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Introduction

B A well known effect of dilute polymers in wall turbulence: very
large drag reduction up to 70% (since Toms, 1948)

B Typical applications

− channels or pipelines (e.g. Alaska oil pipe)

− ships and boats could have great advantages · · · but
environmental problems

B Several phenomenological models have been proposed in the
past to explain such phenomena (e.g Lumley 1963, De Gennes 1986,

and more recently L’vov et al. 2004) · · · but a complete physical
comprehension is still missing (e.g. Sreenivasan and White 2000)



Introduction

B Firemen water cannons with pure water and dilute polymer
solution

B Same power but different bulk velocity & throughput
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− Experimental evidence: the effect of polymers on wall
turbulence

− How the polymers act: their physical model

− The numerical simulations: how reliable they are

− A scale by scale energy budget: a tool for physical
understanding

− The analysis and the main findings
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Experimental evidence: friction coefficient (I)
B Basic experiments by Virk (1975) show how the gross features

of the flow are modified e.g. friction coefficient

f = 2 τw/(ρu2
b)



Experimental evidence: friction coefficient (II)
B The decrease of drag is even more evident in the

Prandtl,Karman coordinates

1/
√

f = U0/u∗
√

f Re = Re∗

B In both cases it clearly appears an onset for a certain value of
Re∗ (or Re) i.e. for lower values the polymers have no effect



Experimental evidence: mean velocity profiles

B We report results by Virk (pipe flow), see also Warholic et al.
(channel flow)

we see clearly the sequence of profiles for increasing
concentration



Experimental evidence: mean velocity profiles

B We observe in both sets of experimets

− a larger throughput for the same τw and increasing
concentration of polymers

− a logaritmic profile with the same slope but larger intercept:
Newtonian plug

u∗ = 2.5 log y+ + B

− a Maximum Drag Reduction (MDR) limit profile, which has a
universal slope given by

u∗ = 11.7 log y+ − 17

strikingly insensitive to polymer species and concentration



Experimental evidence: turbulence intensity
B The axial turbulence intensity shows a substantial increase for

pipe flow (Virk)

B On the contrary we observe a depletion of the radial
component



Experimental evidence: turbulence intensity
B Analogous results for channel flow (Warholic et al.)

B We observe a decrease also of streamwise component for the
case of larger DR



Experimental evidence: the Reynolds stresses
B In channel flow (Warholic et al.) we see a decrease in Reynolds

stresses more and more substantial with larger DR

B The missing part to reach
the total stress called
stress deficit is given by
the polymer stress τp

τ > µ
dU

dy
− ρ〈u v〉

B Reynolds stresses become
very small (approximately
zero) for conditions close
to MDR

B Analogous results in pipe
flow (Virk)



Experimental evidence: the onset
B The onset of drag reduction occurs at a rather well defined

critical value of the wall shear stress τ c
w

B The onset is correlated with the random coil size R0 � η

τ c
w = u2

∗,cρ = CR−3
0

the critical viscous time

tc
∗ =

ν

u2
∗,c

=
µ

τ c
w

=
µ

C
R3

0

the relaxation time
(Zimm)

tp = αR3
0

Time criterion (Lumley)

tp ' tc
∗



Experimental evidence: the onset

B De∗ is the relevant parameter for the onset

Dec
∗ =

tp
tc
∗

=
αR3

0

µ/cR3
0

= const.

Rec
∗ = Dec

∗
h

(tpν)1/2

As shown by Virk
same ratio of Rec

∗
and pipe diameters
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Physical aspects of drag reducing polymers

B Polymers are long linear chains of monomers

Rc = n b

(' 6000 nm)

B At equilibrium they are random coils with

Ro ∝
(
nb2

)1/2

gyration radius
(' 100 nm)

B The coil deforms under shear and recovers equilibrium
conditions by thermal motion (entropic elasticity)



Physical aspects of drag reducing polymers

B The relaxation to equilibrium is ruled by a spectrum
characteristic of times t1 > t2 > · · ·

B Only the principal relaxation time tp = t1 is relevant for
turbulence

B This opens the way for an ultra-simplified description of the
polymer, as a system with a single internal degree of freedom:
the elastic dumbbell

