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On the isoperimetric property of the
hypersphere in the class of sets whose oriented

boundary has finite measure

by Ennio De Giorgi

Atti Accad. Naz. Lincei Mem. (8) 5 (1958), pp. 33-44

Report by Renato Caccioppoli (referee)

”Dr. Ennio De Giorgi, in some previous papers, has made

deep studies concerning a very general concept, introduced by

Caccioppoli, of measure for the oriented boundary of a set in

the Euclidean space; measure named perimeter of the set by the
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author. These studies are cleverly applied in the present paper

to establish isoperimetric property of the hypersphere, which

is proved in the class of sets of finite perimeter. The proof is

essentially based on an important compactness criterion and

on rather hidden theorem concerning the comparison between

the perimeter of a generic set and the perimeter of another set

obtained by normalization and symmetrization with respect

to a hyperplane. The result is important, but especially

interesting is the original methodology of this work, which

is a starting point for new type of variational isoperimetric

problems. The Committee particularly recommend publication

of the paper of Dr. De Giorgi in the series Memoirs of the

Accademia dei Lincei.”

∗ January 11, 1958. On behalf of the Committee, Mauro Picone
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Helping Hands

Leonid Kovalev Jani Onninen

In fact Leonid and Jani are the major players in our lectures
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Motto
Sharing humor
and laughing with others
is more effective (powerful)
than laughing alone;

it strengthens friendship
and triggers positive feelings
among adversaries.

Heart-felt welcome

Tadeusz
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Tadeusz of SyracUSA/ Suomalinen

Blue lakes and sky,
white snow and white nights of the Finnish summer
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Archimedes of Siracusa (287BC - 212BC)

Father of the application of scientific knowledge

Quasiconformal
Geometry and Nonlinear Elasticity share compelling
beauty through variational integrals

- Tadeusz, SiracUSA
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Mappings h : X onto−→ Y

OUR LOGO
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Quasiconformal Mappings
h : X onto−→ Y , y = h(x)
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The n-dimensional Cauchy-Riemann system

D∗h(x) Dh(x) = J(x, h)2/nI , conformal mappings

Beltrami system for G conformal mappings

D∗h(x) Dh(x) = J(x, h)2/nG(x)

G(x) -distortion tensor , det G(x) ≡ 1

In dimension n = 2 these equations are linear.

hz̄ = µ(z)hz
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The Energy Integrals

EG[h] =
∫
X〈G

−1(x)D∗h , D∗h 〉n/2 dx , G− conformal

EI[h] =
∫
X |Dh(x)|n dx , −conformal energy

For every homeomorphism h : X onto−→ Y of finite energy we have

EG[h] =
∫
X〈G

−1(x)D∗h , D∗h 〉n/2 dx

> nn/2
∫
X J(x, h) dx = nn/2|Y|
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Equality occurs if and only if h satisfies the Beltrami system

D∗h(x) Dh(x) = J(x, h)2/nG(x) , G−conformal solutions

In dimension n > 3 , no G -conformal solution

may exist (even locally), but the energy-minimal

solutions (usually) do exist. In this latter case we

have

EG[h] > nn/2|Y|

The existance and geometric features of the G -energy minimal

maps are challenging problems in Geometric Function Theory.
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Nonlinear Hyperelasticity
(brief description)

One enquires into deformations h : X onto−→ Y of smallest energy

E [h] =
∫
X E(x, h,Dh) dx , E : X× Y× Rm×n→ R

where the accustomed hypothesis is Morrey’s Quasiconvexity.

This yields lower semicontinuity of the energy functional∫
E(x, h,Dh) dx 6 lim inf

∫
E(x, hk, Dhk) dx

whenever hk ⇀ h , weakly in W 1,p(X).
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Special (more practical) cases are polyconvex functionals.

