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Introduction

> A well known effect of dilute polymers in wall turbulence: very
large drag reduction up to 70% (since Toms, 1948)

> Typical applications

— channels or pipelines (e.g. Alaska oil pipe)

— ships and boats could have great advantages --- but
environmental problems

> Several phenomenological models have been proposed in the
past to explain such phenomena (e.g Lumley 1963, De Gennes 1986,
and more recently L'vov et al. 2004) - - - but a complete physical
comprehension is still missing (e.g. Sreenivasan and White 2000)



Introduction

> Firemen water cannons with pure water and dilute polymer
solution

> Same power but different bulk velocity & throughput
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— A scale by scale energy budget: a tool for physical
understanding

— The analysis and the main findings



Outline of the presentation

— Experimental evidence: the effect of polymers on wall
turbulence

— How the polymers act: their physical model
— The numerical simulations: how reliable they are

— A scale by scale energy budget: a tool for a physical
understanding

— The analysis and the main findings



Experimental evidence: friction coefficient (1)

> Basic experiments by Virk (1975) show how the gross features
of the flow are modified e.g. friction coefficient

f =27u/(pup)
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Experimental evidence: friction coefficient (Il)

> The decrease of drag is even more evident in the
Prandtl Karman coordinates

1/VF = U/ us VfRe = Re,
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>> In both cases it clearly appears an onset for a certain value of
Re, (or Re) i.e. for lower values the polymers have no effect
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Experimental evidence: mean velocity profiles

> We report results by Virk (pipe flow), see also Warholic et al.
(channel flow)
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we see clearly the sequence of profiles for increasing
concentration



Experimental evidence: mean velocity profiles

> We observe in both sets of experimets

— a larger throughput for the same 7, and increasing
concentration of polymers

— a logaritmic profile with the same slope but larger intercept:
Newtonian plug
u, = 25logy™ + B

— a Maximum Drag Reduction (MDR) limit profile, which has a
universal slope given by
u, = 11.7logy™ — 17

strikingly insensitive to polymer species and concentration



Experimental evidence: turbulence intensity

> The axial turbulence intensity shows a substantial increase for
pipe flow (Virk)
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> On the contrary we observe a depletion of the radial
component



Experimental evidence: turbulence intensity

> Analogous results for channel flow (Warholic et al.)
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> We observe a decrease also of streamwise component for the
case of larger DR



Experimental evidence: the Reynolds stresses

> In channel flow (Warholic et al.) we see a decrease in Reynolds
stresses more and more substantial with larger DR
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Experimental evidence: the onset
> The onset of drag reduction occurs at a rather well defined
critical value of the wall shear stress 7,
> The onset is correlated with the random coil size Ry < 7
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Experimental evidence: the onset

> De, is the relevant parameter for the onset

De; =

h

c __ C
Re; = De, 7(%”)1/2

As shown by Virk
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Physical aspects of drag reducing polymers

> Polymers are long linear chains of monomers
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(~ 6000 nm)

>> At equilibrium they are random coils with

R, o< (nb?)"?

gyration radius
(~ 100 nm)

> The coil deforms under shear and recovers equilibrium
conditions by thermal motion (entropic elasticity)



Physical aspects of drag reducing polymers
> The relaxation to equilibrium is ruled by a spectrum
characteristic of times t; > b > ---
> Only the principal relaxation time t, = t; is relevant for
turbulence

> This opens the way for an ultra-simplified description of the
polymer, as a system with a single internal degree of freedom:
the elastic dumbbell
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> Zimm relaxation time due to Brownian forcing
tp = s Rg/kBQ



The micro-mechanics of a dumbbell

> Forces acting on the dumbbell

— Idrodynamic forces on the k'
beads
FA = f(uA — XA)
FB = f(uB — XB)

— Elastic force

FAB = k(XA — XB)

> The mass of the beads is negligible

: 1
(ua—ug) = Vu|g(xa—xg) = R=R-Vu—-—R

tp
with t, = f/k relaxation time

> To account for the thermal motion a Brownian forcing is
added

R:R.vu—l(R—g)
tp



The polymer stresses

> Given the dumbbel ensemble with number density n,

— the force through a

surface
t=n,(FR)-n

hence
N




The polymer stresses

> In terms of the conformation tensor R = (R ® R), the

extra-stress is
npkgt

T, = Rg/?) (R)

where nb? = (R%)g = R?