R

The dumbbell model

B Zimm relaxation time due to Brownian forcing
tp = µS R3

o/kBθ



The micro-mechanics of a dumbbell
B Forces acting on the dumbbell

− Idrodynamic forces on the
beads

FA = f (uA − ẋA)
FB = f (uB − ẋB)

− Elastic force

FAB = k(xA − xB)

FA

i

FB

i

u
B

u
A

u
G

R

G

B The mass of the beads is negligible

(uA − uB) = ∇u|G (xA − xB) ⇒ Ṙ = R · ∇u− 1

tp
R

with tp = f /k relaxation time

B To account for the thermal motion a Brownian forcing is
added

Ṙ = R · ∇u− 1

tp
(R− ξ)



The polymer stresses

B Given the dumbbel ensemble with number density np

− the force through a
surface

t = np〈FR〉 · n

hence

F = −3kBθ

nb2
R



The polymer stresses

B In terms of the conformation tensor R = 〈R⊗ R〉, the
extra-stress is

Tp =
npkBθ

R2
0/3

〈R〉

where nb2 = 〈R2〉0 = R2
0

B Since at equilibrium condition the extra-stress vanishes

Tp =
νp

tp

(
〈R〉
R2

0/3
− I

)
where tp is the relaxation time and νp is the contribution to
viscosity due to polymers (Oldroyd-B)

B For finite extension non linear elasticity (FENE-P)

Tp =
νp

tp

(
f
〈R〉
R3

0/3
− I

)
and f = f (〈R2〉) in the Peterlin approximation



The equation for the conformation tensor

B From the force balance, by averaging, we obtain the evolution
equation for R in dimensioless form

DR
Dt

= R · ∇u−∇uT ·R− 1

De∗
(R− I)

B The model is completed by momentum equation for an
incompressible flow (∇ · u = 0), where the extra-stress Tp is
included

Du

Dt
= −∇p +

1

Re∗
∇2u +∇ · Tp

with

De∗ =
τp

u2
∗/ν

Re∗ =
hu∗
ν

Tp =
νp

De∗
(R− I)



Energy balance for the polymers

B If we take the trace of the evolution equation for R we
obtain for the elastic energy of the dumbbell population

DEp

Dt
= Πp − εp

where

Ep =
νp

Re∗
1

2
Tr(R) Πp = Tr (R · ∇u)

νp

Re∗

εp =
1

De∗
1

2
Tr(R)

νp

Re∗
=

Ep

Re∗

with

Πp energy transfer to polymer microstructure
εp total (average+fluctuation) dissipation by the polymers



Energy balance for the solvent

B The evolution equation for the total (average + fluctuation)
kinetic energy of the carrier fluid is

DEk

Dt
= −∇·(pu)+

1

Re∗
∇·

[(
∇u +∇uT

)
· u

]
−εN+∇·(Tp · u)−Πp

again Πp is the energy transferd to the polymers

B By combining the two eqs, we obtain the equation for
ET = Ek + Ep

DET

Dt
= ∇ · Φ− εT

where εT = εN + εp
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Numerical simulation

B The physical model reproduces the gross features seen in the
experiments

− mean velocity profile

− Reynolds stresses

− turbulence intensities

− various components of the energy balance

− correlations and the shape of the structures

B The increasing effect of polymers is here explored by
increasing values of De∗ = tp/t∗



Mean profile and turbulent fluctuations

B A series of Newtoniamn plugs at increasing values of De∗

B Fluctuations

− streamwise increase
− normal to wall decrease

B Channel flow at Re∗ = 300



Reynolds stresses & Drag Reduction

B Reynolds stresses decrease with De∗

B DR increases, almost linearly, with De∗ up to MDR



The energy balance (I)

B The T.K.E. shows the spatial redistibution due to
inhomogeneity and the turbulence-polymers interaction

−dΦ

dy
− d

dy
〈T ′

p · u′〉 − 〈u′ v ′〉
dU

dy
− 〈εN〉 − 〈πp〉 = 0

where Φ =

(
1

2
〈u′ 2v ′〉 − ν

2

d〈u′ 2〉
dy

+
1

ρ

d〈p′v ′〉
dy

)
spatial flux



The energy balance (II)

