
INNER VARIATION

(Hopf Differentials and

Uniqueness Theorem)

Tadeusz Iwaniec (Helsinki & Syracuse)

Lecture 3 in Pisa
(Centro De Giorgi, June 11 - 15, 2012)



Jani comes back on stage

1



The inner variation (of the variables in X) leads to the Hopf differential

hzhz̄ dz⊗dz and its trajectories. For a pair of doubly connected domains, in

which X has finite conformal modulus, we establish the following principle:

A mapping h ∈H2(X,Y) is energy-minimal if and only if its

Hopf-differential is analytic in X and real along ∂X.

In general, the energy-minimal mappings may not be injective, in which

case one observes the occurrence of cracks in X . Nevertheless, cracks are

triggered only by the points in ∂Y where Y fails to be convex. The general

law of formation of cracks reads as follows:

Cracks propagate along vertical trajectories of the Hopf

differential from ∂X toward the interior of X where they

eventually terminate, so no crosscuts occur.
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A crosscut
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Recollection

THEOREM (Existence) Consider a pair (X ,Y) of nondegenerate multiply

connected domains, in which Y is a Lipschitz domain. Then there exists

h : X→ Y in the class H 2(X,Y) ⊂ W 1,2(X,Y) such that

EX[h] = inf{ EX[f ] : f ∈ H2(X,Y) }

Definition. Let X and Y be bounded domains. A map h ∈ H 2(X,Y)

such that

EX[h] = inf{ EX[f ] : f ∈ H2(X,Y) }
will hereafter be referred to as an energy-minimal map or, simply,

minimal map.
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Uniqueness of the minimal map is tricky.

THEOREM (Uniqueness). Let X be a nondegenerate doubly connected

domain and Y a bounded doubly connected Lipschitz domain. Then the

energy-minimal map h ∈ H 2(X,Y) is unique up to a conformal change of

variables in X.

If one wants to find an easy and clear way of verifying whether a given map

h : X onto−−→ Y is energy-minimal, one must look into the Hopf differential

hzhz̄ dz ⊗ dz . Here is the recipe.

THEOREM (Energy-minimal criterion). Let X and Y be bounded

doubly connected domains, X being nondegenerate. Then a mapping

h ∈ H 2(X,Y) is energy-minimal if and only if its Hopf-differential is

analytic and real along ∂X.
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It is surprising that this very useful criterion has not been established before.

The key observation in the proof of the Uniqueness Theorem is that the

difference of two solutions to the same Hopf-Laplace equation has finite

(not necessarily bounded) distortion on the set where at least one of the

solutions has strictly positive Jacobian.

Propagation of cracks is an interesting phenomenon not only in

modern theories of elasticity and plasticity, materials science or microscopic

crystallographic defects found in real materials but also from mathematical

point of view. Let h ∈H 2(X,Y) be an energy-minimal map. It should be

noted that in general h , being a limit of homeomorphisms from X onto

Y , has range in the closure of Y , in symbols h : X into−→ Y . The fact,

referred to as partial harmonicity, is that every energy-minimal map

h ∈ H 2(X,Y) (or a solution to the Hopf Laplace equation) is a harmonic

diffeomorphism of h−1(Y) ⊂ X onto Y .
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But there might be sets in X which are taken into a single point in ∂Y .

Definition. Given a point a ∈ ∂Y , the term crack (or a-crack) in

X refers to any connected component of the set {x ∈ X : h(x) = a } .
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When Y is at least Lipschitz regular then cracks in X emanate from ∂X ;

are never reduced to a single point or any continuum in X .
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How to detect the cracks?

THEOREM. Let h ∈ H 2(X,Y) be an energy-minimal map,
where X is a Jordan domain and Y a Lipschitz domain, both
multiply connected. Suppose Y is convex at a boundary point
a ∈ ∂Y , meaning that the set B ∩ Y is convex for some ball
B centered at a . Then a 6∈ h(X) .

In spite of the impressive progress in the field, formation of cracks under

energy-minimal deformations, to our knowledge, is not fully resolved. In

this domain the best reference is the book by K. Bertram Broberg.
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The problem clearly depends on the geometry of trajectories of the Hopf

differential hzhz̄ dz ⊗ dz . In this lecture we give a detailed description of

cracks in case of doubly connected domains. Accordingly, if the conformal

modulus of Y (deformed configuration) is large relative to X then the Hopf

differential hzhz̄ dz ⊗ dz is real and negative along ∂X . Consequently no

cracks occur, even in the presence of points of concavity in the boundary of

Y .

