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You bet Jani Onninen had hands in it.
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Direct Method

This is a general method for constructing a proof of the existence of

a minimizer for a given functional, the method introduced by Stanis law

Zaremba and David Hilbert around 1900.

Consider an energy integral of the form

E [h] =
∫
XE(x, h,Dh) dx

defined for mappings h : X → Y in a subset H ⊂ W 1,p(X,Y) , p > 1

(a reflexive Banach space), where X and Y are domains in Rn and

E : X× Y× Rn×n → R

The direct method may be applied to such a functional by showing
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1 E is bounded from below,

2 Any minimizing sequence for E is bounded, and

3 E is weakly sequentially lower semi-continuous. Precisely, for any

sequence {hj} ⊂H weakly converging to h it holds that h ∈H and

E [h] 6 lim inf E [hj]

Showing sequential lower semi-continuity is usually the most difficult part

when applying the direct method.

Finding the proper class H ⊂ W 1,p(X,Y) for a specific
minimization problem is the heart of the matter.
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Notation and Preliminaries

Domains.

We shall study a pair of bounded domains X , Y ⊂ Rn (R2 ' C ) of the

same connectivity 1 6 ` < ∞ . This amounts to saying that each of the

complements Rn \ X and Rn \ Y consists of ` disjoint closed connected

sets.

X1,X2, ...,X` -the components of Rn \ X
Y1,Y2, ...,Y` -the components of Rn \ Y

Their boundaries are exactly the components of ∂X and ∂Y, respectively;

∂X1, ∂X2, ..., ∂X` -the components of ∂X

∂Y1, ∂Y2, ..., ∂Y` -the components of ∂Y
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Adding any number of sets in {X1,X2, ...,X`} to X results in a domain.

Doubly connected domains .

For a doubly connected domain X we reserve special notation, XI and XO,

for the bounded and unbounded components of Rn \X , respectively. Thus

∂X consists of two continua ∂XI = ∂IX and ∂XO = ∂OX , referred to as

inner and outer boundaries.

Boundary Correspondence .

Every homeomorphism h : X onto−→ Y gives rise to a one-to-one

correspondence between boundary components of X and boundary

components of Y which, upon a suitable arrangement of indices, will

be designated as

h : ∂Xν  ∂Yν , for ν = 1, ..., `

Precisely this means that the cluster set of ∂Xν under h is the boundary
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component ∂Yν . The components will be so ordered that the outer

boundary of X corresponds to the outer boundary of Y .

The class H (X,Y) .

It consists of all orientation preserving homeomorphisms h : X onto−→ Y which

satisfy the boundary correspondence (as above) .

W 1,p(X,Y) -Sobolev space of mappings

h = (h1, h2, ..., hn) : X into−→ Y

Dh =
[
∂hi

∂xj

]
∈ L p(X,Rn×n)

Note that h ∈ W 1,p(X,Y) has range in the closure of the target domain;

h : X into−→ Y ( most often Y ⊂ h(X) ⊂ Y )

.
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The Space Hp(X,Y) and Relevant Classes

Various classes of Sobolev mappings will be considered. Here they are:

• Hp(X,Y) = H (X,Y) ∩W 1,p(X,Y) , 1 < p <∞ .

• Hp(X,Y) is the closure of Hp(X,Y) in strong topology of W 1,p(X,Y)

• H̃p(X,Y) is the closure of Hp(X,Y) in weak topology of W 1,p(X,Y)

• Ĥp(X,Y) ⊆ H̃p(X,Y) stands for the family of all weak W 1,p(X,Y)

-limits of sequences {hj} ⊂Hp(X,Y) .

• Diff
p

(X ,Y) consists of C∞-diffeomorphisms in Hp(X,Y) . The fact is

that in planer domains Hp(X,Y) = Diff
p

(X ,Y) .
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Remark.

In general, the family of all weak limits of a set in a Banach space

need not be weakly closed. That is why we have only the inclusion

Ĥp(X,Y)  H̃p(X,Y) . However if X and Y are planar Lipschitz domains,

both not simply connected, then for p > 2 we have

Ĥp(X,Y) = H̃p(X,Y) = H p(X,Y) ( H 2(X,Y) = H 2(X,Y)).

