; J. Richter-Gebert; *Complex matroids, phirotopes and their realizations in rank 2.* Discrete and computational geometry, 203–233, Algorithms Combin., 25, Springer, Berlin, 2003. Focus: "Chirotopes", rank 2 realizability

Combinatorics of linear dependencies over $\mathbb C$

Various attempts have been made at building an analogous theory.

G. M. Ziegler; *"What is a complex matroid?"* Discrete Comput. Geom. 10 (1993), no. 3, 313–348. Focus: Covectors, Topological realization.

A. Below; V. Krummeck; J. Richter-Gebert; *Complex matroids, phirotopes and their realizations in rank 2.* Discrete and computational geometry, 203–233, Algorithms Combin., 25, Springer, Berlin, 2003. Focus: "Chirotopes", rank 2 realizability

E. D.; *On generalizing complex matroids to a complex setting.* Diploma thesis, ETH Zurich, 2003.

Focus: Orthogonality, Circuit duality, equivalence with Phirotopes.

THE TASK

? - Cryptomorphisms?

1. – What are "complex signs?"

1. – What are "complex signs?"

Ziegler: $\{0, +1, -1, i, -i\}$, thus stratifying

1. – What are "complex signs?"

Ziegler: $\{0, +1, -1, i, -i\}$, thus stratifying

 $\mathsf{B.,K.,R.-G.}\ /\ \mathsf{D.:}\ {\boldsymbol{\mathcal{S}}}^1\cup\{0\}\subset\mathbb{C}\text{, as }$

1. - What are "complex signs?"

Ziegler: $\{0, +1, -1, i, -i\}$, thus stratifying

B.,K.,R.-G. / D.: $\mathit{S}^1 \cup \{0\} \subset \mathbb{C},$ as

Our choice: Consider $S^1 \cup \{0\} \subset \mathbb{C}$ and let

$$\begin{array}{l} \mathsf{ph}:\mathbb{C}\to S^1\cup\{0\}\\ \mathsf{ph}(z):=\left\{ \begin{array}{ll} 0 & \text{if } z=0\\ e^{i\theta} & \text{if } z=re^{i\theta} \text{ for } r\in\mathbb{R}_{>0} \end{array} \right. \end{array}$$

2 - How to express orthogonality?

Two vectors $v, w \in \mathbb{C}^n$ are orthogonal if $0 = \langle v | w \rangle = \sum_{i=1}^n v_i \overline{w_i} = \sum_{i=1}^n \lambda_i \operatorname{ph}(v_i \overline{w_i})$ For positive real numbers λ_i with $\sum_i \lambda_i = 1$ (after rescaling)

2 - How to express orthogonality?

Two vectors $v, w \in \mathbb{C}^n$ are orthogonal if $0 = \langle v | w \rangle = \sum_{i=1}^n v_i \overline{w_i} = \sum_{i=1}^n \lambda_i \operatorname{ph}(v_i \overline{w_i})$ For positive real numbers λ_i with $\sum_i \lambda_i = 1$ (after rescaling)

2 - How to express orthogonality?

Two vectors $v, w \in \mathbb{C}^n$ are orthogonal if $0 = \langle v | w \rangle = \sum_{i=1}^n v_i \overline{w_i} = \sum_{i=1}^n \lambda_i \operatorname{ph}(v_i \overline{w_i})$ For positive real numbers λ_i with $\sum_i \lambda_i = 1$ (after rescaling)

Our choice: Given $X, Y \in (S^1 \cup \{0\})^E$, we say $X \perp Y$ if

$$0 \in \operatorname{relint}\operatorname{conv}\left\{rac{X(e)}{Y(e)}\middle| e \in \operatorname{supp}(X) \cup \operatorname{supp}(Y)
ight\}$$

2 - How to express orthogonality?

