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High Reynolds number jets

Da sinistra: Re = 5000; Re = 20000; Re ~ 2 -108
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High Reynolds number jets
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Wall bounded flows
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Introduction

Certain polymers reduce the drag significantly wrt Newtonian

(a few ppm yield DR = (Dg — Dp,)/Dg ~ 70% )




Introduction
Rheological properties: viscoelasticity, shear thinning

In laminar flow a drag-reducing polymer solution (small
concentration) is indistinguishable from a pure Newtonian fluid

Drag-reduction due to the polymer/turbulence interaction




Outline

- Thu 17:00/18:00 Turbulence basics

- Fri 16:00/17:00 Turbulence & Walls

- Sat 09:00/10:00 Drag-reducing polymers
- Sat 17:00/18:00 Polymers & Turbulence
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Turbulence basics

Given a body of dimension L moving with speed V through a
Newtonian incompressible (isocoric) flow with viscosity © and mass
density p, the dissipation rate of mechanical energy per unit volume

e=2uS:S

(S =1/2(Vu+ VuT') is the deformation rate) may be expected to
scale as

€ o pV2L72,




Turbulence basics

Given a body of dimension L moving with speed V through a
Newtonian incompressible (isocoric) flow with viscosity & and mass
density p, the dissipation rate of mechanical energy per unit volume

e=2uS:S
(S =1/2(Vu+ VuT') is the deformation rate) may be expected to
scale as

eox pV2L72,

In fact the correct answer at large Reynolds number Re = VL /p is

eox pV3/L.




Dissipative anomaly
Re = 2. x 10* Re = 5. x 10° Drag & Energy budget

1
D= 5pvchLf,

vbD:/edmeg
B

lim Cp(Re) = Cp

Re—o00

Dissipation independent of viscosity
and set by the large scales
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The energy cascade

o Viscosity ineffective at
large scales

o Energy injected at large
scales moves towards
small scales

o Eventually viscous
dissipation is activated at
small scales

o An inertial range sets in
where the energy flux is
constant

NrvEsrTA DRt



Homogeneous - “isotropic” Navier Stokes turbulence

Assume the Navier Stokes equation for the solenoidal velocity field
u(x, t;w)

%—i—u-Vu:—Vp—i—uAu—i—f

in a periodic box D, with initial data

u(x,0) = ug(x)

subject to a large-scale Gaussian stochastic forcing f(x, t; w)

f(x,t)@F(x+r,t+ 7)) = Ce(r)d(7)




Reynolds decomposition and turbulent kinetic energy

Define an average of g over different realizations of the process

(q(x,t)) = Im}LgNZ q(x, t,wg)
and its fluctuation (Reynolds decomposition)
q’(x, t7w) = q(x, t?"')) - <q(x, t)>
The averaged kinetic energy density (energy per unit mass)
1
K(x,t,w) = Eu(x, t,w)-u(x, t,w)

with Reynolds decomposition is

(K(x 0) = 5 (u(e, 1) (e 0) + 000 8) - Wity =
Kum(x, t) + Kr(x, t) © o



The equation for mean field and fluctuations

Averaging NS yields the equation for the mean field (u):

0
4 ) V) = V(o) 4 vA )+ () - V- )
- Equation not closed: Reynolds stresses Tg = —(u’ @ u’).

The equation for the fluctuation is then

8"‘/ / / / /
E—I—(u)-Vu =-Vp +vAu +f

—V-[u@u —(ueu)+ (u)@u]
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The equation for the TKE

The turbulent kinetic energy K7(x,t) = 1/2(u’ - u’) obeys an
evolution equation derived from NS

oK
a—:+v-(<u>KT):v-¢T+wT—eT+<f’-u’>

- ¢pr=—(pu + 1/2u’2u’ —u’ - X') is the spatial flux of TKE
(X = v(Vu' +Vu'T))

- m, = (W ®@u’) : V(u) is the production rate of TKE
conservative exchange from mean flow to fluctuations)

- €, = (X' (Vu' + Vu'T) /2) is the dissipation rate of TKE
(semi-positive definite and zero only for rigid fluctuations)
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The equation for the TKE (homogeneous-isotropic)

The turbulent kinetic energy K7(x,t) = 1/2(u’ - u’) obeys an
evolution equation derived from NS
oKt

e = e )

- (u) = 0 by suitable choice of reference frame

- €, = (X' (VU + Vu'T) /2) is the dissipation rate of TKE
(sem| positive definite and zero only for rigid fluctuations)

- Statistically stationary forcing and dissipation anomaly =>
the power extracted from the forcing is viscosity independent
(provided the Reynolds number is large enough!)




Warning on dissipation anomaly

- It is hard to predict the existence of cat’s whisker from
Schroedinger equation ...
Once you observe a cat however ... the whisker tells you
something about the equation ...