If, on the other hand, the target is conformally very thin then the cracks

are unavoidable. In this case the boundary components of X are horizontal

trajectories along which the Hopf differential is positive. The cracks are

born in ∂X and propagate along the vertical trajectories toward the interior

of X where they eventually terminate. Theoretical prediction of failure

of bodies caused by cracks is a good motivation that should appeal

to mathematical analysts and researchers in the engineering fields.
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Inner Variation and Hopf Differentials

For the convenience of the students we devote substantial part of this lecture

to the inner variations and the associated Hopf differentials. Although the

concept of inner variation has been used in the Calculus of Variations for a

long time, some of its nuances are still to be scrutinized.

Throughout this section X ⊂ R2 w C is a bounded domain whose points,

also called variables, will be denoted by x = x1 + ix2 .

Change of variables The term change of variables in X refers to a C∞-

diffeomorphism Ψ : X onto−−→ X which is continuous up to ∂X .
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Variation of variables in X . This is a one-parameter family of change of

variables {Ψ ε}−ε◦<ε<ε◦ , such that

(i) The function (ε, x) Ψ ε(x) is C∞-smooth in (−ε◦ , ε◦)× X

(ii) Ψ 0 = id in X

Inner variation of a mapping . Let h be a function in the Sobolev space

W 1,2(X,C) and {Ψ ε} a variation of variables in X . The family hε =

h ◦ Ψε is called an inner variation of h . Observe that all the mappings

hε have the same range as h , which is one of the desired properties that

motivates the use of inner variations. Additional assumption on the behavior

of Ψε near ∂X is needed in order to ensure that hε ∈ W 1,2(X,C) . In our

applications, however, this property will always be satisfied.
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Critical points. Choose and fix a variation {Ψ ε}−ε◦<ε<ε◦ of variables in

X . We say that h ∈ W 1,2(X,C) is a critical point for {Ψ ε} if

d EX[hε]

dε

∣∣∣
ε=0
≡ 0

Define λ = d
dε

∣∣
ε=0

Ψ ε and note that Dλ ≡ d
dε

∣∣
ε=0

DΨ ε .

LEMMA. (Integral form of the variational equation). Every critical

point for {Ψ ε}−ε◦<ε<ε◦ satisfies the equation

<e
∫∫

X
hz hz λz dz = 0 , where λ =

d Ψε

dε

∣∣∣
ε=0
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PROOF

The peculiarity of our derivation of the inner variational equation lies in

pointing out the relevance of the equation to the Cauchy-Green stress

tensor of h and the Ahlfors infinitesimal deformation operator for λ .

These connections were certainly overlooked in the literature; both are

worth noting for prospective generalizations. For example, the same ideas

work for the conformally invariant n-harmonic integrals in Rn .

Let us begin with the composition rule Dhε = Dh(Ψε) ·DΨε . We express

the Hilbert-Schmidt norm of the differential matrix Dhε via scalar product

of matrices

|Dhε|2 = 〈Dhε |Dhε〉 = 〈Dh(Ψε) ·DΨε | Dh(Ψε) ·DΨε〉

= 〈D∗h(Ψε) ·Dh(Ψε) | DΨε ·D∗Ψε 〉

where D∗ stands for the transposed differential. Then we integrate it over
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X by substitution ξ = Ψε(z)

EX[hε] =

∫∫
X

〈
D∗h ·Dh

∣∣∣ DΨε ·D∗Ψε

detDΨε

〉
dξ

At this point one may recall the Cauchy-Green stress tensor of h

C[h] = D∗h ·Dh

as well as Weyl’s conformal tensor of Ψε

W[Ψε] =
DΨε ·D∗Ψε

detDΨε

Since Ψ0 = id , dΨε

dε

∣∣
ε=0
≡ λ and dDΨε

dε

∣∣
ε=0
≡ Dλ , the infinitesimal

variation of W[Ψε] at the identity map is readily computed as
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dW[Ψε]