Two vectors $v, w \in \mathbb{C}^n$ are orthogonal if $0 = \langle v | w \rangle = \sum_{i=1}^n v_i \overline{w_i} = \sum_{i=1}^n \lambda_i \operatorname{ph}(v_i \overline{w_i})$ For positive real numbers λ_i with $\sum_i \lambda_i = 1$ (after rescaling)

Our choice: Given $X, Y \in (S^1 \cup \{0\})^E$, we say $X \perp Y$ if

We start by mimicking the Grassmann-Plücker relations in $G_{d,n}(\mathbb{C})$. **Definition** [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$\varphi: E^d \to S^1 \cup \{0\}$$

such that for all $x_0, x_1, \ldots, x_d, y_2, \ldots, y_d$,

 $0 \in \operatorname{relint} \operatorname{conv}\{(-1)^{i}\varphi(x_{0},\ldots,\widehat{x_{i}},\ldots,x_{d})\varphi(x_{i},y_{2},\ldots,y_{d}) \mid 0 \leq i \leq d\}.$ (Phirotope axioms)

We start by mimicking the Grassmann-Plücker relations in $G_{d,n}(\mathbb{C})$. **Definition** [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$\varphi: E^d \to S^1 \cup \{0\}$$

such that for all $x_0, x_1, \ldots, x_d, y_2, \ldots, y_d$,

$$0 \in \operatorname{relint} \operatorname{conv}\{(-1)^{i}\varphi(x_{0},\ldots,\widehat{x_{i}},\ldots,x_{d})\varphi(x_{i},y_{2},\ldots,y_{d}) \mid 0 \leq i \leq d\}.$$
(Phirotope axioms)

Examples:

• Given $v_1,...,v_n$ in \mathbb{C}^d , $\varphi := \text{ph} \det(v_1,...,v_d)$ is a phirotope

We start by mimicking the Grassmann-Plücker relations in $G_{d,n}(\mathbb{C})$. **Definition** [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$\varphi: E^d \to S^1 \cup \{0\}$$

such that for all $x_0, x_1, \ldots, x_d, y_2, \ldots, y_d$,

$$0 \in \operatorname{relint} \operatorname{conv}\{(-1)^i \varphi(x_0, \ldots, \widehat{x_i}, \ldots, x_d) \varphi(x_i, y_2, \ldots, y_d) \mid 0 \le i \le d\}.$$

(Phirotope axioms)

Examples:

• Given $v_1,...,v_n$ in \mathbb{C}^d , $\varphi := \mathsf{ph} \det(v_1,...,v_d)$ is a phirotope

• For χ a chirotope and $\iota : \{0, \pm 1\} \rightarrow S^1 \cup \{0\}$ the natural inclusion, $\iota \circ \chi$ is a (complexified) phirotope.

We start by mimicking the Grassmann-Plücker relations in $G_{d,n}(\mathbb{C})$. **Definition** [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$\varphi: E^d \to S^1 \cup \{0\}$$

such that for all $x_0, x_1, \ldots, x_d, y_2, \ldots, y_d$,

 $0 \in \mathsf{relint}\,\mathsf{conv}\{(-1)^i\varphi(x_0,\ldots,\widehat{x_i},\ldots,x_d)\varphi(x_i,y_2,\ldots,y_d) \mid 0 \leq i \leq d\}.$

(Phirotope axioms)

Remarks:

There are nonrealizable complex matroids

We start by mimicking the Grassmann-Plücker relations in $G_{d,n}(\mathbb{C})$. **Definition** [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$\varphi: E^d \to S^1 \cup \{0\}$$

such that for all $x_0, x_1, \ldots, x_d, y_2, \ldots, y_d$,

$$0 \in \operatorname{relint} \operatorname{conv}\{(-1)^i \varphi(x_0, \ldots, \widehat{x_i}, \ldots, x_d) \varphi(x_i, y_2, \ldots, y_d) \mid 0 \le i \le d\}.$$

(Phirotope axioms)

Remarks:

- There are nonrealizable complex matroids
- A dual phirotope φ^* can be defined in terms of φ (as in O.M. theory)

