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Population imbalance

Conventional BCS pairs particles on a Fermi surface with
opposite momenta and spins: Cooper pair wace-function is
invariant under time-reversal, i. e. simultaneous exchange of
momentum and spin sign.

In systems with population imbalance the pairing occurs
between particles lying on different Fermi surfaces: The
Cooper pair wave function is non-invariant under time reversal.
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Some examples

Metallic superconductors with paramagnetic impurities. The
effect of impurities is to induce an average slitting of
Fermi-levels of spin-up and spin-down electrons. This can be
described by adding a Pauli paramagnetic term to the spectrum.

Pairing in dilute Fermi gases. Experimentally realized in
fermionic isotope of Lithium, 6Li. The trap can be loaded with
different numbers of atoms belonging to different hyperfine
states. The pairing is among atoms in different hyperfine states.

Neutron-proton pairing in nuclear systems, under isospin
asymmetry. Such asymmetries arise naturally in for nuclei
away from the valley of beta-stability. Most promising site of
n-p pairing is dilute nuclear matter in supernova mantel.
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Further examples

Pairing in QCD matter (deconfined phase of nucleonic matter)
at moderate densities. The pairing is among the u and d quarks
with some color and flavor quantum numbers. Such matter can
occur in the centers of massive stellar compact objects. The
matter must be in β equilibrium with respect to the process

d→ u+ e+ ν̄ u+ e→ +dν

This leads to asymmetry in the population of u and d quarks,
with chemical potentials obeying µd = µu + µe.

A wide class of systems, with characteristic energy scales
differing by some 20 orders of magnitude, shear a common
feature of pairing among imbalance populations.

Pairing in systems with population imbalance – p.5/52



Nuclear systems

Pairing interaction is due strong nuclear force, which is
non-local and attractive at large distances, and strongly
repulsive at short distances.
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Dilute alkali gases

The pairing interaction is essentially S wave and zero range
(exception are dipolar gases).

The Fermi-energies are of the order of mK; Tc/TF ∼ 0.25 high
temperature superfluids!

Interactions can be manipulated in the range [−∞,∞]

aeff =
aS

B −B0

(Feshbach resonance mechanism)

Unitary limit |a| → ∞ is universal

Number of different species can be large: trapping 3 different
species leads to the three-body physics (e.g. Efimov states).
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Color superconductivity

For densities relevant for compact objects, the interactions are
non-perturbative. Effective models featuring contact
interactions are available.

Possible pairing channels span the 3 color × 3 flavor space; a
typical ansatz ∆ ∝ 〈ψT (x)Cγ5τ2λ2ψ(x)〉.
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BCS theory for systems with population imbalance

We consider a uniform gas of fermionic atoms in two hyperfine
states (spins) labeled as ↑ and ↓. The Hamiltonian of the system is

Ĥ =
1

2m

∑

α

∫
d3x∇ψ̂†α(r)∇ψ̂α(r)

−
∑

αβ

∫
d3x

∫
d3x′ψ̂†α(r)ψ̂†β(r)V (r, r′)ψ̂β(r′)ψ̂α(r)

Define the GF of the system

iĜαβ(x1, x2) ≡ i


 Gαβ(x1, x2) Fαβ(x1, x2)

F †αβ(x1, x2) G†αβ(x1, x2)



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DSE for fermions

Ĝ−1
α (x1)Ĝαβ(x1, x2) = 1̂δαβδ(x1 − x2)

+i
∑

γ

∫
d3x3 Σ̂αγ(x1, x3)Ĝγβ(x3, x2),

where 1̂ is a unit matrix, G−1
α (x) ≡ i∂/∂t+∇2/2mα + µα and

Ĝ−1
α (x) =

(
G−1
α (x) 0

0
[
G−1
α (x)

]∗

)
,

Σ̂αβ(x1, x2) ≡


 Σαβ(x1, x2) ∆αβ(x1, x2)

∆†αβ(x1, x2) Σ†αβ(x1, x2)


 ,
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The self-energy matrix is defined as

∆αβ(x1, x2) =
∑

γκ

∫
Γαβγκ(x1, x2;x3, x4)Fγκ(x3, x4)dx3dx4.

