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Inner Variation
(brief description)

We establish Lipschitz regularity of solutions of nonlinear first-order
PDEs that arise from inner variation of numerous energy integrals
for mappings h : X onto−−→ Y between two designated domains in C .
Even in the simplest model case of the Dirichlet energy the inner-
stationary solutions need not be differentiable everywhere; the
Lipschitz continuity is the best possible. But the proofs, even in
the Dirichlet case, turn out to rely on topological arguments. The
appeal to the inner-stationary solutions in this context is motivated
by the classical problems in the theory of harmonic mappings and
some hyperelastic material models; specifically, Neo-Hookean solids.
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Dirichlet Integral
(brief description)

One enquires into deformations h : X onto−−→ Y of smallest stored energy

DX[h] =

∫∫
X
|Dh|2 = 2

∫∫
X

(
|hz|2 + |hz̄|2

)
dx1 dx2 , z = x1 + i x2

Hereafter hz = ∂h
∂z and hz̄ = ∂h

∂z are complex partial derivatives of h .
The first variation of E results in the Euler-Lagrange equation,

∆h = 4hzz̄ = 0
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Hopf-Laplace Equation
In contrast, the inner variation leads to a nonlinear equation

∂

∂z̄

(
hz hz̄

)
= 0, equivalently, hz hz̄ = φ, (φ is analytic)

for mapping in the Sobolev space W 1,2
loc (X) . This equation will

henceforth be referred to as the Hopf-Laplace equation, also known
as energy-momentum or equilibrium equation.

THEOREM. Every homeomorphism h ∈
W

1,2
loc (X) which satisfies the Hopf-Laplace

equation is in fact a harmonic diffeomorphism.
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Nonharmonic Energy-Minimal Solutions

Consider two annuli X = {z : r < |z| < R} and Y = {w : 1 < |w| < R∗}
where 0 < r < 1 < R <∞ and R∗ = 1

2(R+R−1). The map

h(z) =

 z
|z| , if r < |z| 6 1 , squeezing to the unit cirle

1
2(z + 1

z̄) , if 1 6 |z| < R , the Nitsche harmonic map

takes X onto Y ∪ ∂◦Y . It satisfies the Hopf-Laplace equation

hz hz̄ = ϕ(z) =
−1

4z2
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h(z) =

 z
|z| , if r < |z| 6 1 , hammering into the unit circle

1
2(z + 1

z̄) , if 1 6 |z| < R , the Nitsche harmonic map
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The energy minimal map is locally Lipschitz in the
entire annulus X , including cuts that are mapped
into corners of the square hole (concave part of ∂Y )
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Lipschitz Regularity for the
Hopf-Laplace Equation

THEOREM
Every W 1,2

loc (X) -solution to the Hopf-Laplace equation
with nonnegative Jacobian is locally Lipschitz but not
necessarily C 1-smooth.

This is a corollary from Cristina, Kovalev, Onninen, T.I.
arXiv:1011.5934. For more general Lipschitz continuity results for
solutions to inner variational equations see (Kovalev, Onninen, T.I.
arXiv:1109.0720), to appear in Duke Mathematical Journal.
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Failure of C 1 -Regularity

We use the polar coordinates for z in the closed unit disk D , z = ρeiθ ,
0 6 ρ 6 1 and 0 6 θ < 2π . Define a continuous map h : D→ C

h(ρeiθ) = 2ρ [
√
ρ sin(3/2 θ) + i sin θ] = z − z̄ − i

[
z3/2 − z̄3/2

]
.

This mapping is Lipschitz continuous, since it has bounded derivatives

hz = 1− 3/2 i
√
z, hz̄ = −1 + 3/2 i

√
z̄.

Moreover, its Hopf differential is holomorphic, hzhz̄ = −1/4 (4 + 9z). Thus
h solves the Hopf-Laplace equation ∂

∂z̄

(
hzhz̄

)
= 0.

