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The toric variety

X, = the toric variety associated with the type A,_1 Coxeter
complex

H%(X,) = the 2 th cohomology of X, for j € {0,...,n—1}.

Symmetric group &, acts naturally on X, and this induces a linear
representation of &, on each H¥(X,).

Procesi gave a recurrence relation for this representation in 1985
and Stanley used this recurrence relation to give a generating
function formula.



In terms of symmetric functions

Let chV denote the Frobenius characteristic of a representation V

of &,.
Let h, = hn(x1, X2, ...) be the complete homogeneous symmetric

function of degree n and let

H(z) = Z hnz"

n>0

Theorem (Procesi (1985) — Stanley (1989))

2 , , 1— t)H(z
R ]

n>0 j=0




In terms of symmetric functions

Let chV denote the Frobenius characteristic of a representation V

of &,.
Let h, = hn(x1, X2, ...) be the complete homogeneous symmetric
function of degree n and let

H(z) = Z hnz"

n>0

Theorem (Procesi (1985) — Stanley (1989))

2 , , 1— t)H(z
R ]

n>0 j=0

Proof uses geometric methods.



Why do combinatorialists care about toric varieties?

n—1
> " dim HY(X,)t) = Ay(t),
j=0
where A,(t) is the Eulerian polynomial, which is defined by

Ap(t) = > 1),

ceS,

By Hard Lefschetz Theorem, A,(t) is symmetric and unimodal in t.
Ag(t) =1+ 11t + 1182 4¢3

As(t) =1+ 26t + 66t + 26> + t*



Why do combinatorialists care about toric varieties?

Stanley (1980): If X is the toric variety associated with a simplicial
d-dimensional polytope then

(dim H°(X), dim H?(X),...,dim H*(X))

equals the h-vector of the boundary complex of the polytope,
where the h-vector is related to the f-vector by

h,-:z(j i =§di( )

Jj=0 Jj=



Why do combinatorialists care about toric varieties?

Stanley (1980): If X is the toric variety associated with a simplicial
d-dimensional polytope then

(dim HO(X),dim H?(X), ..., dim H?¢(X))
equals the h-vector of the boundary complex of the polytope,
where the h-vector is related to the f-vector by

i d

hj = Z <Z, :{)(—1)i_j’5'—1 fi = Z (d d_,_i 1) hj

j=0 j=0

Stanley used toric varieties in 1980 to prove one direction of
McMullen's g-conjecture, which characterizes the h-vector of the
boundary complex of a simplicial polytope. Symmetry and
unimodality are part of this characterization.



Why do combinatorialists care about toric varieties?

Stanley (1980): If X is the toric variety associated with a simplicial
d-dimensional polytope then

(dim H°(X), dim H?(X),...,dim H*(X))

equals the h-vector of the boundary complex of the polytope,
where the h-vector is related to the f-vector by

i d

hj = Z <Z, :{)(—1)i_j’5'—1 fi = Z (d d_,_i 1) hj

j=0 j=0

The h-vector of the type A,_1 Coxeter complex is
(an0,an1,---,ann—1) Where a,j is an Eulerian number, i.e,.

An(t) = ao + art +...a,_1t" L



Eulerian Permutation Statistics - MacMahon (1913)

For o € &,
Descent set:  DES(¢) :={ie[n—1]:0(i) >o(i+1)}

o=32541  DES(0) = {1,3,4}
Define des(o) := |DES(c)|. So

des(32541) =3



Eulerian Permutation Statistics - MacMahon (1913)

For o € &,
Descent set:  DES(¢) :={ie[n—1]:0(i) >o(i+1)}

o=32541  DES(0) = {1,3,4}
Define des(o) := |DES(c)|. So

des(32541) =3
Excedance set: EXC(o):={i€[n—1]:0(i) > i)}

o =32541  EXC(0) = {1,3}
Define exc(o) := |[EXC(0)|. So

exc(32541) =2



Eulerian Permutation Statistics - MacMahon (1913)
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Eulerian Permutation Statistics - MacMahon (1913)

’63\des\exc‘

123 | 0 0
132 ] 1 1
213 | 1 1
231 | 1 2
312 | 1 1
321 | 2 1

Eulerian polynomial

n—1
An(t) = 30 o) = 3 peel) N,
Jj=0

0'66,; 0'66,1

As(t) =1+ 4t + t2



Euler's Formula

Euler's exponential generating function formula:

z 11—t
ZA"(t)ﬁ T ez(t-1) _ ¢
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Euler's exponential generating function formula:
z" 1—t
ZA"(t)ﬁ T ez(t-1) _ ¢
(1—1t)e*
e?t — te?



Euler's Formula

Euler's exponential generating function formula:

z" 11—t
At — = ————
%;) ol )n! ez(t=1) _ ¢
(1 —1t)e?
et — te?