The counterparts of the equations above are obtained by going over to

the center of mass X = (x1 +x2)/2 and relative x = x1−x2 coordi-

nates in the two-point functions and carrying a Fourier transform with

respect to the relative coordinates: Ĝ(x,X)→ Ĝ(ω, ~p,R, T ), where

ω, ~p are the relative frequency and momentum, and X ≡ (R, T ).
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Quasiclassical functions

The Dyson equation for the quasiclassical functions is

∑

γ

(
ω − ε+αγ −∆αγ

−∆†αγ ω + ε−αγ

)(
Gγβ Fγβ

F †γβ G†γβ

)
= δαβ1̂, (1)

where

ε±αβ = (P/2± ~p)2 /2mα − µα ± Re Σαβ − Im Σαβ, (2)

Re Σαβ ≡ (Σαβ − Σ†αβ)/2, Im Σαβ ≡ (Σαβ + Σ†αβ)/2;

Propagators and self-energies are functions of ω, ~p and P.
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The quasiparticle excitation spectrum is determined in the standard
fashion by finding the poles of the propagators in Eq. (??):

ω±± = εA ±
√
εS +

1

2
Tr(∆∆†)± 1

2

√
[Tr(∆∆†)]2 − 4Det (∆∆†).

Here ∆ ≡ ∆αβ , εS = (ε+ + ε−)/2, and εA = (ε+ − ε−)/2.
Approximation - equal spin pairing is unimportant -

∆↑↑,∆↓↓ � ∆↑↓

The spectrum, in this case, simplifies to

ω↑↓ = εA ±
√
ε2S + |∆|2,
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The symmetric and asymmetric parts of the spectrum (which are
even and odd with respect to the time-reversal symmetry) are
defined as

εS ≡ P 2/8m+ p2/2m + Re Σ− µ, εA ≡ P · ~p/2m+ Im Σ− δµ.

where

µ = (µ↑ + µ↓)/2 δµ = (µ↑ − µ↓)/2

and

Re Σ ≡ (Σ↑↑ − Σ†↓↓) Im Σ ≡ (Σ↑↑ + Σ†↓↓)/2
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The limit εA → 0 corresponds to the BCS pairing in the spin
symmetric matter. It is explicit now that the spectrum is twofold
split due to three factors,

the spin asymmetry (δµ 6= 0)

the finite-momentum of the Cooper pair (P 6= 0)

the finite lifetime of the quasiparticle (ImΣ 6= 0).

The solution of the QC Dyson equation is

G↑/↓p =
u2
p

ω − ω+/− + iη
+

v2
p

ω − ω−/+ + iη
,

F = upvp

(
1

ω − ω+ + iη
− 1

ω − ω− + iη

)
,
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The Bogolyubov amplitudes are

u2
p =

1

2
+

εS

2
√
ε2S + |∆|2

, v2
p =

1

2
− εS

2
√
ε2S + |∆|2

. (3)

BCS (Hartree) approximation: Γαβγκ → Vαγδαβδγκ.

Pairing mean field

∆(p, P ) =

∫
dp′p′2

(2π)2

V (p, p′)∆(p′, P )

2
√
ε2S + ∆(p′, P )2

〈[f(ω+)− f(ω−)]〉

Densities

ρn/p(P ) =

∫
d3p

(2π)3

{
u2
pf(ω±) + v2

pf(ω∓)
}
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Zero-range forces

We introduce a momentum renormalization scale Λ such that
∆� εΛ � min[εF↑, εF↓]

∆†(p) = i

∫
U(~p, ~p′)GN

↓ (−p′)∆†(p′)G↑(p′)θ(Λ− |~p′|)
d4p′

(2π)4
, (4)

U(~p, ~p′) = V (~p, ~p′) + i

∫
V (~p, ~p′′)GN

↓ (−p′′)GN
↑ (p′′)U(~p′′, ~p′)θ(|~p′′| − Λ)

d4p′′

(2π)4
.(5)

In the second equation the full propagator G↑(p) was replaced
by its counterpart in the unpaired state, GN

↑ (p).

By construction, the on-shell integration is carried over
momenta much larger than the Fermi momentum.