They are convex with respect to subdeterminants D�h of the

differential matrix Dh

E [h] =
∫
X E(x, h,D�h) dx

Such are neohookean energy integrals like this

E [h] =
∫
X

(
|Dh(x)|n + 1

J(x,h)

)
dx

In quasiconformal geometry, a fundamental example of

polyconvex functionals is furnished by the L 1 -norm of the

inner distortion function of the inverse map f = h−1 :

Y onto−→ X ,
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E [f ] =
∫
Y KI(y, f) dy =

∫
Y
|D]f(y)|n

[J(y,f)]n−1 dy =∫
X |Dh(x)|n dx

Such mappings have originated in the paper by V. S̆verák and

T. Iwaniec, ”On mappings with integrable dilatation”

Proceedings of AMS vol. 118, no. 1 (1993), pp. 181-188.

Those of smallest L 1 - norm of the distortion are the analogues

of the planar Teichmüller mappings. In the forthcoming

lectures, the basic concepts developed for the Teichmüller

theory (quadratic differentials and their trajectories) will also

come into play in our approach to extremal harmonic maps.
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Dirichlet Energy ( n = 2 )

The Dirichlet (or conformal) energy of a Sobolev

mapping h ∈ W 1,2(X) is given by

EX[h] =
∫∫

X |Dh|
2 =

2
∫∫

X
(
|hz|2 + |hz̄|2

)
The first variation of E results in the Euler-Lagrange

equation.

∆h = 4hzz̄ = 0
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Hopf-Laplace Equation

In contrast, the inner variation leads to a nonlinear equation

∂

∂z̄

(
hz hz̄

)
= 0, hz hz̄ = φ, (φ is analytic)

for mapping in the Sobolev space W 1,2
loc (X) . This equation will henceforth be

referred to as the Hopf-Laplace equation, also known as energy-momentum or

equilibrium equation.

THEOREM. Every homeomorphism h ∈ W 1,2
loc (X)

which satisfies the Hopf-Laplace equation is in fact

a harmonic diffeomorphism.
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Lecture 1, Harmonic Mappings

Radó-Kneser-Choquet Theorem

A harmonic map h : X→ C of a Jordan domain,
which extends continuously as a monotone map
of ∂X onto a boundary of a convex region Y
is a C∞ -diffeomorphism of X onto Y .

See: P. Duren, Harmonic mappings in the

plane, Cambridge Tracts in Mathematics, 156.

Cambridge University Press, Cambridge, 2004.
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THEOREM. Every harmonic homeomorphism

h = u+ i v : X→ C is a C∞ -diffeomorphism

Proof. Suppose to the contrary that h(0) = 0 and

Jh(0) = 0 . Thus ∇u(z) and ∇v(z) are linearly

dependent at z = 0 . With the aid of a rotation

of h (multiplying it by a suitable complex number)

we are reduced to the case when ∇v(0) = 0 . Now

consider a real-valued harmonic conjugate function

w = w(z) (locally defined near 0 ) such that
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F (z) = w(z) + i v(z) is analytic and F (0) = 0

The Cauchy-Riemann equations wx = vy and wy =

−vx yield F ′(0) = 0 . Thus for some k > 2 we

have

F (z) = g ◦ f = fk , f =

f(z) is a conformal homeomorphism , f ′(0) 6= 0
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v = =mh

, This configuration of branches is impossible for a
homeomorphism. Indeed h cannot take 3 (or more)
disjoint branches of the level set {v = 0} into one line.
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Proof of Radó-Kneser-Choquet Theorem

By max/min principle h : X into−→ Y . We need only show that h =
u + i v : X → C is a local homeomorphism; equivalently, that Jh(z) 6= 0.
As before, assume that h(0) = 0 and Jh(0) = 0 , say ∇v(0) = 0 .

Target is convex.
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THEOREM. If the infimum Dirichlet energy within the class
H2(X,Y) is attained, then the energy-minimal map is harmonic.
Proof. By harmonic replacement argument (at the blackboard).

THEOREM. For Lipschitz multiply connected domains (or
simply connected + normalization), the infimum Dirichlet
energy within the class H2(X,Y) is attained at some ~ ∈
H2(X,Y) . If ~ is harmonic, then it belongs to H2(X,Y).

