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Introduction

Let X be an algebraic variety over K , an algebraic number field.

X has an associated C-variety X (C), but may also be ‘reduced
mod p’ for primes p of K , obtaining Fq-varieties Xp.

There are several cohomology theories associated with this
data, in particular the de Rham cohomology H j

dR(X ) and `-adic
cohomology H j(Xp, Q`).

The former has associated Hodge numbers hp,q(j), while the
latter has an action of Frobq, the q-Frobenius endomorphism.
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These cohomology theories are related in several ways by
comparison theorems.

My first purpose is to explain how the Hodge structure is
determined by the Galois (and hence Frobenius) action on
`-adic cohomology. Most of this is joint work with Mark Kisin.

The second is to show how counting fixed points of twisted
Frobenius maps on Xp is sometimes very effective in computing
group actions on HdR(X ).

The third is to apply these methods to the case of discriminant
varieties, which are defined as X := MG/G, where G is a
unitary reflection group, and MG is its corresponding
configuration space (or hyperplane complement). This amounts
to computing the cohomology of X with some local coefficients.
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Example

Let X be a variety over K ⊂ C, a number field, and let G be a
finite group of K -morphisms of X .

Problem: describe the (graded) action of G on the usual (Betti,
or singular) cohomology H∗(X , C).

Interpret as: compute for any g ∈ G

PX (g, t) := ∑i trace(g, H i(X , C))t i .

Let p be a prime ideal in K .
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The residue field k(p) of p has order (say) q, and we write Xq
for the Fq-variety associated with X .

There are two elements to the method: first, given an
isomorphism Q`

∼→ C, we have isomorphisms of G-modules

H i(X (C), C)
∼→ H i(Xq , Q`).

In practice, one has such results for “almost all q”, and this
suffices.

Second, assume that we knew that the Frobenius morphism F
acts on H i

c(Xq , Q`) with just a single eigenvalue qmi .
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For any g ∈ G, compute |X gF
q | using Grothendieck’s fixed point

theorem:

|X gF
q | = ∑i(−1)i trace(gF , H i

c(Xq , Q`))

= ∑i(−1)iqmi trace(g, H i
c(X (C), C)).

If we know the left side for almost all q, and i 7→ mi is injective,
then we have the compact supports version of PX (g, t).

Remark: The assumptions hold for all hyperplane
complements, the moduli space of n points on a genus 0 curve,
and smooth toric varieties; but there are more complicated
cases, like the Milnor fibre of an arrangement.
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Special case–baby example

Take X = C∗, G = Sym2 acting via r : z 7→ z−1

Here Frobq acts on H i
c(X ) as qi−1, i = 1, 2 because X is a

hyperplane complement.

Now X Frobq has q − 1 points, while z ∈ X rFrobq ⇐⇒ z−q = z,

and there are q + 1 such points.

Conclusion: H2
c (X ) = 1Sym2

, and H1
c (X ) = εSym2

. So
PX (t) = 1Sym2

+ tεSym2
by Poincaré duality.
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Cohomology and Filtrations.
The setup.

K : an algebraic number field, K : its algebraic closure.
S : a finite set of primes of K .
KS ⊂ K : the maximal subfield of K , unramified outside S.

G := Gal(K/K )
onto−→GK ,S := Gal(KS/K ).

These are both profinite topological groups; subgroups of finite
index are open.
` : a rational prime, all of whose prime factors in K lie in S.

If p 6∈ S is a prime of K , there is an element Frobp ∈ GK ,S well
defined up to conjugation.

If qp := |κ(p)| (κ(p) is the residue field of p) then Frobp induces
the qp-power map on the extension of κ(p) arising from KS.
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Cohomology theories
Let X be an algebraic variety (i.e. a reduced scheme of finite
type) over the number field K .

There are 3 cohomology theories naturally associated with X .
The interrelationships among them are the key to this work.

1. de Rham Cohomology. This is a sequence H j
dR(X )

j = 0, 1, 2, . . . of K -vector spaces, which come naturally with a
(Hodge) filtration F•H j

dR(X ):

FkH j
dR(X ) ⊇ Fk+1H j

dR(X ).

2. Betti (usual) Cohomology. For any embedding σ : K ↪→ C,
Xσ := X ⊗K C has C-points which may be identified with a
complex analytic (algebraic) variety Xσ(C).
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Its complex cohomology H j(Xσ(C), C) is a sequence of
C-vector spaces.

Betti cohomology comes with 2 natural filtrations: the first, F•

(“de Rham filtration”), arises from that of H j
dR via the extension

of scalars isomorphism:

H j
dR(X )⊗K C ∼−→ H j(Xσ(C), C)

∼−→ H j(Xσ(C), Z)⊗Z C.