The two equations decouple
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Next write down the T matrix

T (~p, ~p′) = V (~p, ~p′) + i

∫ ∞

0

V (~p, ~p′′)GN
↓ (−p′′)GN

↑ (p′′)T (~p′′, ~p′)
d4p′′

(2π)4
.

Combining Eqs. one finds a regular integral equation defining the
pairing force

U(~p, ~p′) = T (~p, ~p′)− i
∫ Λ

0

U(~p, ~p′′)GN
↓ (−p′′)GN

↑ (p′′)T (~p′′, ~p′)
d4p′′

(2π)4
.

In the dilute limit of interest, partial waves higher than the s-wave can

be neglected, and the interaction is solely determined by the s wave

scattering length aS < 0, as T (~p, ~p′) = T0 = 4π|aS|/m. The solution

is straightforward:
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The pairing interaction in the case of zero-range forces

U0 = T0

[
1−

∫
GN
↓ (−p)GN

↑ (p)θ(Λ− |~p|) d4p

(2π)4

]−1

.

For the zero-range interaction above the gap equation takes the form

∆†(~p) = U0

∫
ImF †(~p′, ω′)f(ω′)θ(Λ− |~p′|)d

3p′dω′

(2π)4

=
U0

2

∫ Λ

0

∆√
E2
S + ∆2

〈f(ω1)− f(ω2)〉p
′2dp′

(2π)2
,

where 〈. . . 〉 stands for the angle average and the second line follows

by retaining only the pole part.
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The normal self-energy in the T -matrix (ladder) approximation is
defined as

Σσ(~p) = i
∑

σ′

∫
Tσσ′(~p, ~p

′; ε~p + ω′)Gσ′(p
′)
d4p′

(2π)4
,

If the T ' T0 the normal self-energy is momentum independent,
purely real, and is given by

Σ↑/↓ = T0ρ↓/↑. (6)

This constant shift in quasiparticle energy can be absorbed in the

chemical potential µ∗↑/↓ = µ↑/↓ − Σ↓/↑.
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Realizations of superconducting phases with two species

  

   rotational/transl. symmety     rotational/symmetry, time reversal broken

rotational/trans sym. broken only rotational symmetry is broken to O(2)

δµ = 0BCS: k = −k, δ µ = 0/ASYMMETRIC BCS: k = − k,

LOFF:    k + P = −k’, δµ = 0/ δµ = 0/DFS phase:  k ~ k’,
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Homogeneous imbalanced superfluids
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Occupation numbers
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the homogeneous phase is unstable in the weak
coupling limit!
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Some analytical results

Consider the gap equation

1 = G

∫
d3p

(2π)3

1− 2f(Ep)

2Ep

The momentum integration is modified as follows

d3p→ p2dpdΩ→ p2dpd sin θdφ→ mpFd(p2/2m)dΩ→ mpFdεpdΩ.

Where we assume that the system is degenerate and the momenta are
restricted to the vicinity of the Fermi sphere. Then,

1 = Gν(µ)

∫ Λ

0

dεp

2
√
ε2
p + ∆2

tanh

(√
ε2
p + ∆2

2T

)
, ν(pF ) =

pFm

π2~3
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In the limit T → 0, the tanh function is unity and

1 =
Gν(µ)

2

∫ Λ

0

dεp√
ε2
p + ∆2

The integral is computed by defining a new variable φ

εp = ∆ sinhφ, dεp = ∆ coshφdφ,

then

1 =
Gν(µ)

2

∫ φ0

0

∆ coshφdφ

∆
√

sinh2 φ+ 1
=
Gν(µ)

2

∫ φ0

0

dφ =
Gν(µ)

2
φ0

where φ0 = arcsinh(Λ/∆).
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Next we consider the case of weak coupling, i.e. ∆� Λ and expand
the arcsinh function for large arguments

lim
x→∞

arcsinh x = ln(2x) +O(x2),

so that we obtain

1 =
Gν(µ)

2
ln

(
2Λ

∆

)

By analogy

1 =
Gν(µ)

2

∫ Λ

0

dεp√
ε2
p + ∆2

[
1− θ(

√
ε2
p + ∆2 + δµ)− θ(

√
ε2
p + ∆2 − δµ)

]
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ln
∆0(0)

∆0

= θ[δµ−∆0(0)]arcsinh

√
δµ2 −∆2

0

∆0

,

ln
∆0(0)

δµ+
√
δµ2 −∆2

0

= 0 .