B The T.K.E. shows the spatial redistibution due to
inhomogeneity and the turbulence-polymers interaction

−dΦ

dy
− d

dy
〈T ′

p · u′〉 − 〈u′ v ′〉
dU

dy
− 〈εN〉 − 〈πp〉 = 0



The striking effect on large scales

B DNS gives a good tool to analyze the alteration of turbulence
due to polymers

B Polymers drain energy at small scales from the inertial cascade
(see results fro isotropic turbulence De Angelis et al. 2005)

B However drag reduction is due to their ability to modify the
large scales

B Sophisticated data analysis (POD) gives an expansion in
terms of empirical, most energetic, modes



The striking effect on large scales

B The shape of the modes remain quite the same (De Angelis et

al. 2003) however the amplitude change substantially with De

B The largest modes (in terms of scale) become more energetic
w.r.t. Newtonian flow. How it occurs?
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Scale by scale budget: physical picture

B Leads to a combined analysis of energy flux both in physical
space (as the T.K.E. in wall turbulence) and in the space of
scales (as Kolmogorov eq. for H.I. turbulence)



Scale energy

B To this purpose we consider the second order structure
function

δu = u′(x + r)− u′(x)

B energy at scale r

〈δu2(r |Yc)〉 = 〈δuiδui 〉

B at large scale velocities
are uncorrelated

lim
r→∞

〈δu2(r |Yc)〉 = 2〈u′iu′i 〉

B We define f ∗ = [f ′(x + r) + f ′(x)] /2



Kolmogorov equation

B Starting from the Navier-Sokes eqs. it may be obtained a
generalized form of the Kolmogorov equation (See Hill 2001,

Yakhot 2001, Danaila et al. 2001, Marati et al. 2004) which is here
extended to polymer solutions

B In homogeneous conditions it reduces to

∇r · 〈δu2δu〉 = −4〈ε〉+ 2ν∇2
r 〈δu2〉

and in terms of longitudinal stucture functions δu‖ = δu · r/r
give the well known Four-fifth law

〈δu3
‖〉 = −4

5
〈ε〉r

which describes the energy cascade across scales in isotropic
conditions



A generalized form of the Kolmogorov equation

B Extended to polymers and in conservative form

∇r · Φr (r ,Yc) +
dΦs

dYc
= s(r ,Yc)

whith the flux Φr in the space of scales

Φr =
1

4

(
〈δu2δu〉 − 2ν∇r 〈δu2〉+ 〈T∗p · δu〉

)
,

the flux Φs in physical space

Φs =
1

4

(
〈δu2v∗〉+

2

ρ
〈δpδv〉 − ν

2

d〈δu2〉
dYc

+ ŷ · 〈δTp · δu〉
)

and the source term

s(r ,Yc) = −1

2
〈δuδv〉

(
dU

dY

)∗
− 〈ε∗N〉 − 〈π∗p〉

B For r →∞ we recover the single point TKE balance



The physical picture with polymers

B The scale energy is partly drained by polymers from the
energy cascade



Scale by scale analysis of data

B We use for the discussion a coincise form of the r− averaged
Kolmogorov equation

Tr (r ,Yc) + Pe(r ,Yc) = Ee(r ,Yc) + Ge(r ,Yc) + Ep(r ,Yc)



Scale by scale analysis of data

B We use for the discussion a coincise form of the r− averaged
Kolmogorov equation

Tr (r ,Yc) + Pe(r ,Yc) = Ee(r ,Yc) + Ge(r ,Yc) + Ep(r ,Yc)

where the inertial transfer is

Tr (r ,Yc) =
1

4
∇r · 〈δu2 δu〉



Scale by scale analysis of data

B We use for the discussion a coincise form of the r− averaged
Kolmogorov equation

Tr (r ,Yc) + Pe(r ,Yc) = Ee(r ,Yc) + Ge(r ,Yc) + Ep(r ,Yc)

the effective production is

Pe(r ,Yc) =
1

2

[
〈δu δv〉

(
dU

dy

)∗
+

1

2

d〈δu2 v∗〉
dy

+
1

ρ

d〈δp δv〉
dy

]



Scale by scale analysis of data

B We use for the discussion a coincise form of the r− averaged
Kolmogorov equation