However h fails to be C 1-smooth in any neighborhood of the ray I =
{z : Im z = 0 and 0 6 Re z 6 1}.
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Topologically, h is a harmonic diffeomorphism of D \ I onto the butterfly
domain Y ⊂ C. The Figure shows the grid of horizontal and vertical
trajectories in X as well as their images in Y.

The radius I is squeezed into the origin. Observe that the origin is a point
in ∂Y where Y fails to be convex.
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The Hopf Product hz hz̄ ∈ C α(X)

THEOREM. Let h ∈ W 1,2
loc (X) be a mapping with nonnegative

Jacobian. Suppose that the Hopf product hz hz̄ is bounded and
Hölder continuous. Then h is locally Lipschitz.

Hölder continuity of φ = hz hz̄ cannot be relaxed to continuity.

EXAMPLE. Let h(z) = z log log|z|−2 , for |z| < 1/2 . This mapping is
an orientation preserving homeomorphism which belongs to W 1,p for all
p <∞ . We compute

hz = log log
1

|z|2
− log−1 1

|z|2
and hz̄ =

z

z̄
log−1 1

|z|2
.

Clearly, φ = hzhz̄ is continuous. However, h is not Lipschitz.
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The Inner-Variational Equations

Let us consider the energy integral for mappings h : X→ C

E [h] =

∫∫
X
E(z, h, hz, hz̄) dx1 dx2 , z = x1 + ix2

where E = E(z, w, ξ, ζ) is a given stored-energy function.

Given any test function η ∈ C∞0 (X) and a complex parameter t , small
enough so that the map z 7→ z + t η(z) represents a diffeomorphism of X
onto itself, consider the inner variation ht(z) = h(z + tη) and its energy

E [ht] =

∫∫
X
E(z, ht, htz, h

t
z̄) dx1 dx2 , z = x1 + ix2
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First we make a substitution w = z + t η(z) and then differentiate to
obtain an integral form of the equilibrium equation ∂

∂t

∣∣
t=0

E [ht] = 0 . We
eliminate η through integration by parts to arrive at what is called the
inner-variational equation

∂

∂z̄

[
hzEζ + hz̄Eξ̄

]
+

∂

∂z

[
hzEξ + hz̄Eζ̄ − E

]
+ Ez = 0

Hereafter the subscripts under E stand for complex partial derivatives of
E = E(z, w, ξ, ζ) . The partial derivatives ∂

∂z and ∂
∂z̄ are understood in the

sense of distributions. The most basic example is the Dirichlet integrand
E = |ξ|2 + |ζ|2 and the associated Hopf-Laplace equation

∂

∂z̄

(
hz hz̄

)
= 0 , for h ∈ W 1,2

loc (X)
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Poincaré Disk

Let the target be the Poincaré disk D = {w ∈ C : |w| < 1 } equipped with

the hyperbolic metric ds = |dw|
1−|w|2. The associated Dirichlet integral

E [h] =

∫∫
X

|hz|2 + |hz̄|2

(1− |h|2)2
dx1 dx2

is certainly infinite for homeomorphisms h : X onto−−→ D in the Sobolev space
W 1,2

loc (X,D) . Nonetheless, it is interesting to examine the inner-variational
equation and all its solutions, not necessarily homeomorphisms.

∂

∂z̄

hz hz̄
(1− |h|2)2

= 0 , for h ∈ W 1,2
loc (X,D)
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Weighted Dirichlet integral

E [h] =

∫∫
X

(
|hz|2 + |hz̄|2

)
ρ(z, h) dx1 dx2

and its inner-variational equation

∂

∂z̄

[
ρ(z, h)hz hz̄

]
= ρz(z, h) (|hz|2 + |hz̄|2 ) , for h ∈ W 1,2

loc (X,D)