>> Since at equilibrium condition the extra-stress vanishes

()

where t, is the relaxation time and v, is the contribution to
viscosity due to polymers (Oldroyd-B)

> For finite extension non linear elasticity (FENE-P)

and f = f({R?)) in the Peterlin approximation



The equation for the conformation tensor

> From the force balance, by averaging, we obtain the evolution
equation for R in dimensioless form

DR ; 1
E—R-VU—VU R_De*

(R-1)

> The model is completed by momentum equation for an
incompressible flow (V - u = 0), where the extra-stress T is

included
Du 1
Dt VP Re VUV T
with
. Tp . huy Vp
De Re* = — T, = (R-1)




Energy balance for the polymers

> If we take the trace of the evolution equation for R we
obtain for the elastic energy of the dumbbell population

DE,
Dr P
where
v, 1 v
E,=-= M,=Tr(R- £
P Re* 2 r(R) P r(R vu) Re*
11 vp _ B
»~ De* 2 ( )Re* " Re*
with

M, energy transfer to polymer microstructure
€p total (average+fluctuation) dissipation by the polymers



Energy balance for the solvent

> The evolution equation for the total (average + fluctuation)
kinetic energy of the carrier fluid is

% — —V-(pu)+ Rle*v- [(Vu + VuT) . u} eyt VA(T, - )=,

again I, is the energy transferd to the polymers

> By combining the two egs, we obtain the equation for
Etr = E, + Ep
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where e = ey + ¢€p
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Numerical simulation

> The physical model reproduces the gross features seen in the
experiments

— mean velocity profile

— Reynolds stresses

— turbulence intensities

— various components of the energy balance

— correlations and the shape of the structures

> The increasing effect of polymers is here explored by
increasing values of De, = t,/t,



Mean profile and turbulent fluctuations

>> A series of Newtoniamn plugs at increasing values of De,

> Fluctuations

— streamwise increase
— normal to wall decrease

> Channel flow at Re, = 300



Reynolds stresses & Drag Reduction

> Reynolds stresses decrease with De,

> DR increases, almost linearly, with De, up to MDR
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The energy balance ()

> The T.K.E. shows the spatial redistibution due to
inhomogeneity and the turbulence-polymers interaction

do d du
=~ T~ W~ fen) = () = 0
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The energy balance (Il)

> The T.K.E. shows the spatial redistibution due to

inhomogeneity and the turbulence-polymers interaction
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The striking effect on large scales

> DNS gives a good tool to analyze the alteration of turbulence
due to polymers

> Polymers drain energy at small scales from the inertial cascade
(see results fro isotropic turbulence De Angelis et al. 2005)

> However drag reduction is due to their ability to modify the
large scales

> Sophisticated data analysis (POD) gives an expansion in
terms of empirical, most energetic, modes



The striking effect on large scales

> The shape of the modes remain quite the same (De Angelis et
al. 2003) however the amplitude change substantiallv with De

Energy(%)

0 5 10 15 70 75 0

> The largest modes (in terms of scale) become more energetic
w.r.t. Newtonian flow. How it occurs?
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Scale by scale budget: physical picture
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r
> Leads to a combined analysis of energy flux both in physical

space (as the T.K.E. in wall turbulence) and in the space of
scales (as Kolmogorov eq. for H.l. turbulence)



Scale energy
> To this purpose we consider the second order structure

function
5“ = UI(X + r) _ ul(x)
> energy at scale r *
|
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> We define f* = [f'(x



Kolmogorov equation

> Starting from the Navier-Sokes egs. it may be obtained a
generalized form of the Kolmogorov equation (See Hill 2001,
Yakhot 2001, Danaila et al. 2001, Marati et al. 2004) which is here
extended to polymer solutions

> In homogeneous conditions it reduces to
V, - (6u%6u) = —4(e) + 20V2(5u?)

and in terms of longitudinal stucture functions duj = ou-r/r
give the well known Four-fifth law

(3uf) =~ e)r

which describes the energy cascade across scales in isotropic
conditions



A generalized form of the Kolmogorov equation

> Extended to polymers and in conservative form

do,

V@ (r,Ye)+ av.

=s(r, Ye)
whith the flux ®, in the space of scales
1
¢, = 4 ((6u0u) — 20V (5u?) + (T% - du))

the flux @4 in physical space

1

vd(ou?
OJEEg <<6u2v*> + i(5p5v> _ vdiou)

2 dY.

2 +y- <5Tp~5u>)

and the source term

s(r, Ye) = — (dubv) (;’)‘f) —(eq) — ()

> For r — oo we recover the single point TKE balance



The physical picture with polymers

P+<I>c£:>E

> The scale energy is partly drained by polymers from the

energy cascade



Scale by scale analysis of data

> We use for the discussion a coincise form of the r— averaged
Kolmogorov equation

Ti(r,Ye) + Pe(r, Ye) = Ee(r, Ye) + Ge(r, Ye) + Ep(r, Ye)



Scale by scale analysis of data

> We use for the discussion a coincise form of the r— averaged
Kolmogorov equation

Ti(r,Ye)+ Pe(r, Ye) = Ee(r, Ye) + Ge(r, Ye) + Ep(r, Ye)
where the inertial transfer is

1
T (r,Ye) = Zvr - (01 Su)



Scale by scale analysis of data

> We use for the discussion a coincise form of the r— averaged
Kolmogorov equation