dε

∣∣∣
ε=0

= Dλ + D∗λ − (TrDλ) I

Here too, we recognize the Ahlfors infinitesimal deformation operator which

defines the conformal component of the matrix Dλ ,

Sλ =
1

2
[Dλ + D∗λ − (TrDλ) I] =

[
<e λz , =mλz
=mλz , −<e λz

]
The anticonformal component is afforded by the Ahlfors’ adjoint operator

Aλ =
1

2
[Dλ − D∗λ + (TrDλ) I] =

[
<e λz , −=mλz
=mλz , <e λz

]
Thus we have a pointwise orthogonal decomposition Dλ = Sλ+Aλ . Now,

a straightforward computation gives the variation of the energy integral
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d EX[hε]

dε

∣∣∣
ε=0

= 2

∫∫
X

〈
D∗h ·Dh

∣∣∣ Sλ
〉

dξ

= 8<e
∫∫

X
hz hz λz dz

because
〈
D∗h ·Dh

∣∣ Sλ
〉

= 4<e (hz hz λz) .
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The Hopf-Laplace Equation , Homework 3

Every complex function λ ∈ C∞0 (X,C) gives rise to a variation Ψε(z) =

z + ελ(z) of variables in X that is fixed at every point of ∂X . This

variation is legitimate for any function h ∈ W 1,2(X,C) . In particular,

applying the integral form of the variational equation to such λ we infer

via the classical Weyl’s lemma that

PROPOSITION. A function h ∈ W 1,2(X,C) that is critical for all inner

variations must satisfy the Hopf-Laplace equation in X ,

∂

∂z̄
hz hz = 0 , (in the sense of distributions)

equivalently,

hz hz = ϕ(z) , for some analytic function ϕ ∈ L 1(X)
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If one allows the critical mapping h to slip along an arc γ ⊂ ∂X then an

additional equation on γ will emerge, which in turn yields a specific form

of the analytic function ϕ . Let us illustrate it with an example of such

situation when γ = ∂X .

EXAMPLE. (Traction free critical solutions in an annulus) Consider a

traction free problem in an annulus X = { z ; r < |z| < R } ; that is, allow

h : ∂X into−→ ∂Y to slide along the boundary circles of X .

PROPOSITION. The Hopf-Laplace equation for a function h ∈
W 1,2(X,C) that is critical for all inner variations in X takes the form

hz hz = c
z2 , for all z ∈ X

where c is a real number.
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Proof (optional). We expand the Hopf product of h into a Laurent series

hz hz = ϕ(z) =

∞∑
n=−∞

an z
n

Then we test the integral equation with the following variations of variables

in X ,

Ψε(z) = z · 1 + ε(az̄k − āzk)

[ 1− ε2(az̄k − āzk)2 ]1/2
, k = ±1,±2, ...

where a can be any complex number and ε any sufficiently small real

number. Evidently |Ψε(z)| ≡ |z| , so Ψε : X onto−−→ X can easily be shown to
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be a C∞ -diffeomorphism. A short computation gives

λ =
d Ψε

dε

∣∣∣
ε=0

= z(az̄k − āzk) and λz̄ = k az z̄k−1

Put these values of λz̄ into the equation to obtain

0 = <e
∫∫

X

( ∞∑
n=−∞

an z
n
)
k az z̄k−1 dz = <e(k a ak−2)

∫∫
X
|z|2k−2 dz

for every complex number a . This yields ak−2 = 0 , except for k = 0 .

We just proved that ϕ(z) = a−2 z
−2 . To see that the coefficient a−2 is

real we test the integral equation again, but with the following variation of
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variables in X .

Ψε(z) = z· 1 + i log |z|
[ 1 + ε2 log2 |z| ]1/2

λ =
d Φε

dε

∣∣∣
ε=0

= i z log |z| and λz̄ = i
z

z̄

Then we find that

0 = <e
∫∫

X

a−2

z2
i
z

z̄
dz = −=m (a−2)

∫∫
X
|z|−2 dz , hence a−2 ∈ R

as desired.
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Vertical and horizontal arcs of a quadratic differential

Let ϕ(z) dz ⊗ dz be a holomorphic quadratic differential in X . A vertical

arc is a C∞-smooth curve γ = γ(t), a < t < b, along which

[γ̇(t)]2ϕ
(
γ(t)

)
< 0, a < t < b.

A vertical trajectory of ϕ in X is a maximal vertical arc; that is, not properly

contained in any other vertical arc. In exactly similar way are defined the

horizontal arcs and horizontal trajectories, via the opposite inequality.