Tr (r ,Yc) + Pe(r ,Yc) = Ee(r ,Yc) + Ge(r ,Yc) + Ep(r ,Yc)

the scale energy flux due to polymers

Ge(r ,Yc) =

[
∇r · 〈T∗p · δu〉+

1

4

d

dy
(ŷ · 〈δTp · δu〉)

]



Scale by scale analysis of data

B We use for the discussion a coincise form of the r− averaged
Kolmogorov equation

Tr (r ,Yc) + Pe(r ,Yc) = Ee(r ,Yc) + Ge(r ,Yc) + Ep(r ,Yc)

the effective dissipation due to viscosity

Ee(r ,Yc) =
ν

2

(
∇2

r 〈δu2〉+
1

4

d2

dY 2
c

〈δu2〉
)
− 〈ε∗N〉



Scale by scale analysis of data

B We use for the discussion a coincise form of the r− averaged
Kolmogorov equation

Tr (r ,Yc) + Pe(r ,Yc) = Ee(r ,Yc) + Ge(r ,Yc) + Ep(r ,Yc)

the energy drained by polymers and eventually dissipated

Ep(r ,Yc) = −〈π∗p〉
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− Experimental evidence: the effect of polymers on wall
turbulence

− How the polymers act: their physical model

− The numerical simulations: how reliable they are

− A scale by scale energy budget: a tool for physical
understanding
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Polymers & the alteration of turbulence: scale energy

B Scale energy in the plane x − z as function of wall normal
distance and separation

B The maximum of scale energy moves towards large scales, i.e.
the coherent structures grow with De∗ up to MDR
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Polymers & the alteration of turbulence

B Effective production in the plane x − z
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B The maximum of production decreases, becomes thicker in y
and moves towards larger scales
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Polymers & the alteration of turbulence

B Energy drained by the polymers in the plane x − z

B In the elastic layer (blue) the polymers force the large scales.
In the Newtonian plug a draining of energy by polymers at
small scales (red) is prevailing as in H.I. turbulence (De Angelis

et al. 2004)
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Polymers & the alteration of turbulence

B Energy drained by the polymers in the plane x − z

B In the elastic layer (blue) the polymers force the large scales.
In the Newtonian plug a draining of energy by polymers at
small scales (red) is prevailing as in H.I. turbulence (De Angelis

et al. 2004)



Scale budget for Newtonian flows

r+100 200 300 400

-0.04

-0.02

0

0.02

0.04

Log-layer direct cascade as H.I.

r+100 200 300 400-0.4

-0.2

0

0.2

0.4

Buffer layer inverse cascade

• - Production
• - Inertial transfer
• - Viscous diffusion & dissipation (Marati et al. 2004)



Production vs inertial transfer

Production (solid) and Inertial transfer (dash-dotted)

ZPG Boundary layer Reτ = 1100, y+ = 100

r = (rx , 0, rz) r =
√

r2
x + r2

y



Experiments, dual plane stereo PIV

Production (solid) and Inertial transfer (dash-dotted)

ZPG Boundary layer Reτ = 1100, y+ = 100

r = (rx , 0, rz) r =
√

r2
x + r2

y

N.Saikrishnan, E.K. Longmire, I. Marusic



Polymers & the alteration of turbulence

B Inertial transfer in the plane x − z

B we see a region (red) where a direct cascade is taking place
and a region (blue) growing with De∗ where an inverse
cascade sets in
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Final Remarks

r+100 200 300 400-0.02

-0.01

0

0.01

0.02

0.03

Log layer

r+100 200 300 400-0.2

-0.1

0

0.1

0.2

0.3

Buffer layer

• - Effective production
• - Inertial transfer
• - Polymer transfer
• - Polymer dissipation
• - Effective Newtonian dissipation

− In the log-layer polymers
interact mainly with inertial
transfer (as in H.I. turbulence)

− In the buffer layer polymers
interact directly with the
production



Final Remarks

Inertial transfer in TKE equation

B The inverse cascade region grows in size and the maximum
moves away from the wall, i.e. the buffer region, here more
properly elastic layer, enlarges



Bubbly turbulent flows

Experimental set-up (INSEAN, Roma)



The effect of bubbles

Mean velocity profile in the ZPG boundary layer
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