Proof. J~ > 0 , so |~z| > |~z̄| , where ~z and ~z̄ are analytic. We
rule out the case ~z ≡ 0 , because otherwise ~ ≡ const which is not the
energy minimal map. Thus the analytic function ~z has isolated zeros in

X outside which the ratio
∣∣∣~z̄~z ∣∣∣ 6 1 . Consequently, the zeros of ~z are

removable singularities of the meromotphic function ~z̄
~z . We conclude that
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outside the zeros |~z̄~z | < 1 , or J~ ≡ 0 . The latter case is impossible

for mappings in H2(X,Y) . The former case tells us that ~ is a local
homeomorphism outside the zeros of ~z . This, by elementary topology, is
possible for ~ ∈H2(X,Y) only when ~ ∈H2(X,Y) .

We just established the following principle for the Dirichlet energy:

The loss of harmonicity comes
exactly with the loss of injectivity.
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Existence of Energy-Minimal Homeomorphisms
(K. Astala, G. Martin, T.I. Arch. Rat. Mech. Anal. 2010)

An energy–minimal homeomorphism
h : A(r,R)

onto−→ A(r∗, R∗) between annuli exists iff

R∗
r∗
>

1

2

(
R

r
+
r

R

)

A straightforward proof of this (so called Nitsche bound) has been
established (J. Onninen and T.I. Memoirs of AMS, 2011) via
the concept of free Lagrangians.
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Below the Nitsche bound, R∗
r∗
6 1

2

(
R
r + r

R

)

h(z) =

{
z
|z| , r 6 |z| 6 1

(
collapsing into

concave boundary

)
1
2

(
z + 1

z

)
, 1 < |z| < R elastic response

This energy-minimal map is a W 1,2 -strong limit of
homeomorphisms. Here we scaled the target annulus by setting
r∗ = 1 < R∗ = 1

2

(
R+ 1

R

)
, for some number R > 1 . Consequently, the

domain annulus is given the inner and outer radii r 6 1 < R .
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The Nitsche Conjecture

In this latter example the energy-minimal deformation fails to be harmonic
homeomorphism. Actually there is no harmonic homeomorphism at all. In
the early 1960’s German-American mathematician Johannes C.C. Nitsche
raised a question of existence of harmonic homeomorphisms between
annuli. This fascinating problem is deeply rooted in the theory of
doubly connected minimal surfaces. Nitsche’s conjecture, which is now
a theorem (L. Kovalev, J. Onninen, T.I., JAMS 2011), asserts that

A harmonic homeomorphism exists iff :

R∗
r∗
>

1

2

(
R

r
+
r

R

)
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Free Lagrangians

We are about to introduce the basic concept in the study of
homeomorphisms with smallest energy, a

Given two domains Ω and Ω∗ in Rn, we shall consider orientation preserving
homeomorphisms h : Ω → Ω∗ in a suitable Sobolev class W 1,p(Ω,Ω∗) so
that a given energy integral

I[h] =

∫
Ω

E(x, h,Dh) dx

is well defined. The term Free Lagrangian pertains to a differential n-
form E(x, h,Dh) dx whose integral depends only on the homotopy class of

h : Ω
onto−→ Ω∗. The example of the Jacobian determinant is pretty obvious;
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we state it as ∫
Ω

J(x, h) dx = |Ω∗|

This identity holds for all orientation preserving homeomorphisms of Sobolev
class W 1,n(Ω,Ω∗). Many more differential expressions enjoy a property such
as this. In the next three lemmas we collect examples of free Lagrangians
for homeomorphisms h : A onto−→ A∗ of annuli A = {x ; r < |x| < R} and
A∗ = {x ; r∗ < |x| < R∗}.
Lemma Let Φ : [r∗, R∗]→ R be any integrable function. Then the n-form

Φ(|h|) dh1 ∧ ... ∧ dhn

is a free Lagrangian.