If X is a circular annulus A = A(r,R) and ϕ(z) dz ⊗ dz is real along its

entire boundary then ϕ(z) = cz−2 , for some c ∈ R . For c > 0 the

concentric circles Cρ = { ρ eiθ : 0 6 θ < 2π} , ρ ∈ [r,R] , are the vertical

trajectories, whereas the rays Rθ = { ρ eiθ : r < ρ < R} , θ ∈ [0, 2π) , are
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the horizontal trajectories. For a negative c , this holds in reverse order.

These two cases exhibit different behavior in regard to the formation of

cracks.

Homeomorphic Solutions (recalled)
Kovalev, Onninen, T.I. arXiv:1006.5174)
Let h : X onto−→ Y be a homeomorphism of Sobolev class W 1,2(X,Y) that

satisfies the Hopf-Laplace equation

∂

∂z

(
hz hz

)
= 0

Then h is a harmonic diffeomorphism.
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Coffeeholics ≈ Coffeecolleagues

Jani Tadeusz

Coffee is the main ingredient in our proofs.
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An integral identity

LEMMA. Let X, Y and G be bounded domains in C. Suppose

that h : G onto−−→ Y and H : X onto−−→ Y are orientation preserving C∞-

diffeomorphisms of finite energy. Define f = H−1 ◦ h : G onto−−→ X. Then we

have

EX[H]− EG[h] = 4

∫∫
G

[
|fz − γ(z)fz̄|2

|fz|2 − |fz̄|2
− 1

]
|hzhz̄| dz

+ 4

∫∫
G

( |hz| − |hz̄| )2 · |fz̄|2

|fz|2 − |fz̄|2
dz

where

γ = γ(z) =

{
hzhz̄ |hzhz̄|−1 if hzhz̄ 6= 0

0 otherwise.
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PROOF. It is worth noting that f : G onto−−→ X need not have finite energy.

The convergence of the integrals, not obvious at the first glance, is a

consequence of the finite energy condition imposed on the mappings h and

H .

We begin with the chain rule applied to H = h ◦ f−1 : X onto−−→ Y ,

∂H(w)

∂w
= hz(z)

∂f−1

∂w
+ hz̄(z)

∂f−1

∂w

∂H(w)

∂w̄
= hz(z)

∂f−1

∂w̄
+ hz̄(z)

∂f−1

∂w

where w = f(z) . We express the complex partial derivatives of f−1 : X→
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X at w in terms fz(z) and fz̄(z) at z = f−1(w) ,

∂f−1

∂w
=

fz(z)

J(z, f)
and

∂f−1

∂w̄
= − fz̄(z)

J(z, f)
(0)

Note that the Jacobian determinant J(z, f) = |fz|2 − |fz|2 is strictly

positive. These expressions yield

∂H

∂w
=
hzfz − hz̄fz̄
|fz|2 − |fz|2

and
∂H

∂w̄
=
hz̄fz − hzfz̄
|fz|2 − |fz|2

Next we compute the energy of H over the set f(G) = X by substitution
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w = χ(z),

Ef(G)[H] = 2

∫∫
f(G)

(
|Hw|2 + |Hw̄|2

)
dw

= 2

∫∫
G

|hzfz − hz̄fz̄|2 + |hz̄fz − hzfz̄|2

|fz|2 − |fz̄|2
dz.

On the other hand, the energy of h over the set G equals

EG[h] = 2

∫∫
G

(
|hz|2 + |hz̄|2

)
dz
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The desired formula follows by subtracting these two integrals,

EX[H]− EG[h] = 4

∫∫
G

(
|hz|2 + |hz̄|2

)
· |fz̄|2 − 2 Re

[
hzhz̄fzfz̄

]
|fz|2 − |fz̄|2

dz

= 4

∫∫
G

2|hzhz̄| · |fz̄|2 − 2 Re
[
hzhz̄fzχz̄

]
|fz|2 − |fz̄|2

dz

+ 4

∫∫
G

( |hz| − |hz̄| )2 · |fz̄|2

|fz|2 − |fz̄|2
dz

= 4

∫∫
G

[
|fz − γ(z)fz̄|2

|fz|2 − |fz̄|2
− 1

]
|hzhz̄| dz

+ 4

∫∫
G

( |hz| − |hz̄| )2 · |fz̄|2

|fz|2 − |fz̄|2
dz
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Some Free Lagrangians

Recall that a free Lagrangian for a pair of domains X,Y ⊂ Rn is a nonlinear

differential n -form L(x, h,Dh) dx whose integral mean over X depends

only on the homotopy class of a homeomorphism h : X onto−−→ Y. Here are

a few of them for the annular domains X = A = {x ∈ C : r < |x| < R}
and Y = A∗ = {y ∈ C : r∗ < |y| < R∗}, where we make use of polar

coordinates ρ and θ

z = ρeiθ , 0 6 ρ <∞ and 0 6 θ < 2π .