The second filtration F• comes from the first via complex
conjugation. Together, they provide the Hodge filtration:

FpH j(Xσ(C), C)∩ F̄qH j(Xσ(C), C)
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Finally, we have

3. `-adic Étale Cohomology. With ` a rational prime as above,
we have a sequence of Q`-vector spaces H j(XK , Q`), the `-adic
cohomology of XK := X ⊗K K .

Important: G = Gal(K/K ) acts on XK , and hence on
H j(XK , Q`); in particular, so does Frobp for any prime p 6∈ S.

In fact the set of all Frobp is dense in G by the Chebotarev
density theorem.
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Interrelationships

Given σ : K → C which extends σ , and an embedding Q` → C,
we have canonical isomorphisms

(∗) H j(XK̄ , Q`)⊗Q`
C ∼−→H j(Xσ(C), C)

∼−→H j
dR(X )⊗K C.

These permit the transfer of information from each setting to
the others.
Weights

Each of the 3 cohomology theories (independently) carries an
increasing weight filtration W• (due to Deligne).

The isomorphisms (*) above respect the weight filtrations.
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The 3 filtrations F•, F•, and W• all interact in H j(Xσ(C), C) in a
way which connects the 3 cohomology theories.

We have:

FpH j(Xσ(C), C)∩ F̄qH j(Xσ(C), C) ⊂ Wp+qH j(Xσ(C), C)

and

GrW
n H j(Xσ(C), C) = ⊕p+q=nGrp

FGrq
F̄H j(Xσ(C), C).

The Hodge numbers are defined by
hp,q(j) = dimC Grp

FGrq
F̄H j(Xσ(C), C).

We shall give a characterisation of the Hodge numbers in terms
involving only the Galois action on `-adic cohomology.
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Let l be a prime of K which divides `, and write Kl for the l-adic
completion of K . The decomposition group Gl of ` maps into
GK ,S, and we may restrict Galois representations to Gl

The ‘Fontaine ring’ BdR is a discretely valued field with residue
field denoted C`; it contains Kl (hence also Q` and K ).

BdR has a decreasing filtration Fil•BdR, whose associated
graded components are Gl-modules of the form C` ⊗Q`

Q`(d)
(Tate twist).

Fundamental result: (Fontaine-Messing, Faltings, Kisin): there
is an isomorphism of filtered KlGl modules:

H j
dR(X )⊗K BdR

∼−→ H j(X , Q`)⊗Q`
BdR.

Proposition (Kisin-L, 2006): this isomorphism respects the
weight filtrations of the two sides.
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Important: on the left the filtration is Hodge ⊗Fil•, while on the
right it is purely number theoretic. (from Fil•).

Theorem 1. (Kisin-L) We have

hd ,m−d (j) = dimKl

(
GrW

m H j(X , Q`)⊗Q`
C`(d)

)Gl

Note: the left side involves geometry; the right side is
number-theoretic, involving only the Galois action.

This isomorphism is the key to applying knowledge of rational
points, or Frobenius action, to the complex manifold XC.

The first such application is:
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Theorem 2.(Kisin-L P&AMQ (Coates issue) 2006) Let K , S etc.
be as above, and let X be a variety over K . Assume that for
each prime p 6∈ S, the eigenvalues of Frobp on H j(X , Q`) are all
of the form ζqi

p (i ∈ N, ζ a root of unity.) and that for any i ∈ N,
there are ri of these.

Then Grp
FGrq

F̄H j(Xσ(C), C) has dimension ri if p = q = i , and is
0 otherwise.

NB The hypothesis is about eigenvalues of Frobenius, while the
conclusion is about the Hodge filtration, which does not exist in
`-adic cohomology.
Say that X is mixed Tate (mt) if it satisfies the conditions of the
theorem.

Examples: An, Pn, hyperplane complements, reductive group
schemes, homogeneous spaces, hyperplane complements,
toral analogues,...
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An abundant source of mt varieties is:

Prop: p : X → Y a smooth morphism of smooth K -varieties
such that each fibre p−1(y) is K -isomorphic to a fixed Z .
Assume that the local systems R jp∗C induced by
p : Xσ(C)→ Yσ(C) are constant for each j . If any 2 of X , Y , Z
are mt then so is the third.

It follows that, e.g., generalised Grassmannians are mt.
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The following consequence is relevant to the Springer fibres Bu
in the flag variety.