There are no solutions for δµ > ∆0(0). For δµ ≤ ∆0(0) one has two
solutions.

a) ∆0 = ∆0(0) ,

b)
[
∆0

]2

= 2 δµ∆0(0)−
[
∆0(0)

]2

.

The gap ∆0(δµ) is independent of δµ in case a. The second solution

is obtained by solving b). Pairing in systems with population imbalance – p.27/52



The first solution corresponds to a stable state

since ∆b < ∆a the second solution is unstable

At the the Clogston transition point

δµ = δµ1 ≡
∆0√

2
,

a transition from the superconducting (∆0 6= 0) to the normal
phase (∆0 = 0) occurs. This transition is first order, because
for δµ < δµ1 the gap does not depend on δµ and one passes
abruptly to the normal phase.
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LOFF phase: δµ 6= 0 P 6= 0
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LOFF phases: free energy
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LOFF phases: reentrance effect P − T duality
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BCS - LOFF phase transitions
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BCS-BEC crossover

Nozières-Schmitt-Rink conjecture: the BCS theory smoothly
interpolates between the weak and strong couplings

In the BEC limit the pair-wave function goes over to the
Schrödinger equation

ψ(k) = 〈a†
n,~k
a†
p,−~k〉 =

∆(k)

2Ek

[
1− f(E+

k )− f(E−k )
]
,

k2

m
ψ(k) +

[
1− f(E+

k )− f(E−k )
]∑

k′

V (k, k′)ψl′(k
′) = 2µψ(k)

In unbalanced systems phases with broken space symmetries
intervene.

Pairing in systems with population imbalance – p.33/52



BCS-BEC crossover
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BCS-BEC crossover in asymmetric systems
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Crossover continued
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The three-body problem in background medium

The three-body equation for the T -matrix

T = V + V G V = V + V G0 T , (7)

where the interaction V = V12 + V23 + V13

Reformulate the problem: T = T (1) + T (2) + T (3)

T (k) = Vij + VijG0T ijk = 123, 231, 312. (8)

Define: Tij = Vij + VijG0Tij and eliminate the
potentials
Non-singular three-body equations (Bethe-Faddeev)

T (k) = Tij + TijG0

(
T (i) + T (j)

)
. (9)
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Three-body propagator in background medium

The time structure of the three-body T -matrix

T R (1)(t, t′) = T R23 (t, t′)

+

∫ [
T R (2)(t, t̄) + T R (3)(t, t̄)

]
GR0 (t̄, t′′)T R23 (t′′, t′)dt̄dt′′,

Possible particle-hole channels

GR0 (t1, t2) = θ(t1 − t2)





G>G>G>(t1, t2)− (>↔<) (3p)

G>G>G<(t1, t2)− (>↔<) (2ph)

G>G<G<(t1, , t2)− (>↔<) (p2h)

G<G<G<(t1, t2)− (>↔<) (3h)
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Particle-hole content of the T -matrix

3-particle – 3-hole scattering T -matrix

T R (1) = T R23 +

∫ [
T R (2) + T R (3)

] Q3(Ω
′)

Ω− Ω′ + iη
T R23 (Ω′)dΩ′,

3-body Pauli-blocking: f̄F = 1− fF
Q3(pα, pβ, pγ) = f̄F (pα)f̄F (pβ)f̄F (pγ)− fF (pα)fF (pβ)fF (pγ).

pα are spanned in terms of Jacobi coordinates.
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Bound states in background medium

Bound state wave-function

Ψ = ψ(1) + ψ(2) + ψ(3); ψ(k) = G0Tij(ψ
(i) + ψ(j)).(10)

Need the channel T -matrix

TR(~p, ~p′;P , E)

= V (~p, ~p′) +

∫
d~p′′

(2π)3
V (~p, ~p′′)GR

0 (~p′′,P , E)TR(~p′′, ~p′;P , E)