We start by mimicking the Grassmann-Plücker relations in $G_{d,n}(\mathbb{C})$. **Definition** [B.,K.,R.-G.'03]. A complex matroid of rank d on the ground set E is an alternating function

$$\varphi: E^d \to S^1 \cup \{0\}$$

such that for all $x_0, x_1, \ldots, x_d, y_2, \ldots, y_d$,

$$0 \in \operatorname{relint} \operatorname{conv} \{ (-1)^i \varphi(x_0, \ldots, \widehat{x_i}, \ldots, x_d) \varphi(x_i, y_2, \ldots, y_d) \mid 0 \le i \le d \}.$$

(Phirotope axioms)

Remarks:

- There are nonrealizable complex matroids
- A dual phirotope φ^* can be defined in terms of φ (as in O.M. theory)
- Any phirotope φ uniquely defines the set \mathcal{C}_φ of phased circuits X_C associated to φ

DUAL PAIRS

Consider a phirotope φ . The associated C_{φ} satisfies (1) For all $X, Y \in C_{\varphi}$, supp $(X) = \text{supp}(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$.
Consider a phirotope φ . The associated C_{φ} satisfies (1) For all $X, Y \in C_{\varphi}$, $supp(X) = supp(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$. (2) $C_{\varphi} = \mu C_{\varphi}$ for all $\mu \in S^1$

Consider a phirotope φ . The associated C_{φ} satisfies (1) For all $X, Y \in C_{\varphi}$, $supp(X) = supp(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$. (2) $C_{\varphi} = \mu C_{\varphi}$ for all $\mu \in S^1$ (3) C_{φ} is the set of circuits of a matroid.

Consider a phirotope φ . The associated C_{φ} satisfies (1) For all $X, Y \in C_{\varphi}$, $supp(X) = supp(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$. (2) $C_{\varphi} = \mu C_{\varphi}$ for all $\mu \in S^1$ (3) $\underline{C_{\varphi}}$ is the set of circuits of a matroid. (*) $\overline{C_{\varphi}} \perp C_{\varphi^*}$

Consider a phirotope φ . The associated C_{φ} satisfies (1) For all $X, Y \in C_{\varphi}$, $supp(X) = supp(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$. (2) $C_{\varphi} = \mu C_{\varphi}$ for all $\mu \in S^1$ (3) $\underline{C_{\varphi}}$ is the set of circuits of a matroid. (*) $\overline{C_{\varphi}} \perp C_{\varphi^*}$

Theorem [Anderson, D., '09]. (Axioms for dual pairs) Given a finite set E, consider two families $C, D \subseteq (S^1 \cup \{0\})^E$. If both C and D satisfy (1),(2),(3), and if $C \perp D$, then there is a phirotope φ such that $C = C_{\varphi}, D = C_{\varphi^*}$.

Consider a phirotope φ . The associated C_{φ} satisfies (1) For all $X, Y \in C_{\varphi}$, $supp(X) = supp(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$. (2) $C_{\varphi} = \mu C_{\varphi}$ for all $\mu \in S^1$ (3) $\underline{C_{\varphi}}$ is the set of circuits of a matroid. (*) $\overline{C_{\varphi}} \perp C_{\varphi^*}$

Theorem [Anderson, D., '09]. (Axioms for dual pairs) Given a finite set E, consider two families $C, D \subseteq (S^1 \cup \{0\})^E$. If both C and D satisfy (1),(2),(3), and if $C \perp D$, then there is a phirotope φ such that $C = C_{\varphi}, D = C_{\varphi^*}$.

Remark. It follows that, as is the case for oriented matroids,

$$\mathcal{C}_{\varphi^*} = \min_{\mathrm{supp}} \mathcal{C}^{\perp}$$

Let us go back to the realizable case for inspiration.

Let us go back to the realizable case for inspiration.

Consider complex numbers $(\zeta_i)_{\geq 2}$ and $(\xi_i)_{i\geq 2}$

$$\frac{v_1 + \zeta_2 v_2 + \ldots + \zeta_n v_n = 0 \quad (\text{minimal lin. dep.})}{(\zeta_1 + \xi_2 v_2 + \ldots + \xi_n v_n = 0 \quad (\text{minimal lin. dep.})}$$
$$\frac{(\zeta_2 + \xi_2) v_2 + \ldots = 0 \quad (\text{lin. dep.})}{(\zeta_1 + \zeta_2 + \zeta_2) v_2 + \ldots = 0}$$

Let us go back to the realizable case for inspiration.