Prop Suppose X is such that for almost all q, Frobq has
eigenvalues of absolute value q

i
2 on H i

c(XK̄ , Q̄`). Then the
following are equivalent:

(1) X is mt.
(2) |X (Fqm )| = PX (qm) for all q, m >> 0, some PX (t) ∈ Z[t ].

They imply that
(3) H j

c(X , Q`) = 0 for j odd.

Example: this implies that the Springer fibre Bu has vanishing
odd cohomology if and only if IndGF

BF (u) is a polynomial in q for
an infinite number of characteristics.
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Katz’s theorem
Let hp,q = ∑j(−1)jhp,q(j) (taken for cohomology with compact
supports). These are the Euler-Hodge numbers of X .

Define HX (x , y) = ∑p,q hp,qxpyq. Katz has recently proved:

Theorem: (N. Katz, 2009)Suppose there is a polynomial
P(t) ∈ C[t ] such that for almost all q, |X (Fq)| = PX (q). Then
H(x , y) = P(xy).

This follows quite easily from Theorem 1 above. The following
equivariant version follows from our methods.

Theorem 3. Assume the hypotheses of Katz’s theorem. If G is
a group of automorphisms of X , then the virtual G modules
∑j(−1)jGrW

2mH j
c(X (C)) and ∑j(−1)jGrm

F Grm
F H j

c(X (C)) are equal
in the Grothendieck group of G.

Write EG
c,m(X , t) for the module above. The equivariant weight

polynomial W G
c (X ) = ∑m EG

c,m(X )tm ∈ R(G)[t ] (the
Grothendieck ring).



Katz’s theorem
Let hp,q = ∑j(−1)jhp,q(j) (taken for cohomology with compact
supports). These are the Euler-Hodge numbers of X .

Define HX (x , y) = ∑p,q hp,qxpyq. Katz has recently proved:

Theorem: (N. Katz, 2009)Suppose there is a polynomial
P(t) ∈ C[t ] such that for almost all q, |X (Fq)| = PX (q). Then
H(x , y) = P(xy).

This follows quite easily from Theorem 1 above. The following
equivariant version follows from our methods.

Theorem 3. Assume the hypotheses of Katz’s theorem. If G is
a group of automorphisms of X , then the virtual G modules
∑j(−1)jGrW

2mH j
c(X (C)) and ∑j(−1)jGrm

F Grm
F H j

c(X (C)) are equal
in the Grothendieck group of G.

Write EG
c,m(X , t) for the module above. The equivariant weight

polynomial W G
c (X ) = ∑m EG

c,m(X )tm ∈ R(G)[t ] (the
Grothendieck ring).



Katz’s theorem
Let hp,q = ∑j(−1)jhp,q(j) (taken for cohomology with compact
supports). These are the Euler-Hodge numbers of X .

Define HX (x , y) = ∑p,q hp,qxpyq. Katz has recently proved:

Theorem: (N. Katz, 2009)Suppose there is a polynomial
P(t) ∈ C[t ] such that for almost all q, |X (Fq)| = PX (q). Then
H(x , y) = P(xy).

This follows quite easily from Theorem 1 above. The following
equivariant version follows from our methods.

Theorem 3. Assume the hypotheses of Katz’s theorem. If G is
a group of automorphisms of X , then the virtual G modules
∑j(−1)jGrW

2mH j
c(X (C)) and ∑j(−1)jGrm

F Grm
F H j

c(X (C)) are equal
in the Grothendieck group of G.

Write EG
c,m(X , t) for the module above. The equivariant weight

polynomial W G
c (X ) = ∑m EG

c,m(X )tm ∈ R(G)[t ] (the
Grothendieck ring).



Katz’s theorem
Let hp,q = ∑j(−1)jhp,q(j) (taken for cohomology with compact
supports). These are the Euler-Hodge numbers of X .

Define HX (x , y) = ∑p,q hp,qxpyq. Katz has recently proved:

Theorem: (N. Katz, 2009)Suppose there is a polynomial
P(t) ∈ C[t ] such that for almost all q, |X (Fq)| = PX (q). Then
H(x , y) = P(xy).

This follows quite easily from Theorem 1 above. The following
equivariant version follows from our methods.

Theorem 3. Assume the hypotheses of Katz’s theorem. If G is
a group of automorphisms of X , then the virtual G modules
∑j(−1)jGrW

2mH j
c(X (C)) and ∑j(−1)jGrm

F Grm
F H j

c(X (C)) are equal
in the Grothendieck group of G.

Write EG
c,m(X , t) for the module above. The equivariant weight

polynomial W G
c (X ) = ∑m EG

c,m(X )tm ∈ R(G)[t ] (the
Grothendieck ring).