THEOREM. Suppose ρ = ρ(z, w) > 1 is Lipschitz continuous in the
z-variable and Hölder continuous in the w-variable. If h ∈ W 1,2

loc (X,D)
is a solution of (??) with nonnegative Jacobian, then h is locally
Lipschitz continuous.
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Proof of the weighted case

We are dealing with a nonhomogeneous Cauchy-Riemann equation

∂U

∂z̄
= u , where U = ρ(z, h)hzhz̄ , u =

(
|hz|2 + |hz̄|2

)
ρz(z, h)

At the beginning we only know that U, u ∈ L 1
loc(X). We shall

recurrently improve integrability properties of these terms. First
observe that U , having ∂

∂z̄ -derivative in L 1
loc(X), lies in L s

loc(X) for
every exponent 1 < s < 2 . Then, in view of pointwise inequality
|hz̄|2 6 ρ(z, h) |hz||hz̄| = |U |, we see that |hz̄|2 ∈ L s

loc(X) . This implies
that also |hz|2 ∈ L s

loc(X) . In this way we gain higher integrability
of the right hand side of (??); namely, u =

(
|hz|2 + |hz̄|2

)
ρz(z, h) ∈

L s
loc(X) , because ρz(z, h) is bounded. Now equation (??) places
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U in the space L
2s

2−s
loc (X) . This, in view of |hz̄|2 6 |U |, yields

|hz̄|2 ∈ L
2s

2−s
loc (X) ; |hz|2 ∈ L

2s
2−s

loc (X) as well. Thus we gained even
more integrability of u; u ∈ L p

loc(X) , with p = 2s
2−s > 2 . We again

appeal to equation (??). This time the equation yields Hölder
continuity of U ; precisely, U ∈ C α

loc(X) with α = 1 − 2
p > 0 . Let us

write the equation as

hz hz̄ =
ψ(z)

ρ(z, h)
, where ψ ∈ C α

loc(X)

We observe that h is also locally Hölder continuous, because hz̄ ∈
L 2p

loc (X) with exponent 2p > 2. The conclusion is that the Hopf
product hz hz̄ is a Hölder continuous function. Thus h is locally
Lipschitz.
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The General Setting

Let H = H(z, ξ) be a continuous function in X × {ξ : R < |ξ| 6 ∞} ,
where 0 6 R < ∞. there is a constant 0 6 L < ∞ such that for every
z ∈ X it holds:

|H(z, ξ1)−H(z, ξ2)| 6 L ·
∣∣∣ 1

ξ1
− 1

ξ2

∣∣∣ , forR < |ξ1| 6 |ξ2| 6∞

sup
z∈X
|H(z, ξ)| + sup

z1 6=z2

|H(z1, ξ)−H(z2, ξ)|
|z1 − z2|α

6M , for z1 , z2 ∈ X
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The Main Result

DEFINITION A function h ∈ W 1,2
loc (X) is said to be a solution to the

generalized Hopf-Laplace equation hz̄ = H(z, hz) if it holds for almost
every point z ∈ X , whenever |hz(z)| > R.

Note we impose no condition at the points where |hz(z)| 6 R . At such
points the gradient of h is bounded, |hz̄| 6 |hz| 6 R .

THEOREM. Suppose the equation hz̄ = H(z, hz) satisfies the
conditions (??) and (??). Then every solution h ∈ W 1,2

loc (X) with
nonnegative Jacobian is locally Lipschitz continuous. Specific
gradient estimates near ∂X , are also available.
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We will construct a continuous family {F λ}λ∈C
of so-called “good” solutions of F λ

z̄ = H(z, F λ
z )

such that all mappings g(z) = F λ − h , with
|λ| > λ◦ , satisfy (point-wise) the distortion
inequality |gz̄| 6 k|gz| , meaning that g is
quasiregular .
After that we appeal to the topology of
quasiregular mappings.