Consider complex numbers $(\zeta_i)_{\geq 2}$ and $(\xi_i)_{i\geq 2}$

$$\begin{array}{rcl} v_1 + \zeta_2 v_2 + \ldots + \zeta_n v_n &= 0 & (\text{minimal lin. dep.}) \\ \hline -v_1 + \xi_2 v_2 + \ldots + \xi_n v_n &= 0 & (\text{minimal lin. dep.}) \\ \hline (\zeta_2 + \xi_2) v_2 + \ldots &= 0 & (\text{lin. dep.}) \end{array}$$

There should be

$$\nu_2 \nu_2 + \ldots + \nu_n \nu_n = 0$$
 (minimal lin. dep.)

with ph ν_i in some way determined by ph ζ_i , ph ξ_i .

Let us go back to the realizable case for inspiration.

Consider complex numbers $(\zeta_i)_{\geq 2}$ and $(\xi_i)_{i\geq 2}$

$$\begin{array}{rcl} v_1 + \zeta_2 v_2 + \ldots + \zeta_n v_n &= 0 & (\text{minimal lin. dep.}) \\ -v_1 + \xi_2 v_2 + \ldots + \xi_n v_n &= 0 & (\text{minimal lin. dep.}) \\ \hline (\zeta_2 + \xi_2) v_2 + \ldots &= 0 & (\text{lin. dep.}) \end{array}$$

There should be

$$\nu_2 \nu_2 + \ldots + \nu_n \nu_n = 0$$
 (minimal lin. dep.)

with ph ν_i in some way determined by ph ζ_i , ph ξ_i .

 \dots shouldn't there ?

Consider these 7 vectors in \mathbb{C}^4 :

$$\mathbf{v}_1 := \begin{bmatrix} 1\\ 2\\ -i\\ -1 \end{bmatrix} \mathbf{v}_2 := \begin{bmatrix} 0\\ -1\\ 0\\ 0 \end{bmatrix} \mathbf{v}_3 := \begin{bmatrix} -1\\ 0\\ -i\\ 0\\ -i \end{bmatrix} \mathbf{v}_4 := \begin{bmatrix} 0\\ -1\\ 0\\ -i\\ 0 \end{bmatrix} \mathbf{v}_5 := \begin{bmatrix} 0\\ 0\\ 2i\\ i+1 \end{bmatrix} \mathbf{v}_6 := \begin{bmatrix} i\\ -i\\ -i\\ 0\\ 0 \end{bmatrix} \mathbf{v}_7 := \begin{bmatrix} 1-i\\ 3+i\\ -2i\\ -2i\\ -2 \end{bmatrix}$$

Consider these 7 vectors in \mathbb{C}^4 :

$$\mathbf{v}_1 := \begin{bmatrix} 1\\ 2\\ -i\\ -1 \end{bmatrix} \mathbf{v}_2 := \begin{bmatrix} 0\\ -1\\ 0\\ 0 \end{bmatrix} \mathbf{v}_3 := \begin{bmatrix} -1\\ 0\\ -i\\ 0 \end{bmatrix} \mathbf{v}_4 := \begin{bmatrix} 0\\ -1\\ 0\\ -i \end{bmatrix} \mathbf{v}_5 := \begin{bmatrix} 0\\ 0\\ 2i\\ i+1 \end{bmatrix} \mathbf{v}_6 := \begin{bmatrix} i\\ -i\\ -i\\ 0 \end{bmatrix} \mathbf{v}_7 := \begin{bmatrix} 1-i\\ 3+i\\ -2i\\ -2i\\ -2 \end{bmatrix}$$

