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INTRODUCTION

This project continues the investigation on the algebra mentioned in the
title started some years ago by Juyumaya with the partial support of the
Fondecyt projects. It should benefit of the expertise of Papi in the represen-
tation theory of Hecke algebras and its relationships with the combinatorics
of symmetric groups and more generally reflection groups [43], [44], [45].

The project is based on some natural questions derived from recent papers
by Juyumaya on these algebras: it started conceptually during a visit of Papi
at the University of Valparaiso in September/October 2016.

We briefly review in Sections 1 and 2 the basic setting and make explicit
in Section 3 the goals of our project.

REQUESTS TO CENTRO DE GIORGI

We ask for hospitality in the environment of Centro De Giorgi as far
as the Juyumaya is concerned, in the period July 16-July 30, 2017. A
contribution towards lodging expenses for Juyumaya (or, even better, the
possibility to use some lodging) would be most welcome. Papi may commute
from Roma in that period, and he has grants allowing him to cover living
and lodging in Pisa for himself; afterwards, we plan to meet in Roma for one
or two weeks. The lodging expenses of this last period will be covered by
the project “Teoria delle Rappresentazioni e Applicazioni”, leaded by Papi.

1. YOKONUMA-HECKE ALGEBRA

1.1. The Yokonuma—Hecke algebras, called from now on simply Y-H alge-
bras, were introduced by T. Yokonuma in [50] as centralizer of the permu-
tation representations associated to a finite Chevalley group with respect
to a maximal unipotent subgroup. Thus, they correspond to natural gen-
eralizations of the Hecke algebras; also, the Y-H algebra corresponds to
a particular case of unipotent Hecke algebra, see [49]. After the paper of
Yokonuma above only few papers were written on the Y-H algebras. The in-
terest for the Y—H algebras was revived notably in the last years, principally
due to the application of these algebras to the construction of invariants for
1
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framed links [34] and classical links [33]. Thus, these algebras become a
subject of study not only in knot theory [9, 14, 46, 23] but in representation
theory [12, 17, 15, 16] as well.

1.2. The Y-H algebras considered for application to knot theory correspond
to those of type A and are denoted by Y4, (u) [26, 27, 29], cf. [25]. More
precisely, let d and n be two positive integers and u an indeterminate. The
Y-H algebra Yg,(u) is the associative unital C(u)-algebra presented by
braiding generators g, ...,gn—1 and framing generators ti,...,t, subject
to A—braided relations among the g;’s together with the following relations:

tlc.l =1, tit; = t;t;, tjg; = gitsi(j) for all 4,7

where s;(j) is the effect of the transposition s; := (i,i + 1) on j. And the
quadratic relations

(1) g =1+ (u—1ei(1+g)
with
1 d—1
(2) eaii=5y thati*  (1<i<n-1)
s=0

[12, 8] introduce a variant of the above presentation for the Yokonuma—Hecke
algebra, which plays an important role as we will see later. More precisely,
set now the ground field C(q), with ¢ an indeterminate s.t. u = ¢?; the
mentioned variant is obtained by replacing in the original presentation of
Y-H algebra the braiding generators g;’s by the braiding generators g;’s,
where now the g;’s satisfy the same relations of the g;’s but replace the
quadratic relations (1) by the following quadratic relations:

(3) 7 =14 (q—q Heigi-
We shall denote by Yg,(q) the Y-H algebra considered with this last pre-
sentation.

1.3. From the definition of Y4, (u) it follows that this can be regarded
naturally as a deformation of the framed braid group [38]. Having in mind
this fact and the construction of the Homflypt polynomial by the Jones
recipe!, in [29] we proved that Y (u) supports also a Markov trace tr, with
the aim to imitate the Jones recipe to define an invariant of framed knots.
Consequently, in [34] we constructed an invariant for framed links through
the Jones recipe applied to Yg,(u) and certain specialization of the trace
tr. Moreover, by using again the Jones recipe, in [33] a family of invariant
{Ad}dez., for classical link was defined and in [32] a family of invariant for
singular knots was constructed as well.

1The Jones recipe means the remarkable construction of the Homflypt polinomial given
in [24] which indeed yields a recipe, or mechanism, to construct invariant of like-knotted
objects.
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It is worth to note that by using purely algebraic arguments Jacon and
Poulain D’Andecy have also proved in [23] that the invariant ©, and Hom-
flypt are equivalent at level of knots. They obtained it as a consequence
of the fact that Y-H algebra is isomorphic to a sum of matrices having as
coefficients tensor products of Hecke algebra, cf. [17, Theorem 7].

2. THE BT-ALGEBRA

2.1. With the denomination bt—algebra we shall refer to the algebra of
braids and ties, denoted by &,(u), introduced by F. Aicardi and J. Juyu-
maya, see e.g. [1, 47, 5, 3]. The original motivation to define this algebra
was to find new representations of braid groups. The construction of the
bt—algebra comes out by considering a presentation of the algebra generated
abstractly by the braid generators g;’s of Y ,(u) and the idempotents e;’s
defined in (2), for details of the construction, see [3, Subsection 3.2]. The
bt—algebra is a new mathematical object that becomes interesting in knot
theory [3, 2], Partition algebra [5, 30] and representation theory [47, 17].
Further, it is worth to note that recently in [40], I. Marin has attached to
every Coxeter system an algebra which becomes the bt—algebra when the
Coxeter system is finite of type A.

To continue explaining the proposal, we need to recall the definition of the
bt—algebra. The bt—algebra &,(u) is defined as the unital associative C(u)—
algebra presented by generators 11,...,7T,_1, F1,..., E,_1 satisfying A—
braid relations among the T}’s, F;E; = E; E;, EZ2 = F;, for all i, j; together
with the following relations:

ET; = T;E; for |i—j|>1
ET; = TE;

BT, = TTE for |i—jl=1

EzE]T] = EiTjEZ'ZTjEiEj for ’i—j|=1
2 = 1+ (u—-1)EQ+T).

2.2. The Markov trace supported by the bt—algebra is at 2—parameters,
see [3, Theorem 3] and its existence attracted our attention to define certain
invariants for classical links and singular links. Thus, by using this Markov
trace in the Jones recipe applied to the bt—algebra, we have defined a 3—
parameters invariant for classical links, denoted by A, and also an invariant
for singular links. The invariant A generalizes the invariant Ay, see [3,
Subsection 5.3] for details.

3. Goals

We want to study the quotient of the algebra &,(u) by the “Temperley-
Lieb” ideal J generated by the elements

EE (14T 4+ Tiyr + TiTi1 + Tin T + T 1 T3), i=1,...,n—1.
Let TLE,(u) be this quotient algebra. The interest in its study is related
to the fact that T LE,(u) should be an algebra of relatively small size which
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supports a kind of Markov trace. We list a series of problems we plan to
attack, in increasing order of difficulty

(1) Estimate dim T LE,,(u).

(2) Calculate dim T LE,,(u).

(3) Establish a graphic calculus in TLE,, (u).

(4) Find a nice basis of TLE, (u).

(5) Understand the relationships with cellular algebras.

(6) Investigate the representation theory of TLE, (u).

(7) Deepen the possibile connections with knots and 3-manifolds invari-
ants.

Another possibility, in a slightly different direction, is to look for gener-
alizations of quotients of analogues of &, (u) for finite reflection groups.
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