Katz’s theorem
Let hp,q = ∑j(−1)jhp,q(j) (taken for cohomology with compact
supports). These are the Euler-Hodge numbers of X .

Define HX (x , y) = ∑p,q hp,qxpyq. Katz has recently proved:

Theorem: (N. Katz, 2009)Suppose there is a polynomial
P(t) ∈ C[t ] such that for almost all q, |X (Fq)| = PX (q). Then
H(x , y) = P(xy).

This follows quite easily from Theorem 1 above. The following
equivariant version follows from our methods.

Theorem 3. Assume the hypotheses of Katz’s theorem. If G is
a group of automorphisms of X , then the virtual G modules
∑j(−1)jGrW

2mH j
c(X (C)) and ∑j(−1)jGrm

F Grm
F H j

c(X (C)) are equal
in the Grothendieck group of G.

Write EG
c,m(X , t) for the module above. The equivariant weight

polynomial W G
c (X ) = ∑m EG

c,m(X )tm ∈ R(G)[t ] (the
Grothendieck ring).



Katz’s theorem
Let hp,q = ∑j(−1)jhp,q(j) (taken for cohomology with compact
supports). These are the Euler-Hodge numbers of X .

Define HX (x , y) = ∑p,q hp,qxpyq. Katz has recently proved:

Theorem: (N. Katz, 2009)Suppose there is a polynomial
P(t) ∈ C[t ] such that for almost all q, |X (Fq)| = PX (q). Then
H(x , y) = P(xy).

This follows quite easily from Theorem 1 above. The following
equivariant version follows from our methods.

Theorem 3. Assume the hypotheses of Katz’s theorem. If G is
a group of automorphisms of X , then the virtual G modules
∑j(−1)jGrW

2mH j
c(X (C)) and ∑j(−1)jGrm

F Grm
F H j

c(X (C)) are equal
in the Grothendieck group of G.

Write EG
c,m(X , t) for the module above. The equivariant weight

polynomial W G
c (X ) = ∑m EG

c,m(X )tm ∈ R(G)[t ] (the
Grothendieck ring).



Minimally pure varieties

Deligne has shown that hp,q(j) = dimC Grp
FGrq

F̄H j
c(Xσ(C), C) = 0

if p < j − n or q < j − n, where n = dim X .

We therefore say X is minimally pure (mp) if
Grj−n

F Grj−n
F̄ H j

c(Xσ(C), C) = H j
c(Xσ(C), C).

Proposition: X is mp if and only if Frobq acts on H j
c(X , Q`) with

eigenvalues qj−n for each j .

Examples: hyperplane complements (L, 1990); toral
arrangment complements; ...

New from old: if A is an arrangement of mp varieties in X (mp),
the complement in X of A is mp.
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Unitary reflection groups
Let G be a finite unitary reflection group acting on V := Cn

AG is the set of its reflecting hyperplanes, MG the
corresponding complement, and XG := MG/G the correponding
discriminant variety.

Examples: when G = Symn, X is the usual discriminant variety
Dn := {f (t) = tn + a1tn−1 + · · ·+ an ∈ C[t ] | f has distict roots};
when G = G(r , 1, n) (the monomial group) then
XG = D0

n := {f (t) ∈ Dn | f (0) 6= 0}

If G̃ ⊆ NGL(V )(G) then Γ := G̃/G acts on XG. Problem:
compute W Γ

c (XG, t).

Equivalent formulation: for each representation ρ of Γ, compute
H j

c(XG,Lρ), Lρ = the corresponding local system on XG̃;
(MG̃/G→ XG̃ is a Galois Γ-covering.
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It’s easy to reduce by standard arguments to the case where G
acts irreducibly on V .

Then (for non-trivial N/G) there is just the ‘classical case’
G̃ = G(r , 1, n) ⊃ G = G(r , r , n) and 6 exceptional cases. The
latter include D4 ⊂ F4 ⊂ Aut(F4) and 4 complex cases.

I shall outline the computation in the classical case. Here
Γ = µr . So we will calculate the cohomology of discriminant
varieties with coefficients in certain line bundles.

The reflecting hyperplanes of G are zi −ζzj = 0 (ζ ∈ µr ). So
the map (z1, . . . , zn) 7→ (∏i(t + zr

i ), ∏i zi) identifies Xn := XG
with {(f (t),ξ) ∈ Dn ×C | ξn = an}.