The following minimal linear dependencies hold:

$$v_1 + v_2 + v_3 + v_4 + v_5 = 0, -v_1 + v_4 + v_5 + v_6 + v_7 = 0$$

Consider these 7 vectors in \mathbb{C}^4 :

$$\mathbf{v}_1 := \begin{bmatrix} 1\\ 2\\ -i\\ -1 \end{bmatrix} \mathbf{v}_2 := \begin{bmatrix} 0\\ -1\\ 0\\ 0 \end{bmatrix} \mathbf{v}_3 := \begin{bmatrix} -1\\ 0\\ -i\\ 0\\ 0 \end{bmatrix} \mathbf{v}_4 := \begin{bmatrix} 0\\ -1\\ 0\\ -i\\ 0 \end{bmatrix} \mathbf{v}_5 := \begin{bmatrix} 0\\ 0\\ 2i\\ i+1 \end{bmatrix} \mathbf{v}_5 := \begin{bmatrix} i\\ -i\\ -i\\ 0\\ 0 \end{bmatrix} \mathbf{v}_7 := \begin{bmatrix} 1-i\\ 3+i\\ -2i\\ -2i\\ -2 \end{bmatrix}$$

The following minimal linear dependencies hold:

$$v_1 + v_2 + v_3 + v_4 + v_5 = 0, -v_1 + v_4 + v_5 + v_6 + v_7 = 0$$

... but none of the minimal linear dependencies not containing v_1 has all real coefficients:

Consider these 7 vectors in \mathbb{C}^4 :

$$\mathbf{v}_1 := \begin{bmatrix} 1\\ 2\\ -i\\ -1 \end{bmatrix} \mathbf{v}_2 := \begin{bmatrix} 0\\ -1\\ 0\\ 0 \end{bmatrix} \mathbf{v}_3 := \begin{bmatrix} -1\\ 0\\ -i\\ 0\\ 0 \end{bmatrix} \mathbf{v}_4 := \begin{bmatrix} 0\\ -1\\ 0\\ -i\\ 0\\ -i \end{bmatrix} \mathbf{v}_5 := \begin{bmatrix} 0\\ 0\\ 2i\\ i+1 \end{bmatrix} \mathbf{v}_6 := \begin{bmatrix} i\\ -i\\ -i\\ 0\\ 0\\ 0 \end{bmatrix} \mathbf{v}_7 := \begin{bmatrix} 1-i\\ 3+i\\ -2i\\ -2i\\ -2 \end{bmatrix}$$

The following minimal linear dependencies hold:

$$v_1 + v_2 + v_3 + v_4 + v_5 = 0, -v_1 + v_4 + v_5 + v_6 + v_7 = 0$$

... but none of the minimal linear dependencies not containing v_1 has all real coefficients:

$$\begin{aligned} v_4 + iv_3 - (1+i)v_2 + (\frac{1}{2} + \frac{i}{2})v_5 + v_6 &= 0, \\ v_4 + (1-i)v_3 + (2+i)v_2 + (\frac{3}{2} - \frac{1}{2})v_5 + v_7 &= 0, \\ v_4 + (-1 + \frac{1}{2})v_3 - \frac{5i}{2}v_2 + (1 + \frac{i}{2})v_6 - \frac{i}{2}v_7 &= 0, \\ v_4 + (\frac{7}{13} + \frac{4}{13}i)v_3 + (\frac{25}{26} + \frac{5}{26}i)v_5 + (\frac{8}{13} - \frac{1}{13}i)v_6 + (\frac{5}{13} + \frac{i}{13})v_7 &= 0, \\ v_4 + (\frac{3}{5} - \frac{4}{5}i)v_2 + (\frac{7}{10} - \frac{i}{10})v_5 + (\frac{3}{5} + \frac{i}{5})v_6 + (\frac{2}{5} - \frac{i}{5})v_7 &= 0, \\ v_5 + (\frac{3}{2} - \frac{i}{2})v_3 + (\frac{1}{2} + \frac{5}{2}i)v_2 - (\frac{1}{2} + \frac{i}{2})v_6 + (\frac{1}{2} + \frac{i}{2})v_7 &= 0. \end{aligned}$$

We look closer at the problem.