The notation H 2(X,Y) stands for the class of strong limits in the Sobolev

space W 1,2(X,Y) of homeomorphisms hj : X onto−−→ Y .
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Homework 2. Let H be a subset of a Banach space W .

Denote by H the closure of H in norm topology of W ; that is,

the collection of all strong limits of sequences in H . Denote by

Ĥ the collection of all weak limits of sequences in H . Suppose

that Ĥ = H .

Show that the (sequentially) weak closure and
the strong closure of H are the same

DEFINITION. The (sequentially) weak closure of H is the smallest

set H̃ ⊃ H which is (sequentially) weakly closed. A set is (sequentially)

weakly closed if any weak limit of elements in this set belongs to this set.

Note that every closed set (in weak topology) is sequentially closed. The

converse is not generally true.
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Mazur’s Lemma

The lemma tells us that any weakly convergent sequence in a Banach space

has a sequence of convex combinations of its members that converges

strongly to the same limit, and is used to prove that

Weakly closed convex sets and closed convex
sets are the same thing

Remark. However, in our application the set H ⊂ W will consists of

homeomorphisms in the Sobolev space W 1,p(X,Y) , which is not convex.
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The Classes Hp(X,Y) ⊂ Hp(X,Y) ⊂ W 1,p(X,Y)

Recall that Hp(X,Y) consists of homeomorphisms h : X onto−−→ Y in the

Sobolev space W 1,p(X,Y) . We have seen (the Nitsche phenomenon) that

for the viable theory of energy-minimal deformations we ought to sacrifice

injectivity.

This is the challenge.

We invoke the strong closure Hp(X,Y) of Hp(X,Y) ⊂ W 1,p(X,Y) .

The existence of energy-minimal deformations within Hp(X,Y) will follow

once we show that the weak limit of Sobolev homeomorphisms

(applied to an energy minimizing sequence) can also be obtained as

strong limit.
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From now on X and Y are planar Lipschitz domains

I am a bi-Lipschitz image of a C∞ -

smooth domain, but I am not Lipschitz. Inward cusps and logarithmic

spirals emerged.
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The Weak and Strong Closures of
Sobolev Homeomorphisms are the Same Thing

Let homeomorphisms hj : X onto−−→ Y between planar `-connected

Lipschitz domains, 2 6 ` < ∞ , converge weakly in W 1,p(X,Y) to

h ∈ W 1,p(X,Y) , 2 6 p <∞ . Then there exists a sequence of

C∞-diffeomorphisms fj : X onto−−→ Y, fj ∈ h+ W 1,p
◦ (X,Y)

converging strongly in W 1,p(X,Y) to h .

This also holds for simply connected Lipschitz domains provided p > 2 .

However, the simply connected variant of this theorem with p = 2 requires

that the mappings be fixed at one interior point or at three boundary points.
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Traction-Free Problem

Let X and Y be ` -connected bounded Lipschitz domains , ` > 2 .

Consider the energy functional

EX[h] =

∫∫
X
E(x, h,Dh) dx , for Sobolev mappings h ∈ W 1,p(X,Y)

Here E : X× Y× R2×2 → R+ satisfies the usual Caratheódory regularity

conditions, coercivity |ξ|p < E(·, ·, ξ) < |ξ|p , p > 2 , and Morrey’s

quasiconvexity. Then there exists ~ ∈Hp(X,Y) such that

EX[~] = inf
h∈Hp(X,Y)

∫∫
X
E(x, h,Dh) dx

This also holds for mappings that are fixed on some portion of ∂X , while

slipping along the rest of ∂X is allowed.
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Monotone Mappings

It is a matter of topological routine to see that all the above mentioned

H -classes consist of monotone mappings.

Monotone mappings were born in the work of C.B. Morrey The Topology

of Path Surfaces, Amer. Journ. Math., 1935 [p.26].

We combine Morrey’s original definition with a theorem of G.T. Whyburn,

see page 2 in Analytic topology, AMS, Providence, R.I. (1963).

See also T. Radó, Length and Area, American Mathematical Society, New

York, 1948, for further reading about monotone mappings.