The normal (radial) and tangential (angular) derivatives of a Sobolev
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mapping f are defined by

fN(z) :=
∂f(ρeiθ)

∂ρ
, ρ = |z|

and

fT (z) :=
1

ρ

∂f(teiθ)

∂θ
, ρ = |z| .

The Jacobian determinant of f is

J(·, f) = Jf = |fz|2 − |fz̄|2 = Im fNfT .

• Pullback of a 2-form in Y via an orientation preserving homeomorphism
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h ∈H (X,Y) ∩W 1,2(X,Y) is a free Lagrangian∫∫
X
N(|h|) J(x, h) dx =

∫∫
Y
N(|y|) dy .

• Normal differentiation gives rise to a free Lagrangian for h ∈H (X,A∗)∩
W 1,1(X,A∗) defined by∣∣∣∣∫∫

X
A(|h|)|h|N

|x|
dx

∣∣∣∣ = 2π

∣∣∣∣∣
∫ R

r

A
(
|h|
)∂|h|
∂ρ

dρ

∣∣∣∣∣
= 2π

∣∣∣∣∣
∫ R∗

r∗

A(τ) dτ

∣∣∣∣∣ .
• A dual free Lagrangian for h ∈ H (A,Y) ∩ W 1,1(A,Y) arises from

35



tangential differentiation

∣∣∣∣∫∫
A
B
(
|x|
)
Im
hT
h

dx

∣∣∣∣ =

∣∣∣∣∣
∫ R

r

B(t)

(∫
|x|=t

∂Argh

∂θ
dθ

)
dt

∣∣∣∣∣
= 2π

∣∣∣∣∣
∫ R

r

B(t) dt

∣∣∣∣∣
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Normal and Tangential Components of
the Distortion Function

Geometric function theory is concerned with the distortion function

Kf =
|Df |2

Jf
=

2
(
|fz|2 + |fz̄|2

)
Jf

.

We may decompose it as Kf = Kf
N +Kf

T , where (using polar coordinates)

the normal and tangential distortions of f are defined by the rules

Kf
N :=

|fz + z̄
zfz̄|

2

Jf
=
|fN |2

Jf

Kf
T :=

|fz − z̄
zfz̄|

2

Jf
=
|fT |2

Jf
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By convention, these two quotients are understood as 0 whenever the

numerator vanishes. Naturally, they assume the value +∞ if the Jacobian

vanishes but the numerator does not. For a mapping f ∈ W 1,1
loc the

quantities fN , fT , and Jf are finite a.e. and, therefore, Kf
N and Kf

T

are well defined measurable functions in the domain of definition of f .
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Two Lemmas

Using free Lagrangians we obtain sharp inequalities for L 2- averages of the

distortion functions

LEMMA 1. (Estimate of the normal component)

Let X be a bounded doubly connected domain that separates the origin

0 from ∞ , and let A∗ = A(r∗, R∗) be a circular annulus. If h ∈
H (X,A∗) ∩W 1,2(X,A∗) then∫∫

X

|hN |2

Jh

dz

|z|2
> 2π log(R∗/r∗) ,

|hN |2

Jh
= Kh

N .

Proof (optional)
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We have

2π log(R∗/r∗) = 2π

∣∣∣∣∣
∫ R∗

r∗

dτ

τ

∣∣∣∣∣ 6
∫∫

X

|hN |
|h|

dz

|z|
and (∫∫

X

|hN |
|h|

dz

|z|

)2

6
∫∫

X

|hN |
Jh

dz

|z|2

∫∫
X

Jh
|h|2

dz

=

∫∫
X

|hN |
Jh

dz

|z|2

∫∫
A∗

dy

|y|2
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LEMMA 2. (Estimate of the tangential component)

Let A = A(r,R) be a circular annulus and Y a bounded doubly connected

domain of finite conformal modulus. If h ∈H (A,Y) ∩W 1,2(A,Y), then

∫∫
A

|hT |2

Jh

dz

|z|2
> 2π

log2(R/r)

ModY
,
|hT |2

Jh
= Kh

T .