GR
0 (~k1, ~k2, E) =

Q2(~k1, ~k2)

E − ε(~k1)− ε(~k2) + iη
, (11)
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Temperature dependent binding energies of triton in nuclear

matter
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The three-body wave-function
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The phase diagram
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Color superconductivity
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Color superconductivity

The Nambu-Jona-Lasinio (NJL) with two flavors
(Nf = 2) and three colors (Nc = 3). Assume chiral
symmetry. The Lagrangian density of the model is

Leff = ψ̄(x)(iγµ∂µ)ψ(x)

+ G1(ψ
TCγ5τ2λAψ(x))†(ψTCγ5τ2λAψ(x)),

(12)

C = iγ2γ0, τ2 Pauli matrix acting in the SU(2)f flavor
space, λA is the Gell-Mann matrix in the SU(3)c color
space. The coupling constant G1 stands for the four-
fermion contact interaction.
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2SC superconductivity

The common Ansatz for the order parameter in the 2SC phase is

∆ ∝ 〈ψT (x)Cγ5τ2λ2ψ(x)〉,

The Ansatz for the order parameter [Eq. (??)] implies that the color
SU(3)c symmetry is reduced to SU(2)c since only two of the quark
colors are involved in the pairing while the third color remains
unpaired. The gap equation and the partial densities are found from
the thermodynamic potential density Ω:

∂Ω

∂∆
= 0, − ∂Ω

∂µf
= ρf ;

the flavor index f = u, d refers to up (u) and down (d) quarks.
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Thermodynamic potential

Ω(βµ) = − 1

β

∑

ωn

∫
d3p

(2π)3

1

2
Tr ln

[
β

(
S−1

11 (iωn, ~p) S−1
12 (iωn, ~p)

S−1
21 (iωn, ~p) S−1

22 (iωn, ~p)

)]
+

∆2

4G1

,(13)

where β is the inverse temperature. The elements of the
Nambu-Gor’kov matrix are 2× 2 matrices defined as

diag [S−1
11 ] = (/p+ µuγ

0, /p+ µdγ
0)

diag [S−1
22 ] = (/p− µuγ0, /p− µdγ0)

diag [S−1
12 ] = (∆γ5τ2λ2,∆γ5τ2λ2)

diag [S−1
21 ] = (−∆∗γ5τ2λ2,−∆∗γ5τ2λ2)

with off-diagonal elements zero.
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Thermodynamic potential

Carry out the traces in the spin, flavor and color spaces and the
fermionic Matsubara summation over the frequencies ωn

Ω = −2

∫
d3p

(2π)3

{
2p+

∑

ij

[
1

β
log
(
1 + e−βξij

)

+ Eij +
2

β
log
(
1 + e−βsijEij

)
]}

+
∆2

4G1

, (14)

ξ±± = (p± µ) ± δµ E±± =
√

(p± µ)2 + |∆|2 ± δµ, where δµ =

(µu − µd)/2 and µ = (µu + µd)/2 and µu and µd are the chemical

potentials of u/d quarks.
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Thermodynamic potential

The variations of the thermodynamic potential provide the gap
equation

∆ = 8G1

∫
d3p

(2π)3

{
∆

E+− + E++

[
tanh

(
βE++

2

)
+ tanh

(
βE+−

2

)]

+
∆

E−+ + E−−

[
tanh

(
βE−+

2

)
+ tanh

(
βE−−

2

)]}
,
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Thermodynamic potential

and the partial densities of the up/down quarks

ρu/d =

∫
d3p

(2π)3

{
2f(ξ−∓)− 2f(ξ+±)

∓
[
1± ξ−− + ξ−+

E−− + E−+

]
tanh

(
βE−−

2

)

∓
[
1∓ ξ+− + ξ++

E+− + E++

]
tanh

(
βE+−

2

)

±
[
1∓ ξ−− + ξ−+

E−− + E−+

]
tanh

(
βE−+

2

)

±
[
1± ξ+− + ξ++

E+− + E++

]
tanh

(
βE++

2

)}
,

(15)
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Solutions
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The pairing gaps and the thermodynamic potential in the
color superconducting phases.
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