We look closer at the problem. First let us describe the phase of a sum of complex numbers. Let $z, w \in \mathbb{C}$.

We look closer at the problem.

First let us describe the phase of a sum of complex numbers.

Let $z, w \in \mathbb{C}$.

• If w = 0, then ph(z + w) = ph(z). If z = 0, ph(z + w) = ph(w)

We look closer at the problem.

First let us describe the phase of a sum of complex numbers.

Let $z, w \in \mathbb{C}$.

- If w = 0, then ph(z + w) = ph(z). If z = 0, ph(z + w) = ph(w)
- If $zw \neq 0$, let $\alpha = ph(z), \beta = ph(w)$.

We look closer at the problem.

First let us describe the phase of a sum of complex numbers.

Let $z, w \in \mathbb{C}$.

• If w = 0, then ph(z + w) = ph(z). If z = 0, ph(z + w) = ph(w)

• If $zw \neq 0$, let $\alpha = ph(z), \beta = ph(w)$.

For $\alpha, \beta \in S^1$ define $[[\alpha, \beta]]$ as follows.

We look closer at the problem.

First let us describe the phase of a sum of complex numbers.

Let $z, w \in \mathbb{C}$.

• If w = 0, then ph(z + w) = ph(z). If z = 0, ph(z + w) = ph(w)

• If $zw \neq 0$, let $\alpha = ph(z), \beta = ph(w)$.

For $\alpha, \beta \in S^1$ define $[[\alpha, \beta]]$ as follows.

For $\mathcal{C} \subseteq (S^1 \cup \{0\})^E$, let $\underline{\mathcal{C}} := \{ \mathsf{supp}(\mathcal{C}) \mid \mathcal{C} \in \mathcal{C} \}.$

For $\mathcal{C} \subseteq (S^1 \cup \{0\})^E$, let $\underline{\mathcal{C}} := \{ \operatorname{supp}(\mathcal{C}) \mid \mathcal{C} \in \mathcal{C} \}.$

Theorem [Anderson, D., '09]. Let φ be a phirotope on the set E. (1) $C_{\varphi} = \mu C_{\varphi}$ for all $\mu \in S^1$. (2) For $X, Y \in C_{\varphi}$, supp $(X) = supp(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$.

For $\mathcal{C} \subseteq (S^1 \cup \{0\})^E$, let $\underline{\mathcal{C}} := \{ \operatorname{supp}(\mathcal{C}) \mid \mathcal{C} \in \mathcal{C} \}.$

Theorem [Anderson, D., '09]. Let φ be a phirotope on the set E. (1) $C_{\varphi} = \mu C_{\varphi}$ for all $\mu \in S^1$. (2) For $X, Y \in C_{\varphi}$, $supp(X) = supp(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$. (ME) For $X, Y \in C_{\varphi}$ with supp(X), supp(Y) comodular in C_{φ} and $e, f \in E$ with $X(e) = -Y(e) \neq 0$ and $X(f) \neq -Y(f)$, there is $Z \in C_{\varphi}$ with $f \in supp(Z) \subseteq (supp(X) \cup supp(Y)) \setminus e$ and for all $g \in supp(Z)$: $Z(g) \in [[X(g), Y(g)]] \cup \{0\}$.

For $\mathcal{C} \subseteq (S^1 \cup \{0\})^E$, let $\underline{\mathcal{C}} := \{ \operatorname{supp}(\mathcal{C}) \mid \mathcal{C} \in \mathcal{C} \}.$

Theorem [Anderson, D., '09]. Let φ be a phirotope on the set E. (1) $C_{\varphi} = \mu C_{\varphi}$ for all $\mu \in S^1$. (2) For $X, Y \in C_{\varphi}$, $supp(X) = supp(Y) \Rightarrow X = \mu Y$ for $\mu \in S^1$. (*ME*) For $X, Y \in C_{\varphi}$ with supp(X), supp(Y) comodular in $\underline{C_{\varphi}}$ and $e, f \in E$ with $X(e) = -Y(e) \neq 0$ and $X(f) \neq -Y(f)$, there is $Z \in C_{\varphi}$ with $f \in supp(Z) \subseteq (supp(X) \cup supp(Y)) \setminus e$ and for all $g \in supp(Z)$: $Z(g) \in [[X(g), Y(g)]] \cup \{0\}$.