Proof (0ptional) There exists a conformal transformation F : Y onto−−→ A∗ ,

of Y onto an annulus A∗ = {z : 0 < r∗ < |z| < R∗}. We define

g = F ◦ h : Y onto−−→ A∗. Since F is conformal

∫∫
A

|hT |2

Jh

dz

|z|2
=

∫∫
A

|gT |2

Jg

dz

|z|2
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We have

2π logR/r = 2π

∣∣∣∣∣
∫ R

r

dt

t

∣∣∣∣∣ 6
∫∫

A

|gT |
|g|

dz

|z|
.

Now, it follows by Hölders inequality that

(∫∫
A

|gT |
|g|

dz

|z|

)2

6
∫∫

A

|gT |2

Jg

dz

|z|2

∫∫
A

Jg
|g|2

=

∫∫
A

|gT |2

Jg

dz

|z|2

∫∫
A∗

dy

|y|2
.
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Returning to Hopf Laplace Equation

LEMMA 3. Let A = A(r,R) be a circular annulus, 0 < r < R <∞, and

Y a bounded doubly connected domain. Suppose h ∈ W 1,1
loc (A,Y) satisfies

the Hopf-Laplace equation

hzhz̄ ≡
c

z2
in A , and Jh > 0 almost everywhere

where c ∈ R is a constant. Then we have point-wise inequalities{
|hN |2 6 Jh, if c 6 0

|hT |2 6 Jh, if c > 0

. PROOF. The complex Hopf-Laplace equation reduces to the system of
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two real equations,

|hN |2 − |hT |2 =
4c

|z|2

Re(hNhT ) = 0.

Recall that Jh = ImhN hT > 0 which in view of Re(hNhT ) = 0 reads as

Jh = |hN ||hT |

Combining these identities yields the point-wise estimates of the distortion

functions.
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Hopf solutions are energy-minimal

Throughout this section X and Y are Lipschitz doubly connected domains.

PROPOSITION. Suppose the Hopf-differential hzhz̄ dz⊗ dz defined for

h ∈H2(X,Y) is holomorphic and real along ∂X. Then

EX[h] = inf{EX[g] : g ∈H2(X,Y) } . (-14)

Furthermore, h is a unique minimizer (up to the conformal change of

variables in X) within the class H2(X,Y).

We shall only sketch the proof in case of positive Hopf differential.
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PROPOSITION. Suppose that a Hopf-differential hzhz̄ dz ⊗ dz , defined

for h ∈H 2(X,Y) , is holomorphic and real positive along ∂X . Then h is

an energy-minimal.

PROOF. A conformal transformation of X onto an annulus A = {z : r <

|z| < R} induces an isometry of H 2(X,Y) onto H 2(A,Y). Thus we may

assume that X = A, so as to apply the equality

hzhz̄ =
c

z2
c ∈ R \ {0} .

The assumption that ϕ(z) dz ⊗ dz is positive along ∂A simply means that

c < 0.

We write G := h−1(Y). In view of Theorem the mapping h : A → Y is

a harmonic diffeomorphism from G ⊂ A onto Y. Let H : A onto−−→ Y be an
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orientation preserving C∞-diffeomorphism. We denote

f = H−1 ◦ h : G onto−−→ A.

Applying Lemma, we have

EA[H]− EG[h] = 4 |c|
∫∫

G

[ |fz + z
z̄fz̄|

2

|fz|2 − |fz̄|2
− 1

]
dz

|z|2

+ 4

∫∫
G

(|hz| − |hz̄|)2 |fz̄|2

|fz|2 − |fz̄|2
dz

= 4 |c|
∫∫

G

[
Kf
N − 1

] dz

|z|2

+ 4

∫∫
G

(|hz| − |hz̄|)2 |fz̄|2

Jf
dz.
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Before estimating the right hand side we will show that

EA[h] = EG[h] + 4 |c|
∫∫

A\G

dz

|z|2
. (-15)

In view of Lemma Jh = 0 in A \ G. Since c < 0, by Lemma, |hN | = 0 in

A \G. Therefore, |Dh|2 = |hT |2 in A \G. On the other hand, in view of,

we have |hT |2 = −4c|z|−2 in A \G. Therefore

∫∫
A\G
|Dh|2 = −4 c

∫
A\G

d

|z|2
.
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Combining with we arrive at the identity

EA[H]− EA[h] = 4 |c|
[∫∫

G
Kf
N(z) dz −

∫∫
A

dz

|z|2

]
+ 4

∫∫
G

(|hz| − |hz̄|)2 |fz̄|2

Jf
dz.