Ti(r,Ye)+ Pe(r, Ye) = Ee(r, Ye) + Ge(r, Ye) + Ep(r, Ye)
the effective production is

1 dUN\" 1d{6u?®v*)  1d{5pdv)
Pe(r,Ye) = 3 [<5u dv) (dy) +3 dy + o dy




Scale by scale analysis of data

> We use for the discussion a coincise form of the r— averaged
Kolmogorov equation

Tr(r,Ye) + Pe(r, Ye) = Ee(r, Ye) + Ge(r, Yo) + Ep(r, Yo)
the scale energy flux due to polymers

. 1d .
Ge(r7 Yc) = 1|V, <Tp ' 5u> + Zdi)/ (y ’ <5TP ’ 5U>)



Scale by scale analysis of data

> We use for the discussion a coincise form of the r— averaged
Kolmogorov equation

Ti(r, Ye) + Pe(r, Ye) = Ee(r, Ye) + Ge(r, Ye) + Ep(r, Ye)
the effective dissipation due to viscosity

v 1 d?
Ee(r, Yc) = E <V2<5U2> + Zdy2

C
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Scale by scale analysis of data

> We use for the discussion a coincise form of the r— averaged
Kolmogorov equation

Tr(r,Ye) + Pe(r, Ye) = Ee(r, Ye) + Ge(r, Ye) + Ep(r, Yo)
the energy drained by polymers and eventually dissipated

Ep(r, Ye) = —(mp)
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Polymers & the alteration of turbulence: scale energy

> Scale energy in the plane x — z as function of wall normal
distance and separation

300
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100 # 200 300

> The maximum of scale energy moves towards large scales, i.e.
the coherent structures grow with De, up to MDR
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Polymers & the alteration of turbulence: scale energy

> Scale energy in the plane x — z as function of wall normal
distance and separation
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Polymers & the alteration of turbulence: scale energy

> Scale energy in the plane x — z as function of wall normal
distance and separation
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> The maximum of scale energy moves towards large scales, i.e.
the coherent structures grow with De, up to MDR



Polymers & the alteration of turbulence

>> Effective production in the plane x — z
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> The maximum of production decreases, becomes thicker in y
and moves towards larger scales
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>> Effective production in the plane x — z
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Polymers & the alteration of turbulence

>> Effective production in the plane x — z
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Polymers & the alteration of turbulence

>> Effective production in the plane x — z
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Polymers & the alteration of turbulence

> Energy drained by the polymers in the plane x — z
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> In the elastic layer (blue) the polymers force the large scales.
In the Newtonian plug a draining of energy by polymers at
small scales (red) is prevailing as in H.l. turbulence (De Angelis
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Polymers & the alteration of turbulence

> Energy drained by the polymers in the plane x — z
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Polymers & the alteration of turbulence

> Energy drained by the polymers in the plane x — z
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> In the elastic layer (blue) the polymers force the large scales.
In the Newtonian plug a draining of energy by polymers at
small scales (red) is prevailing as in H.l. turbulence (De Angelis

et al. 2004)



Scale budget for Newtonian flows
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Log-layer direct cascade as H.I.

e - Production
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e - Viscous diffusion & dissipation
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Buffer layer inverse cascade

(Marati et al. 2004)




Production vs inertial transfer
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Experiments, dual plane stereo PIV
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Polymers & the alteration of turbulence

>> Inertial transfer in the plane x — z

300

2001

> we see a region (red) where a direct cascade is taking place
and a region (blue) growing with De, where an inverse
cascade sets in
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>> Inertial transfer in the plane x — z
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Polymers & the alteration of turbulence

>> Inertial transfer in the plane x — z
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Polymers & the alteration of turbulence

>> Inertial transfer in the plane x — z
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> we see a region (red) where a direct cascade is taking place
and a region (blue) growing with De, where an inverse
cascade sets in



Polymers & the alteration of turbulence

>> Inertial transfer in the plane x — z
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> we see a region (red) where a direct cascade is taking place
and a region (blue) growing with De, where an inverse
cascade sets in



Final Remarks

0.03

0.02

0.01

-0.01

-0.02

l(‘)() 2(‘)0 e 3(‘)0 4(.)0
Log layer

e - Effective production
- Inertial transfer

e - Polymer transfer
- Polymer dissipation

e - Effective Newtonian dissipation

0.3

0.2

0.1F

-0.1

-0.2

s s s s
100 200 r* 300 400

Buffer layer

— In the log-layer polymers

interact mainly with inertial

transfer (as in H.l. turbulence)

— In the buffer layer polymers

interact directly with the
production



Final Remarks
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Inertial transfer in TKE equation
> The inverse cascade region grows in size and the maximum
moves away from the wall, i.e. the buffer region, here more
properly elastic layer, enlarges



Bubbly turbulent flows

Flat Plate
> L=7 m, W =0.8 m, H= 0.06 m
B> U =05+2m/s
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Experimental set-up (INSEAN, Roma)



The effect of bubbles
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