The interested reader is referred to recent papers by D. Faraco, B. Kirchheim
and L. Székelyhidi which also combine the theory of quasiregular mappings
with topological arguments.
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An Application to Nonlinear Elasticity

In nonlinear elasticity of isotropic materials one considers the energy of h
of the form

E [h] =

∫∫
X
W
(
z, h, |hz|2, |hz̄|2

)
Specifically, neo-Hookean models of elasticity deal with the integrands W
which blow up as the Jacobian determinant approaches zero. To emphasize
a possible neo-Hookean character of the integrand we bring to the stage
the following integral,

EX[h] =

∫∫
X

|Dh(z)|2p

J(z, h) p−1
dz =

∫∫
X

(
|hz|2 + |hz̄|2

)p
(|hz|2 − |hz̄|2)

p−1, p > 1

subject to homeomorphisms h : X onto−−→ Y in the Sobolev space W 1,2(X).
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THEOREM.

Let h ∈ W
1,1

loc (X) be an inner-stationary mapping
for the above energy integral EX[h] <∞ . Then
h is locally Lipschitz continuous. Furthermore
the stored energy function E(Dh) is locally
bounded.

This integral gains additional interest in Geometric Function Theory
because the transition to the energy of the inverse mapping f =
h−1 : Y onto−−→ X results in the L p-norm of the distortion function.
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L p-norm of the distortion function

EY[f ] =

∫∫
Y
Kf(w)p dw, Kf(w) =

|Df(w)|2

Jf(w)
> 1 , Jf(w) =

1

J(z, h)

We see that conformal mappings, for which Kf ≡ 1 , are the absolute
minimizers. In general, L p-integrability of the distortion function only

guarantees that f ∈ W 1, 2p
p+1(Y). Indeed,

∫∫
Y
|Df |

2p
p+1 =

∫∫
Y
K

p
p+1

f J
p
p+1

f 6

(∫∫
Y
Kp
f

) 1
p+1
(∫∫

Y
Jf

) p
p+1

= ‖Kf‖
p
p+1

L p(Y)
· |X|

p
p+1 <∞
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Will explain Lipschitz regularity for Coffee
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The Proof of Lipschitz Regularity in
the Model Case : Hopf-Laplace Equation

THEOREM. Suppose that the Hopf product hz hz̄ = φ(z) is analytic
and bounded in a domain X ⊂ C , for some h ∈ W 1,2(X) ∩L∞(X) with
nonnegative Jacobian. Then h is locally Lipschitz. Moreover, for almost
every z ∈ Ω we have

|∇h(z)| 6
13 oscX[h]

dist(z, ∂X)
+ 5 ‖φ‖1/2

L∞(X)

Note that |hz̄|2 6 |hz hz̄| 6 |φ| ∈ L∞(X) . But this is only good enough
to infer that Dh ∈ BMOloc(X) ; the inclusion hz ∈ L∞loc (X) is the
true challenge.
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Step 1. Good Family of Solutions

Finding good solutions to the equation hz hz̄ = φ(z) in which φ is
analytic presents no difficulty. First consider X = D -the unit disk, and
assume that φ is bounded and analytic in D . Denote by Φ = Φ(z)
its anti-derivative such that Φ(0) = 0 . Thus Φz̄ = 0 and Φz = φ .
Clearly, Φ extends continuously to the closed unit disk D = D. The
mappings Fλ(z) = λz + fλ(z) , where fλ(z) = λ−1Φ(z) with complex

parameter λ 6= 0 , solve the same equation Fλz F
λ
z̄ = φ(z) . Also note that

‖fλ‖∞ 6 |λ|−1‖φ‖∞ .