Procesi-Stanley formula:

n—1
2j J (1-1t)H(z)
g;ChH (Xn) ¢ H(zt) — tH(2)’



Expansions of chH¥(X,)

Stembridge (1992): Expansion of symmetric function chH%(X,) in
@ the basis of Schur functions - Schur positive

@ the basis of power symmetric functions



Expansions of chH¥(X,)

Stembridge (1992): Expansion of symmetric function chH%(X,) in
@ the basis of Schur functions - Schur positive
@ the basis of power symmetric functions

Stembridge proves

n—1 I(v)
ZcthJ(X,,)tJ = Z(Al(y)(t) H[Vi]t) 2, pu,
j=0 vkn i=1

where [m]; ;= 1+t +--- 4+ t™ L
So chH%(X,) is p-positive.



Expansions of chH¥(X,)

Stembridge (1992): Expansion of symmetric function chH%(X,) in
@ the basis of Schur functions - Schur positive
@ the basis of power symmetric functions

Stembridge proves

n—1
ZChH2j(Xn)tj = Z Al(u) H[Vl] Zy_lle
j=0 vkn

where [m]; ;= 1+t +--- 4+ t™ L
So chH%(X,) is p-positive.

Shareshian and MW: Expansion in the basis of fundamental
quasisymmetric functions



Gessel's Theory of quasisymmetric functions

A quasisymmetric function is a formal power series f(xi, xp,...) of
finite degree such that for all a;,...,ax € P,

coeff x7* ... x2* = coeff x* ... x*
1 Ik J1 Jk

whenever i; < --- < jg and j1 < -+ < Jji.
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Gessel's Theory of quasisymmetric functions

A quasisymmetric function is a formal power series f(xi, xp,...) of
finite degree such that for all a;,...,ax € P,

coeff x7* ... x2* = coeff x* ... x*
1 ik J1 Jk
whenever i; < --- < jg and j1 < -+ < Jji.
Every symmetric function is a quasisymmetric function

Fix nand for T C [n—1] :=={1,2,...,n— 1}, define the
fundamental quasisymmetric function

Fr(xi,xo,...):= Z Xsy -+ Xs,

S>>
i €T = s> si41

Fo = hn and Fp,_q) = ep

{Fr: T C[n—1]} forms a basis for the Z-module of
quasisymmetric functions of degree n.



Expansion in the basis of fundamental quasisymmetric

functions

For 0 € &,, let & be obtained by placing bars above each
excedance.
531462
View & as a word over ordered alphabet
{1<2<---<n<l<2<---<n}
Define

DEX(0) := DES(3)

DEX(531462) = DES(5.314.62) = {1,4}



Expansion in the basis of fundamental quasisymmetric

functions

For 0 € &,, let & be obtained by placing bars above each
excedance.

531462
View & as a word over ordered alphabet
{1<2<---<n<l<2<---<n}

Define
DEX(0) := DES(7)

DEX(531462) = DES(5.314.62) = {1,4}

We prove > DEX(c) = > DES(0) — exc(o) =: maj(o) — exc(o)



Expansion in the basis of fundamental quasisymmetric

functions
For all j € {0,1,...,n— 1}, define the Eulerian quasisymmetric
function
Qnj = Z FoEx(0)-
o€ G,
exc(o) =j

Theorem (Shareshian and MW)
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Expansion in the basis of fundamental quasisymmetric

functions
For all j € {0,1,...,n— 1}, define the Eulerian quasisymmetric
function
Qnj = Z FoEx(0)-
o€ G,
exc(o) =j

Theorem (Shareshian and MW)

n—1
in_ (1=1t)H(2)
2D itz = ey

n>0 j=0

4

Corollary

chHY (X,) = Qn.

v

By the Hard Lefschetz Theorem and Schur's Lemma Qp; — Qnj—1
is Schur positive for all j < n/2.



Cycle-type Eulerian quasisymmetric functions

For o € G, let A\(0) denote the cycle type of 0. For A - n, define
Qu= > FoEx()

o e Gn
exc(o) =j
Alo) =X
The corollary becomes
chHY (Xp) =D~ Q-

AFn
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Cycle-type Eulerian quasisymmetric functions

For o € G, let A\(0) denote the cycle type of 0. For A - n, define
Qu= > FoEx()

o e Gn
exc(o) =j
Alo) =X

The corollary becomes

chHY (Xp) =D~ Q-

AFn

Theorem (Shareshian and MW)

Forall j € {0,1,...,n—1} and A+ n, Q\; is a symmetric
function and Qyj = Q\ n—k—j, where k = # 1's in \.
Conjecture (Shareshian and MW)

Q»j is Schur positive. Moreover Q, j — Q) j—1 is Schur positive for
all j < (n—k)/2.

’

Computer verification up to n = 8.