DEFINITION. A continuous mapping f : X onto−−→ Y between compact

metric spaces is monotone if for each connected set C ⊂ Y its preimage

f−1(C) is connected in X .
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THEOREM (Kuratowski-Lacher) Let X and Y be compact Hausdorff

spaces, Y being locally connected. Suppose we are given a sequence of

monotone mappings fk : X onto−−→ Y converging uniformly to a mapping

f : X→ Y , then f : X onto−−→ Y is monotone.

Equicontinuity and Monotonicity

LEMMA (Equicontinuity) Let X and Y be planar Lipschitz domains

of connectivity ` > 2 . Then, every h ∈ H 1,2
weak lim(X,Y) extends to

a continuous monotone map h : X onto−−→ Y . The boundary map

h : ∂X onto−−→ ∂Y is also monotone. Moreover,

|h(x1)− h(x2)|2 6
C(X,Y)

log
(
e + diam X

|x1−x2|

) ∫∫
X
|Dh|2, x1, x2 ∈ X.
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Proof. It is known that a homeomorphism h : X onto−−→ Y between Lipschitz

domains in the Sobolev space W 1,2(X,Y) extends continuously up to the

boundaries. And it is topologically clear that a continuous extension of a

homeomorphism h : X onto−−→ Y results in monotone mappings h : X onto−−→ Y
and h : ∂X onto−−→ ∂Y . These properties carry over to the uniform limits of

homeomorphisms. Thus it only remains to justify the uniform estimates.

Local estimates like this are well known for monotone mappings of Sobolev

class W 1,2(X ,Y)

T. Iwaniec, P. Koskela and J. Onninen, Mappings of finite

distortion: monotonicity and continuity, Invent. Math. 144

(2001), no. 3, 507531.

T. Iwaniec and G. Martin, Geometric function theory and non-

linear analysis, Oxford University Press, New York, 2001.
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The global inequality follows by the standard method of extending h

beyond the boundaries. It is at this point that the Lipschitz regularity of

the domains is required. We leave the routine details to the students.

REMARK. Similar arguments, including the extension procedure, apply

to a pair of simply connected Lipschitz domains if the mappings are fixed

at some interior point (h(x◦) = y◦ for some x◦ ∈ X and y◦ ∈ Y ) or at

three boundary points (h(x1) = y1 , h(x2) = y2 , h(x3) = y3 ).
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The Dirichlet and the
p -Harmonic Integrals

Let h = u + i v : Ω → C . The guiding examples of the energy integrals

will be:

D [h] =

∫∫
Ω

|Dh|2 =

∫∫
Ω

(
|∇u|2 + |∇v|2

)
< ∞

Dp[h] =

∫∫
Ω

( |∇u|p + |∇v|p ) < ∞ , 1 < p <∞
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How to make a square-hole washer using minimal energy

The minimal

map h ∈ Lip(X,Y) , h 6∈ C 1(X,Y) consists of harmonic quadrilateral

maps. It is a strong W 1,2- limit of diffeomorphisms , and a

diffeomorphism (no cracks) if 1 < R ∼ 1. See Homework 2.
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Cracks in Doubly Connected Domains
(no interior fractures)

Cracks propagate from ∂X along vertical trajectories of the Hopf differential

hz hz̄ dz ⊗ dz . A crack terminates in the interior of X . The map h is

energy minimal iff hz hz̄ dz ⊗ dz is analytic in X and real along ∂X .
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Lipschitz Regularity

In spite of occurrence of cracks, we have

Every energy-minimal deformation for the
Dirichlet integral within the class H2(X,Y)
is locally Lipschitz continuous, but not
necessarily C 1 -smooth

This is a corollary from Cristina, Kovalev, Onninen, T.I.

arXiv:1011.5934. For more general Lipschitz regularity results concerning

inner variational equations see Kovalev, Onninen, T.I. arXiv:1109.0720,

and the forthcoming Lecture 4.
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Existence of Harmonic Homeomorphisms

Theorem. (Koh, Kovalev, Onninen, T.I. Invent. Math.