A short computation reveals that the difference g = gλ(z) = Fλ(z)− h(z)
is a W 1,2(D)-solution to a linear elliptic equation
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Step . A Family of Quasiregular Mappings

g = gλ(z) = Fλ(z)− h(z)

gz̄(z) = ν(z) gz(z) , ν(z) =
−hz̄(z)
λ

, |ν(z)| 6 1

2

whenever |λ| > 2 ‖hz̄‖∞ . Now consider a continuous family of mappings
Gλ(z) = 1

λ g
λ(z) = z + 1

λ

[
fλ(z)− h(z)

]
. We have

|Gλ(z)− z | 6 ‖φ‖∞
|λ|2

+
‖h‖∞
|λ|

<
1

3

provided |λ| > 2
√
‖φ‖∞ and |λ| > 13 ‖h‖∞ . This shows, in particular,

that Gλ is a nonconstant quasiregular mapping, thus orientation-preserving,
open and discrete. At this point we appeal to a Rouché type lemma.
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Step 3. Rouche’s Lemma

Let G = Gλ(z) be a continuous family of mappings Gλ : D = D → C
parametrized by complex numbers λ with % 6 |λ| 6∞ , such that
(i) G∞(z) ≡ z
(ii) |Gλ(z)− z| < 1

3 , for z ∈ D and |λ| > %
(iii) For every |λ| > % the map Gλ : D→ C is orientation preserving open
and discrete.
Then, given any z◦ ∈ 1

3D and parameter |λ| > % , the equation

Gλ(z) = Gλ(z◦) , for z ∈ D ;

admits exactly one solution z = z◦ .
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Step 4. Injectivity of gλ

We infer that the mappings Gλ(z) = 1
λg
λ(z) are injective in the disk 1

3 D .

So are the mappings gλ(z) = λz + λ−1Φ(z)− h(z) . This reads as follows:

h(z1)− h(z2) 6= λ ·
{
z1 − z2 + 1

|λ|2
[
Φ(z1)− Φ(z2)

] }
for z1 6= z2 in the disk 1

3 D . Letting λ run over a circle of radius |λ| we
conclude that
|h(z1)− h(z2)| 6= |λ| ·

∣∣∣z1 − z2 + 1
|λ|2
[
Φ(z1)− Φ(z2)

] ∣∣∣
This is possible only when

|h(z1)− h(z2)| < |λ| ·
∣∣∣z1 − z2 +

1

|λ|2
[
Φ(z1)− Φ(z2)

] ∣∣∣
because the right hand side is continuous in λ and the inequality (??) holds
for large values of |λ| .
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Step 5. Conclusion
A conclusion is immediate;

‖∇h‖L∞(1
3D) 6 |λ| +

1

|λ|
‖φ‖L∞(D)

All the conditions we have encountered for the parameter λ are satisfied if
we set

|λ| = max


2 ‖hz̄‖L∞(D)

2 ‖φ‖1/2L∞(D)

13 ‖h‖L∞(D)

Therefore,

‖∇h‖L∞(1
3D) 6 2 ‖hz̄‖L∞(D) + 13 ‖h‖L∞(D) + 3 ‖φ‖1/2L∞(D)
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General Equation
Step 1. Good Family of Solutions

We are looking for a family {Fλ}|λ|>λ◦ , Fλ(z) = λz + fλ(z) , of ”good”

solutions to the equation Fλz̄ = H(z, Fλz ) . Equivalently,

fλz̄ = H(z, λ+ fλz )

in the closed unit disk X = D = {z : |z| 6 1 }. The good solutions
{fλ}|λ|>λ◦ are obtained by fixed point method. In fact we extend the
equation to the entire complex plane C . Then the problem reduces to a
singular integral equation for the function ω = fλz̄ , which is found uniquely
in the Besov space Bp

α(C) ⊂ L∞(C) , p = 3/α > 3 .

‖ω ‖α,p := ‖ω‖p + sup
τ 6=0

‖ω(·+τ)−ω(·)‖p
|τ |α < ∞
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PROPOSITION.