32



Precisely, we have

∫
A

Φ(|h|)J(x, h) dx = ωn−1

∫ R∗

r∗

τn−1 Φ(τ) dτ

for every orientation preserving homeomorphism h ∈ W 1,n(A,A∗).
This is none other than a general formula of integration by substitution.
Lemma. The following differential n-form

n∑
i=1

xi dx1 ∧ ... ∧ dxi−1 ∧ d|h| ∧ dxi+1 ∧ ... ∧ dxn
|h| |x|n

=
(d|h|) ∧ ?d|x|
|h| |x|n−1

is a free Lagrangian in the class of all homeomorphisms h ∈ W 1,1(A,A∗)
preserving the order of the boundary components of the annuli A and A∗.
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Precisely, we have ∫
A

d|h| ∧ ?d|x|
|h| |x|n−1

= ModA∗

Another free Lagrangians, dual to the above, relies on the topological degree.

Lemma. The following differential n-form

n∑
i=1

hi dh1 ∧ ... ∧ dhi−1 ∧ d|x| ∧ dhi+1 ∧ ... ∧ dhn

|x| |h|n
=

d|x|
|x|
∧ h]ω

is a free Lagrangian on the class of all orientation preserving homeomorphism
h ∈ W 1,n−1(A,A∗). Precisely, ω is the standard volume form in Sn−1

ω =

n∑
i=1

(−1)i
yi dy1 ∧ ... ∧ dyi−1 ∧ dyi+1 ∧ ... ∧ dyn

|y|n
,

∫
A

d|x|
|x|
∧h]ω = ModA
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Proof Below The Nitsche Configuration
R∗
r∗
6 1

2

(
R
r + r

R

)
. The target annulus A∗ is too thin, a portion of A has to

be hammered into the inner circle of A∗. Let us invoke normal (radial) and
tangential (angular) derivatives

|Dh|2 = |hN |2 + |hT |2 , Jh = Im
(
hT hN

)
6 |hN | |hT |

We begin with an obvious inequality(
|h| |hN |√
|h|2−1

− |hT |
)2

> 0 , equivalently:

|Dh|2 >
∣∣∣hTh ∣∣∣2 + 2 |hN | |hT |

√
1− |h|−2

> 2
|x| Im

(
hT
h

)
− 1
|x|2 + 2Jh

√
1− |h|−2
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Each of the three terms is a free Lagrangian. Therefore,∫
A |Dh|

2 >
∫
A

[
2
|x| Im

(
hT
h

)
− 1
|x|2 + 2Jh

√
1− |h|−2

]
dx

= 4π log R
r − 2π log R

r + 2π

[
τ
√
τ2 − 1− log(τ +

√
τ2 − 1)

]R∗
τ=1

= 2π log 1
r + 2π R∗

√
R2
∗ − 1

The first term represents the energy of the hammering map z 7→ z
|z| ; that

is, R = R∗ = 1 . The second term represents the energy of the critical
Nitsche map z 7→ 1

2 (z + 1/z̄ ) ; that is, r = 1 . The above energy-minimal
map is unique up to the rotation, by backwards analysis of the inequalities.
REMARK. Any energy-minimal map must satisfy the Hopf-Laplace equation.
Indeed, in spite of irregularity of the above minimal map, we have

hz · hz̄ = −1
4z2 , an analytic function
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About the Nitsche Conjecture
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Failure of Radial Symmetry

Theorem. (Onninen, T.I. Mem. Amer. Math. Soc. 2011). For
each n > 4, there are annuli A(1, R) and A∗(1, R∗) in Rn such that the
infimum of the n-harmonic energy

E [h] =

∫
A
|Dh(x)|n dx

among homeomorphisms is smaller than the energy of any radial map.
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Genuine mathematics does not abide in complexity

but somewhere in the unlimited beauty.

Let me paraphrase Luciano Pavarotti:

Learning mathematics by only reading about it is like
making love by e-mail

Thanks for listening
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