2011) Among all homeomorphisms h : X onto−→
Y between bounded doubly connected

domains such that

ModX 6 ModY
there exists a harmonic diffeomorphism.
This map has smallest Dirichlet energy
and, as such, is unique up to conformal
automorphisms of X.
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Homeomorphisms of Smallest Mean Distortion
L 1-variant of the Teichmüller map

2 ‖Kf‖L 1(Y) =

∫∫
Y

|Df |2

detDf

(
=

∫∫
X
|Dh|2

)

THEOREM. Let X and Y be bounded doubly
connected domains in C such that ModX 6 ModY.
Among all homeomorphisms f : Y onto−−→ X there exists,
unique up to a conformal change of variables in X,
mapping of smallest L 1-norm of the distortion.
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Doubly connected membrane in R3
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No coffee no theorems;
this is not a question?
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Proving the Weak=Strong Theorem

Let homeomorphisms hj : X onto−−→ Y between planar

`-connected Lipschitz domains, 2 6 ` < ∞ , converge weakly in

W 1,p(X,Y), 2 6 p < ∞ , to h ∈ W 1,p(X,Y). Then there exists a

sequence of C∞-diffeomorphisms

fj : X onto−−→ Y, fj ∈ h+ W 1,p
◦ (X,Y)

converging strongly in W 1,p(X,Y) to h. This also holds for

simply connected Lipschitz domains when p > 2 , even for p = 2

but under a suitable normalization; say, if the mappings are

fixed at one interior point or at three boundary points.

27



The class H̃p(X,Y) ⊂ W 1,p(X,Y)

The class Ĥp(X,Y) of weak W 1,p(X,Y) -limits of homeomorphisms in

Hp(X,Y) will eventually turn out to be the weak closure of Hp(X,Y) .

This is not obvious at all , see Homework 2. Recall, our goal is to show

that

Ĥp(X,Y) jHp(X,Y) , p > 2

LEMMA. Every h ∈ Hp(X,Y) , p > 2 , extends as a continuous

monotone map h : X onto−−→ Y. The boundary map h : ∂X onto−−→ ∂Y is

also monotone. There is a uniform bound of the modulus of continuity of

h in terms of its L p - energy. Hence weak convergence in Hp(X,Y) yields

uniform convergence to the effect that all of the above properties hold for

h ∈ H̃p(X,Y)
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p -Harmonic Mappings in C , 1 < p <∞
Let h = u+ i v : Ω→ C , Ω− bounded simply connected domain

Ep[h] =

∫∫
Ω

( |∇u|p + |∇v|p ) < ∞

Such a map is said to be p -harmonic if 4pu = 4pv = 0 .

PROPOSITION . To every h ∈ C (Ω) ∩ W 1,p(Ω) there corresponds

unique p -harmonic h̃ ∈ C (Ω)∩W 1,p(Ω) such that h̃ = h on ∂Ω and

h̃ ∈ h+W 1,p
◦ (Ω) , which yields Ep[h̃] 6 Ep[h] , equality occurs iff h̃ ≡ h

If Ω is a Jordan domain and h takes ∂Ω homeomorphically onto a convex

curve, then h̃ is a C∞ -diffeomorphism. The latter is an adaptation of

the celebrated Radó-Kneser-Choquet theorem to p -harmonic setting by

Alessandrini-Sigalotti

29



p -Harmonic Hurwitz’s Theorem (Onninen, I.)

Suppose p-harmonic homeomorphisms

hn = un + i vn : Ω→ C , 4pun = 4pvn = 0

converge (c-uniformly) to h . Then either h is
a p -harmonic homeomorphism or its Jacobian
determinant J(z, h) ≡ 0 in Ω .

hn(x+ i y) = x + i
n y −→ x in a rectangle
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Step 1. Transfiguration to Circular Domains

W 1,p(X,Y) −−
Ψ]−−−→ W 1,p(X′,Y) −−

Φ]−−−→ W 1,p(X′,Y′)

Ψ](h) = g = h ◦Ψ Φ](g) = f = Φ ◦ g
continuous linear isomorphism nonlinear bounded bijection
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The problem lies in the continuity of the nonlinear operator induced by a

bi-Lipschitz transformation of the target domain Y .
In spite of discouraging example (by Piotr Haj lasz) we proved that:

PROPOSITION

Given any bounded `-connected Lipschitz domain Y ⊂ R2, there exists a

bi-Lipschitz map Φ: R2 onto−−→ R2 which takes Y onto a circular (Schottky)

domain Y′ such that the induced composition maps:

Φ] : W 1,p(Ω,Y)→ W 1,p(Ω,Y′), Φ](g) = Φ ◦ g

and its inverse

Φ−1
] : W 1,p(Ω,Y′)→ W 1,p(Ω,Y), Φ−1

] (f) = Φ−1 ◦ f

are continuous for all 1 < p <∞ , and all domains Ω ⊂ R2 .
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Step 2. The extension ĥ : X+−onto−−→ Y+

−ĥ −→∫∫
X+

|Dĥ|p 4
∫∫

X
|Dh|p . Hence, whenhk ⇀ h ,we have

∫∫
X
ϕ(x)J(x, hk)dx −→

∫∫
X
ϕ(x)J(x, h)dx , for ϕ ∈ L∞(X)
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Step 3. Meshes of open squares in Y and the
corresponding open cells in X
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U = h−1(Q ∩ Y) = {x ∈ X ; h(x) ∈ Q ∩ Y } open simply connected
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Step 4. p -Harmonic Replacement in a Cell

PROPOSITION. Let h ∈ H̃p(X,Y) and U ⊂ X be a cell. Then there

exists h∗ : X onto−−→ Y , h∗ = h : ∂X onto−−→ ∂Y, such that

(i) h∗ ∈ H̃p(X,Y)

(ii) h∗ = h : X \ U onto−−→ Y \ (Q ∩ Y)

(iii) h∗ : U onto−−→ Q ∩ Y is a p-harmonic diffeomorphism

(iv)

∫∫
X
|∇h∗|p 6

∫∫
X
|∇h|p
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Proof sketch
Having in the disposal weakly converging homeomorphisms hn ⇀ h , the

p -harmonic replacement h∗ : U onto−−→ Q ∩ Y is constructed as limit of p-

harmonic extensions of the boundary homeomorphisms h∗n : ∂Un
onto−−→ ∂Vn .
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Parempi ruuvi löysällä kuin
monta liian tiukalla.

(One screw loose is better than too many too tight)

Remember, however:

Failure to prepare details of the proof is a
preparation for failure. And this is not the
only punishment for laziness; there is also
success of others.
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A , B, C - incommensurate meshes

The

union
⋃

A ∪
⋃

B ∪
⋃

C must cover Y and its outer boundary
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Step 5. p -harmonic replacement in all A -cells

The A -cells provide us with a mapping hA : X onto−−→ Y , such that

(i) hA ∈ H̃p(X,Y) , hA = h : ∂X onto−−→ ∂Y

(ii) hA :
⋃

Acells
onto−−→

⋃
(Asquares ∩ Y) is a p-harmonic diffeomorphism.

hA = h elsewhere.

(iii)

∫∫
X
|∇hA|p 6

∫∫
X
|∇h|p.

(iv) ‖hA − h‖W 1,p(X) 6
1
3 ε (by Clarkson’s convexity argument)
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Step 6. Further replacements

We mimic the construction of hA using the mesh B instead. In this

procedure hA plays the role of the original map h . We obtain a map

hA B ∈ H̃p(X,Y) . This in turn, with the aid of C -cells, advances to a

mapping hA B C .

Upon three consecutive replacements in the A -cells, B -cells and C -cells

we arrive at the mapping H = hA B C that satisfies the following:

LEMMA. Let X and Y be circular domains whose outer boundary circles

are X and Υ , respectively, and let h ∈ H̃p(X,Y). Consider the open

region in X
Ω = h−1(Y ∪Υ) = {x ∈ X : h(x) ∈ Y ∪Υ}
Then for every ε > 0 there exists H ∈ H̃p(X,Y) , such that

‖H − h‖W 1,p(X) 6 ε
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U = {x ∈ X : h(x) ∈ Y ∪ ∂◦Y } , H : U onto−−→ Y is injective,
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Every block of stone has a statue inside it and it is the task of

the sculptor to discover it.” - Michelangelo, 1475-1564 .

Thank You for Listening Lecture 2
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