Lifting the representation to &1

Let V), be the virtual representation whose Frobenius
characteristic is Q) ;.
Then

HY(Xa) = D W,

AFn

Theorem (Shareshian and MW)

Forall j=0,...,n— 1, the &,-module H%(X,) is isomorphic to
the restriction of V(,,+1) j+1 from G, to G,

Is there a geometric explanation which shows that V) j is an actual
representation?



Restricting the representation V) ;

Let V) be the virtual representation whose Frobenius

characteristic is Q) ;.

The subgroup C, of &, generated by the cycle (1,2,...,n) acts
on &, by conjugation. Since the action preserves cycle type and
number of excedances, C, acts on

Gyj ={0€6,:\0o) =\ exc(o) =/}



Restricting the representation V) ;

Let V) be the virtual representation whose Frobenius
characteristic is Q) ;.

The subgroup C, of &, generated by the cycle (1,2,...,n) acts
on &, by conjugation. Since the action preserves cycle type and
number of excedances, C, acts on

Gyj ={0€6,:\0o) =\ exc(o) =/}

Theorem (Sagan, Shareshian and MW)

The restriction of the virtual &,-module V) j to the subgroup C, is
isomorphic to the permutation representation of C, acting on &, ;
by conjugation.

Is there a geometric explanation which shows that V) j is an actual
representation?



Alternative description of Q) ;

An ornament of type A is a multiset of bicolored necklaces whose
necklace sizes form partition A

type = (5,4, 4) weight = x2x3x4



Alternative description of Q) ;

An ornament of type A is a multiset of bicolored necklaces whose
necklace sizes form partition A

type = (5,4, 4) weight = x2x3x4

Theorem (Shareshian and MW (2006))

Let Ry j = set of ornaments of type \ with j red letters. Then

Q)= Z wit(R)

RGRA’J'

Analogous to a result of Gessel and Reutenauer (1993).



Plethystic identity

For A = 1mM2m2 ... kmi,

Qu it/ = Hhm,(x) {Z Quiyjt ] :

._.

n—

-
Il
o



Plethystic identity

For A = 1mM2m2 ... kmi,

n—1 k i—1
> @t =] hmny {Z Qi jt ] -
=0 i—1 =0

Summing over all partitions A yields,

5 Q= [z o(,-)d-rf] |

nj>0 m>0 ij>0



Plethystic identity

For A = 1mM2m2 ... kmi,

Z Qt' = H Bimy() Z Qi jt

Summing over all partitions A yields,

D Quit =D hm | > Q!

nj>0 m>0 ij>0
The plethystic inverse of >~ hm is,
L:=> (~1)"chlie,
n>0

where lie, is the lie representation. Hence

Y Qut =L > Q¥

n,j>0 ij=0



Expansion in the power sum basis

> Q=LY Q¥

nj>0 ij>0

It is well-known that

where 1 is the classical Mobius function and py = > o x¢.

Recall the result of Stembridge: )
v

ST Quit! =Y (A T]Ivle) zte
i=1

nj=>0 v



Expansion in the power sum basis

> Q=LY Q¥

nj>0 ij>0

It is well-known that

where 1 is the classical Mobius function and py = > o x¢.

Recall the result of Stembridge: )
v

ST Quit! =Y (A T]Ivle) zte
i=1

nj=>0 v

Plug in, do a tricky computation, and get ...



Expansion in the power sum basis

n—1 k
Z Q(,,)th = Z (tAkl(t) H[Vi]t> 2, py,
Jj=0 ged(vi,...yvk)

vkn i=1

where

(Zajtj)k = Z ajtj.

j=0 jged(j,k)=1

For example, (t+ 3t 4 5t3 + 7t*), = t + 563
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Expansion in the power sum basis

n—1 k
Z Q(,,)th = Z (tAkl(t) H[Vi]t> 2, py,
Jj=0 ged(vi,...yvk)

vkn i=1

where

(Zajtj)k = Z ajtj.

j=0 jged(j,k)=1

For example, (t+ 3t 4 5t3 + 7t*), = t + 563
So Q(n),j is p-positive.

The above formula was a key step in our proof that V) ; lﬁgn” is the
conjugation representation of C, on &) ;



g-Analogs

g-analogs arise in combinatorics, representation theory, algebraic
geometry, algebraic topology, etc.,

Classical Example:

Z qinv(a) = [n]q!

O'GGn

where [n]q = ]_—|-q_|_+qn71 and

[nlq! = [nlgln —1]q .- [1lq



g-Analogs

g-analogs arise in combinatorics, representation theory, algebraic
geometry, algebraic topology, etc.,

Classical Example:

Z qinv(a) = [n]q!