According to Lemma∫∫
G
Kf
N > 2π log (R/r) =

∫∫
A

dz

|z|2
.

Therefore, if H : A onto−−→ Y is a C∞-diffeomorphism, we can write

EA[H]− EA[h] > 4

∫∫
G

(|hz| − |hz̄|)2 |fz̄|2

Jf
dz > 0.

49



The last inequality follows from the fact that f preserves the orientation.

Hence EA[H] > EA[h] for an arbitrary H ∈H2(A,Y), meaning that h is an

energy-minimal map.
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The distortion of the difference of two
solutions

(the key ingredient in the proof of uniqueness).

Suppose h,H ∈ W 1,2(X,C), Jh > 0 and JH > 0 , have the same Hopf-

product,

hzhz̄ = HzH z̄ = ϕ(z) 6= 0 almost everywhere (not necessarily analytic).

Consider the difference

F (z) = H(z) = h(z) ∈ W 1,2(X,C).
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We have

hz̄F z = hz̄(Hz − hz) = hz̄Hz − ϕ = hz̄Hz −HzHz̄

= Hz(hz̄ −Hz̄) = −Fz̄Hz

where we notice that

|hz̄|2 6 |hz̄||hz| = |ϕ||Hz̄|2

6 |Hz||Hz̄| = |ϕ|

Hence |ϕ|2|Fz|2 > |ϕ|2|Fz̄|2 so JF > 0 almost everywhere. Next we

introduce the Beltrami distortion coefficients

kh(z) =
|hz̄|
|hz|
6 1 and kH(z) =

|Hz̄|
|Hz|

6 1.
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We find that

|Fz̄| = kF (z)|Fz| where kF (z) =
√
kh(z) kH(z) 6 1.

Indeed, we have

|hz̄|2|Fz|2 = |Hz|2|Fz̄|2 , where |hz̄|2 = kh|ϕ| and kH|Hz|2 = |ϕ|.

Hence

khkH|Fz|2|ϕ| = kH|hz̄|2|Fz|2 = kH|Hz|2|Fz̄|2 = ϕ |Fz̄|2

and therefore

|Fz̄| =
√
khkH|Fz| = kF (z)|Fz|.
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Note that

kF (z)

{
< 1 whenever Jh + JH 6= 0

= 1 whenever Jh + JH = 0.

In particular, F has finite distortion whenever Jh 6= 0 or JH(z) 6= 0

|DF |2 = 2
(
|Fz|2 + |Fz̄|2

)
= 2

1 + khkH
1− khkH

JF .
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Two examples

Let us illustrate how Theorem works for mappings h : X onto−−→ Y between

doubly connected domains. Thus we shall look at the Hopf differential

hzhz̄ dz⊗dz to check as to whether it is real along ∂X . The two examples

here also serve to show a delicate difference between Hopf differentials being

positive or negative. We can, and do, assume without affecting the results

that the domain X is an annulus . Thus in either case we are dealing with

the solutions to the Hopf-Laplace equation

hzhz̄ =
c

z2
, in an annulus X

CASE c > 0 , Hopf differentials are negative along ∂X . This is the case in

which no cracks emerge. Consider the following infinite series of orthogonal
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harmonic functions

h(z) = − 2

R
log |z| +

R2 − 1

R

∞∑
n=1

zn − z̄−n

nRn

=
(
R− 1

R

)
Log

Rzz̄ − z
R− z

− 2R log |z|

The series converges in the closed annulus A = {z ; R−1 6 |z| 6 R } ,

except for two boundary points z = R±1. Her the symbol Log stands

for the continuous branch of logarithm in C+ = {ξ ∈ C ; <e ξ > 0 }
that is specified by Log 1 = 0. Observe that the expression ξ = Rzz̄−z

R−z
takes values in C+ , whenever R−1 6 |z| 6 R and z 6= R±1 . Clearly

h(z) = 0 for |z| = 1 and we have the following identity h(1/z) = −h(z̄) .