Oriented Matroids also admit an axiomatization via Modular Elimination.

SUMMARY

Theorem [Anderson, D., '09]. A subset $C \subseteq (S^1 \cup \{0\})^E$ is the set of phased circuits of a complex matroid if and only if $\emptyset \notin C$ and it satisfies (1), (2), (ME) above.

SUMMARY

Theorem [Anderson, D., '09]. A subset $C \subseteq (S^1 \cup \{0\})^E$ is the set of phased circuits of a complex matroid if and only if $\emptyset \notin C$ and it satisfies (1), (2), (ME) above.

Cryptomorphisms:

SUMMARY

Theorem [Anderson, D., '09]. A subset $C \subseteq (S^1 \cup \{0\})^E$ is the set of phased circuits of a complex matroid if and only if $\emptyset \notin C$ and it satisfies (1), (2), (ME) above.

Cryptomorphisms:

HOWEVER,

Given a configuration of *n* vectors v_1, \ldots, v_n in \mathbb{C}^d , consider the stratification of \mathbb{C}^d induced by

 $\Phi: z \mapsto (\mathsf{ph} < z \mid v_i >)_i.$

HOWEVER,

Given a configuration of *n* vectors v_1, \ldots, v_n in \mathbb{C}^d , consider the stratification of \mathbb{C}^d induced by

 $\Phi: z \mapsto (\mathsf{ph} < z \mid v_i >)_i.$

The structure of $Im(\Phi)$ carries more information than the corresponding set C of phased circuits.

Thus, no cryptomorphism is possible!

HOWEVER,

Given a configuration of *n* vectors v_1, \ldots, v_n in \mathbb{C}^d , consider the stratification of \mathbb{C}^d induced by

 $\Phi: z \mapsto (\mathsf{ph} < z \mid v_i >)_i.$

The structure of $Im(\Phi)$ carries more information than the corresponding set C of phased circuits.

Thus, no cryptomorphism is possible!

In fact, there are two configurations V_2 , V_2 (each of 4 vectors in \mathbb{C}^2) such that

- The two configuration have the same sets of signed circuits $(C_{V_1} = C_{V_2})$
- For Φ as above, $\operatorname{Im}(\Phi_{V_1}) \neq \operatorname{Im}(\Phi_{V_2})$.

Is there any kind of "topological representation" for complex matroids?

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π₁?)

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π₁?)
- Can one use it to compute characteristic classes of complex manifolds (along the lines of [Anderson, Davis '02] in the real case)?

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π₁?)
- Can one use it to compute characteristic classes of complex manifolds (along the lines of [Anderson, Davis '02] in the real case)?
- ► How exactly do complex matroids relate to Ziegler's Complex Oriented Matroids?

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π₁?)
- Can one use it to compute characteristic classes of complex manifolds (along the lines of [Anderson, Davis '02] in the real case)?
- How exactly do complex matroids relate to Ziegler's Complex Oriented Matroids?
- What are the "minimal nonrealizable" configurations in complex projective geometry? (Analog to Pappus' and Desargues' in real geometry?)

- Is there any kind of "topological representation" for complex matroids?
- What topological information about the complement of a hyperplane arrangement is contained in its complex matroid? (what about π₁?)
- Can one use it to compute characteristic classes of complex manifolds (along the lines of [Anderson, Davis '02] in the real case)?
- How exactly do complex matroids relate to Ziegler's Complex Oriented Matroids?
- What are the "minimal nonrealizable" configurations in complex projective geometry? (Analog to Pappus' and Desargues' in real geometry?)
- Can complex matroids be related to Complex Linear Programming, as Oriented matroids are to (Real) LP [Ben Israeli '69, Levinson '66]?