O'GGn

where [n]q = ]_—|-q_|_+qn71 and

[nlq! = [nlgln —1]q .- [1lq

Recall: the major index of a permutation ¢ is defined to be

maj(o) = Z i

i€DES(c)

maj(32541) = maj(3.25.4.1) =1+3+4 =38



Theorem (MacMahon (1913))

Z qinv(cr) _ Z qmaj(a) = [n]q!

ceS, ceG,

’63 ‘inv‘maj‘
123 | 0
132
213
231
312
321

WIN[ N =
Wl N =N O

1429+2¢°+¢°=(1+qg+¢*)(1+q)



g-Eulerian polynomials

Eulerian quasisymmetric function formula:

n—1
i (I=1t)H(2)
ZZQthZ = H(zt) = tH(2)’

n>0 j=0



g-Eulerian polynomials

Eulerian quasisymmetric function formula:

n—1
jn_ (I=t)H(z)
22 Q= )z

>0 j=0

Specialization: x; — ¢’ !

Theorem (Shareshian and MW)

,z—2z(1-q):

Z Z qmaj(o)—exc(o)tcxc(o—) z" (1 B t) equ(z)

n>00e6, [nlg! — expq(zt) — texpy(z)

where z
expy(z) = Z — .




g-Eulerian polynomials

Eulerian quasisymmetric function formula:

n—1
in_ (1=1t)H(2)
2. Qnjtz"= H(zt) — tH(z)’

>0 j=0

Specialization: x; — ¢’ !

Theorem (Shareshian and MW)

,z—2z(1-q):

Z Z qmaj(o)—exc(o)tcxc(o—) z" (1 B t) equ(z)

[n]q! - expg(zt) — texpy(2)

n>00eS,
where z"
expy(z) = — .
q é [”]q!
— z"  (1-1t)e?
Setg=1 ZA”(t)H = gt



g-Eulerian polynomials

To obtain the specialization we use Gessel's theory of
quasisymmetric functions:

g=T

2 —
F_,.(Lq,q ,...)— (1_q)(1_q2)...(1_qn)




g-Eulerian polynomials

To obtain the specialization we use Gessel's theory of
quasisymmetric functions:

g=T
(1-q)(1-q%)...(1—q")

Recall Y DEX(0) = maj(o) — exc(o).
So

FT(l7q7q27"'):

maj(o)—exc(o)

q
Forx)(1.0: 4% ) = =i = A= g

which implies

maj(o)—exc(o)

EO’EG)\J q
(1-9)(1-¢?)...(1—q")’

where & j := {0 € &, : A\(0) = A, exc(o) =j}.

Q/\,j(]-a a, q27 s ) =




g-Eulerian polynomials

Let
An(qy t) — Z qmaj(a)—exc(a) texc(a)
oe6,
and
Mg )= 3 gei)ec©) )
o€ 6,
Ao) = A

Theorem (Shareshian and MW)

An(q, t) is a symmetric and unimodal polynomial in t.
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g-Eulerian polynomials

Let
An(q7 t) — Z qmaj(a)—exc(o) texc(a)
oe6,
and
Mg )= 3 gei)ec©) )
o€ 6,
Ao) = A

Theorem (Shareshian and MW)

An(q, t) is a symmetric and unimodal polynomial in t.

Conjecture (Shareshian and MW)

Ax(g, t) is a unimodal polynomial in t. (symmetry is easy)

Consequence of the Schur-positivity of Q) j+1 — Q\j conjecture.



Rees Product-Bjorner & Welker, 2003

The Rees product of ranked posets P and @ is defined by
PxQ:={(p,q) € PxQ:r(p) >r(q)}
(p1,91) < (p2, g2) if the following holds

o p1<pp
° g1 <0 g
o r(p2) — r(p1) > r(q2) — r(q)

123 2 1230 1231 1232




Rees Product - Bjorner & Welker, 2003

Theorem (Bjorner & Welker)

The Rees product of any Cohen-Macaulay poset with any acyclic
Cohen-Macaualy poset is Cohen-Macaulay (CM means that
homology of each interval vanishes below its top dimension.)

Theorem (Jonsson (conjectured by Bjorner & Welker))

dim H,_1((Bn \ {0}) * C,) = # derangements in ,,.




Rees product of a Boolean Algebra and a Tree

Let T;, be the poset whose Hasse diagram is the complete t-ary
tree of height n with the root at the bottom.

T30 =

Theorem (Shareshian and MW)

The order complex of (B, * Tt.5) \ {0} has the homotopy type of a
wedge of A,(t) spheres of dimension n — 1. Moreover

(1 - t)E(2)

ChF/n_l((Bn e Tt,n) \ {6}) - m7

where E(z) = ;59 ez




Rees product of a Boolean Algebra and a Tree

As & ,-modules,

n—1

Hn-1((Bn * Ten) \ {0}) = sgn @ @D H¥(X,)t
j=0
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