There is λ◦ = λ◦(H) and a family {fλ}|λ|>λ◦ of solutions in D such
that

fλ(0) = 0 (1)

|fλ(z1)− fλ(z2)| 6 λ◦ · |z1 − z2| (2)

|fλ1(z)− fλ2(z)| 6 λ◦ ·
∣∣∣λ1 − λ2

λ1 · λ2

∣∣∣ (3)

We have the family {Fλ}|λ|>λ◦ , F
λ(z) = λz + fλ(z) of ”good”

solutions.

For sufficiently large |λ| , say |λ| > σ , all gλ = Fλ−h are nonconstant
K -quasiregular mappings, hence open and discrete.
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Step. 2 The Difference gλ = F λ − h

We apply Rouche’s Lemma to the family{
Gλ(z) = 1

λ g
λ(z) = z + 1

λ

[
fλ(z) − h(z)

]
, for z ∈ D and |λ| > σ

G∞(z) ≡ z

to conclude that Gλ(z1) 6= Gλ(z2) , whenever z1 and z2 are distinct
points in 1

3D and |λ| > σ . This reads as follows

COROLLARY. For all complex parameters λ with |λ| > σ the
mappings gλ(z) = λz+fλ(z)−h(z) are injective in the disk 1

3D ; that
is, for z1 6= z2 in 1

3D

h(z1)− h(z2) 6= λ(z1 − z2) + fλ(z1)− fλ(z2)
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Step. 3 A Lipschitz Bound
We shall infer from this, using topological degree arguments, the following
inequality

LEMMA. For every circle Tρ = {λ : |λ| = ρ} with ρ > σ there exists
λ ∈ Tρ such that

|h(z1)− h(z2)| 6 |λ(z1 − z2) + fλ(z1)− fλ(z2)|

We invoke this inequality with ρ = σ to conclude with the desired Lipschitz
bound

|h(z1)−h(z2)| 6 t|a| 6 σ |z1−z2|+|f ρ e
iθ

(z1)−f ρ e
iθ

(z2)| 6 (σ+λ◦)|z1−z2|
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Proof of the Lemma (optional)

This inequality certainly holds for large values of ρ . To simplify writing we
denote a = h(z1) − h(z2) and assume, as we may, that a 6= 0 . We shall
consider a family of mappings Φaρ : T→ T , with parameter ρ > σ , given
by

Φaρ(e
iθ) =

F (ρ eiθ)− a
|F (ρ eiθ)− a|

, where F (λ) = λ · (z1 − z2) + fλ(z1)− fλ(z2)

By virtue of the inequalities (??), each such mapping has well defined
degree, denoted by deg Φaρ , also known as winding number. Letting the
parameter ρ vary we obtain an integer-valued continuous function in ρ ,
thus constant. We identify this constant by letting ρ→∞ . The mappings
converge uniformly to Φa∞ : T → T , where Φa∞(eiθ) := z1−z2

|z1−z2|
· eiθ . The
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degree of this limit map is equal to 1. Hence we conclude that

deg Φaρ = 1 , for all parameters ρ > σ

We now fix ρ > σ and move the point a 6= 0 to ∞ along the straight
half-line {ta : t > 1 } , to observe that for some t > 1 the point ta lies
in F (Tρ) . For if not, we would have well defined degree of the mappings
Φtaρ : T→ T , given by

Φtaρ (eiθ) =
F (ρeiθ)− ta
|F (ρeiθ)− ta|

By virtue of continuity with respect to the parameter t we would have

deg Φtaρ = deg Φaρ = 1 , for all t > 1
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On the other hand letting t → ∞ the mappings Φtaρ : T → T converge
uniformly to a constant map Φ∞ρ = a

|a| , whose degree is zero, in

contradiction with the case t = 1 . Thus ta ∈ F (Tρ) , for some t > 1 ,
meaning that

ta = λ · (z1 − z2) + fλ(z1)− fλ(z2) , for some λ ∈ Tρ

which yields the desired inequality.
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If a variational equation admits nice family of solutions then,
most likely, other solutions are also nice.
∗ - Motto in Geometric Theory of Variational PDEs
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