Elementary geometric considerations show that h takes the open annulus

AR = {z ; 1 < |z| < R } homeomorphically into a simply connected domain
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with puncture at the origin which is contained in a horizontal strip

h(AR) ⊂
{
ζ ; |=mζ| < π

2

(
R− 1

R

) }
Passing to the limit as R → ∞ , we obtain harmonic homeomorphism

h∞ = z − z̄−1 of A∞ = {z ; 1 < |z| < ∞} onto the punctured complex

plane C◦ . Next observe that the function ξ(z) = Rzz̄−z
R−z agrees with

the Möbius transformation ξ(z) = Rρ2−z
R−z when restricted to any circle

Cρ = {z ; |z| = ρ }. Thus the image of Cρ under ξ = ξ(z) is a circle in

C+ . We now observe that Log takes circles in C+ into strictly convex

smooth Jordan curves. The curves h(Cρ) , 1 < ρ < R , resemble a family of

ellipses with common focus at the origin. But the image of the outer circle,

ρ = R , looks more like a parabola, but it has been flattened to fit into the

horizontal strip.
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Checking the Hopf-Laplace Equation The Hopf differential

hzhz̄ dz ⊗ dz is real and negative on every circle Cρ , R−1 < ρ < R.

These circles are horizontal trajectories while rays are vertical trajectories.

Precisely, we have

hzhz̄ =
1

z2
, for all R−1 6 |z| 6 R , except for z = R±1

Indeed, a straightforward differentiation shows that

hz =
Rz − 1

R− z
1

z
, and hz̄ =

R− z
Rz − 1

1

z
,

whence the equation. The Jacobian determinant

J(z, h) = |hz|2 − |hz̄|2 =
(R2 − 1)(|z|2 − 1)

|R− z|2|Rz − 1|2
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changes sign when crossing the unit circle.

In general, finding the energy-minimal homeomorphism between designated

domains is not a trivial matter. Sometimes it comes unplanned, like in the

above example, in which the Hopf equation yields:

PROPOSITION. Denote by Aρ = h(Aρ) , where 1 < ρ < R . Among all

homeomorphisms f : Aρ onto−−→ Aρ the minimum Dirichlet energy is attained

for f = h, uniquely up to a rotation of Aρ. The minimum of energy equals

2

∫∫
Aρ

(
|hz|2 + |hz̄ |2

)
=

4π log ρ

R2
+

2π(R2 − 1)2

R2
log R2ρ2 − 1

R2ρ2 − ρ4

REMARK. The mapping h also represents the energy-minimal

deformation of any sub-annulus Ar2 \ Ar1 onto a doubly connected

shell Ar2 \ Ar1 where 1 < r1 < r2 < R . The energy EAr2\Ar1[h] =

EAr2[h]− EAr1[h] .
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CASE. c < 0 , Hopf differentials are positive along ∂X .

This is the case in which cracks may, though need not, emerge. The utility

of this approach is illustrated by the quick proof of the following
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THEOREM. Let X = A(r,R) and Y = A(r∗, R∗) be planar annuli.

Case 1. If
R∗
r∗
>

1

2

(
R

r
+
r

R

)
then the harmonic homeomorphism

h(z) =
r∗
2

(z
r

+
r

z̄

)
, h : X onto−−→ Y

has the smallest energy among all homeomorphisms h : X onto−−→ Y , and is

unique up to a rotation of A.

Case 2. If
R∗
r∗

<
1

2

(
R

r
+
r

R

)
then the infimum energy among all homeomorphisms h : X onto−−→ Y is not
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attained. Let a radius r < σ < R be determined by the equation

R∗
r∗

=
1

2

(
R

σ
+
σ

R

)
Then the following mapping

h(z) =


r∗

z
|z| r < |z| 6 σ cracks along the rays [r, ρ] ei θ

r∗
2

(
z
σ + σ

z̄

)
σ 6 |z| < R harmonic diffeomorphism

has smallest energy within the class H (X,Y) . This energy-minimal map

is unique up to a rotation of X .

PROOF.The proof is immediate from Theorem once we notice that

hz hz̄ dz ⊗ dz = − r
2
∗
4

dz ⊗ dz

z2
, in either case

62



A mediocre idea that generates enthusiasm will go further than

a great idea that inspires no one.”

- Quote on Enthusiasm by Mary Kay Ash quotes.
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