Similarly XG̃ = D0
n
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Reductions of the problem
A key fact which permits the application of rational point
methods is:
Proposition: If M is any hyperplane complement (defined over a
number field) of dimension n, then GrW

m H j
c(X ) = 0 unless

m = 2(j − n)

Thus M is minimally pure (mp) in the sense of Dimca-L (1997).
It means that PG

c (t) may be calculated by computing rational
points as in the example at the start of the talk.

This implies, in particular, for g ∈ Γ, that

W Γ
c (XG, t ; g) = |X (F̄q)

gFrobq |q→t2 = t−2nPΓ
c (X ,−t2; g),

where PΓ
c (X ,−t2; g) = ∑j trace(g, H j

c(X , C)t j .

If also X is smooth and mp, then by Poincaré duality,
PΓ(X , t ; g) = (−t)n|X (F̄q)

gFrobq |q→−t−1
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Further reduction

Suppose X is a K -variety with Γ action, such that X = qiX (i) is
a decomposition into locally closed pieces which are permuted
by Γ.

Then W Γ
c (X , t) = ∑Oj∈O IndΓ

Γj
(W Γj

c (X (j), t)),

where O is the set of orbits of Γ on the pieces, and Γj is the
isotropy group in Γ of a point of Oj .

In our case, Mn = qn
i=1X (i)

n q M̃n,

where M(i)
n = {z ∈ Mn | zi = 0}, and M̃n is the hyperplane

complement of G̃ := G(r , 1, n).
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It follows after some calculation, that
Wµr

c (Xn, t) = Wµr
c (Ỹn, t) + Wc(X̃n−1(t)1µr ,

where X̃n is the discriminant variety of G̃ := G(r , 1, n),

and Ỹn = M̃n/G ' {(f (t),ξ) ∈ D0
n ×C | ξn = f (0)}.

NB: Ỹn−→X̃n ' D0
n is an unramified µr -covering

Theorem (L, 2003).

Pµr (Xn, t) =

{
(1 + t)1µr if r or n is odd
(1 + t)µr + (tn−1 + tn)εµr if r and n are even

Equivalent formulation: π1(D0
n) is the Artin braid group of type

Bn. Forω ∈ µ̂r , let ζω be the representation of π1(D0
n) which

takes the long root generators to 1, and the other generator to
ω(σ), where µr = 〈σ〉. Let Lω be the corresponding local
system on D0

n.
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and Ỹn = M̃n/G ' {(f (t),ξ) ∈ D0
n ×C | ξn = f (0)}.
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Theorem The cohomology of D0
n with coefficients in Lω is

given by

P(D0
n ,Lω, t) = ∑j dim H j(D0

n ,Lω)t j

=


(1 + t)(1 + t + · · ·+ tn−1) ifω = 1
tn−1 + tn ifω has order 2
0 otherwise.

Remark: I know of no heuristic explanation for the special role
of 2 here. An example of Anatole Libgober’s situation?
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Remarks about the proof.

The proof is a combinatorial exercise in counting rational points.

It depends on a power series identity, as follows.

Frobenius orbits on F̄×q correspond to irreducible polynomials
over Fq. For such a polynomial a(t), define τr (a) = a(0)

q−1
r .

Assume r |q − 1 and identify µr as a subgroup of Fq. For
α ∈ µr , let mr

d (α, q) be the number of such polynomials a(t) of
degree d such that τr (a) = α

For λ ∈ µ̂r define the power series
F (r)
λ (t) := 1 + ∑d≥1 ∑α∈µr mr

d (α, q)λ(α)td .
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We then have the following power series identity (generalisation
of the ‘cyclotomic identity’)

Fλ(t) =


1 if |λ| 6= 1 or 2
1−qt2

1−t2 if |λ| = 2
1−t2q

(1−tq)(1+t) if λ = 1.

Using the general results above, this translates into the
statement about Pµr (Xn, t).
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Remarks about the exceptional cases

There are 6 exceptional cases: 3 are two-dimensional; then
G(3, 3, 3) < G26, W (D4) < W (F4), and W (F4) < W̃ (F4)
(extension by graph automorphism)

Only in one of the 2 dimensional cases does a local system of
order three occur with non-zero cohomology.
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Concluding remarks

The problem of comoplete description of the cohomology of the
spaces XG with local coefficients is far from solved.

There are close connections with the equivariant cohomology
of the Milnor fibre, which Alex Dimca spoke about here in May.

Rational point methods may have limited applicability, but there
are still plenty of opportunities to exploit them. In general, even
when the cohomology is not mixed Tate, it has a mt part, which
conjecturally (the Tate conjectures) is spanned by a subvariety.

There are examples to show that Hodge structure is connected
with symmetries of the ambient variety. This is a line we are
pursuing.
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