Similarly, dissipation anomaly is a phenomenology suggested
by experimental observation. It is used as an additional axiom
to learn more about turbulence.

- It should be taken by no means to imply the power extracted
from the external source if determined by dissipation.

- It means instead: The large scales which couple to the forcing
are viscosity-independent.




Implication of dissipation anomaly
- €, =2v(8' : §') independent of v implies
1
N
i.e. the field becomes singular as the viscosity is reduced (the
Reynolds number increases).

|Vu'| o

- Since V-u' =0, |VU/| x ||, with w" =V x u’ the vorticity
fluctuation, one has

ol o
w| x —=
N
(in hiit. €, = 2v(w' - '), with Q, = 1/2(w’ - ') the
turbulent enstrophy.) $q




Vorticity transport equation and enstrophy

- By taking the curl of NS one ends up with the transport
equation for the fluctuating vorticty Ow’/0t + (u) - Vw' = . ..

- The equation for the turbulent enstrophy is then

ag-2T wlzl / /
W+U'VQT+V.<TU>+<UJ @u'): Viw) =

(W@ (w): VU') + (W @ : VU) + (W @w') : V(u)
+vAQ, — (VW' : V') + (W' -V x )

- In hii.t. ({(u) = (w) = 0) it reduces to

Q
88; = (W @w V) - v (Vo' : Vo)

(where the fluctuating force is conservative, V x f' = 0).

- In stat. steady h.i.t. enstrophy production is positive,
<w’ Qw': Vu’> = I/<vw, : Vw’) > 0. @ SAPIENZA



Correlation tensor

One defines a (single-time) correlation tensor

C(x,r, t) = (u'(x+r, t)@u'(x, t)) Cap = (Ug(x+r, t)up(x, t))
typically with finite correlation length Lo,

C(x,r,t)~0 lr| > Lo .

As a consequence, extensive quantities do not fluctuate in the limit
of a large domain




Example: Fluctuation intensity in the tke

Define the turbulent kinetic energy of a certain realization
u(x, t,w)

KT(t,w) _/ KT(X, t,w)dVX .
D

Its fluctuation is

K7(t,w) = Kr(t,w) — (K7 (1))

and we have

(o) =3 [ [ (Kplx e )y tw))dvedy,

- ; 2 K (t))
N n< |:/Dl KT(X7 t)dVX:| > , W - 1/\/E '@‘ ?APIENZ,:



Example: Drag force exerted on a body

Define the drag force of a certain realization u(x, t,w)

D(t,w) = Uy - /86 T(x,t,w) - n(x)dSx .

Its fluctuation is

D/(t,w) = D(t,w) — (D(t))

and we have
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Karman-Howarth equation

Homogeneous, isotropic, stationary turbulence

1. Take the Navier Stokes equations for uj = u’(x1) at x;
2. Scalar multiply by uj = u’(x2), xo = %1 +r
3. Repeat steps 1-2 by exchanging points x; and x,

4. Add the two equations up
Let's introduce the change of variables (x1,x2) — (xc,r), with
Xe = 1/2(x1 + x2), r = x2 — X1.
Two-point averages depend only on separation r (V. = 0),

0 ia

8x2a/1 T ore

V2/1 =4V,

Terms involving pressure vanish by "integration by parts”
(uz-Vipi) = Vi-(uapy) = =V, - (upp}) = —p;Va-up =0




Karman-Howarth equation

Homogeneous, isotropic, stationary turbulence

1.
2.
3.
4.

Take the Navier Stokes equations for uj = u’(xy) at x;
Scalar multiply by uj = u’(x2), X = %1 +r
Repeat steps 1-2 by exchanging points x; and x»

Add the two equations up

Let's introduce the change of variables (x1,x2) — (xc,r), with
Xe = 1/2(x1 + x2), r = x2 — X1.

Two-point averages depend only on separation r (V. = 0),

0 ia

8x2a/1 T ore

V2/1 =4V,

Terms arising from the convective part take the form
(- Vi up @up) = Vi (u]-upuy) = =V, - (u] - ujup)




Karman-Howarth equation

Homogeneous, isotropic, stationary turbulence

1. Take the Navier Stokes equations for uj = u’(x;) at x;
2. Scalar multiply by u} = u’(x2), xo =x1 +r

3. Repeat steps 1-2 by exchanging points x; and x

4. Add the two equations up

On account of homogeneity and solenoidality one gets the
Kérman-Howarth (KH) equation (0u’ = u}, — uf)

O{uy - uy)

ot + V- ((u] - uh) ou') = (f] -u+ 5 - ul) + 204, (u] - up)




The energy spectrum

The trace of the correlation tensor
C(r) = tr[C(r)] = (u] - u})

is the object appearing in the Kdrman-Howarth equation.

- Its Fourier transform defines the energy spectrum

Hhﬂzegamcméwwm:fm

Then



The energy flux in wave-number space

The energy flux in the sapce of scales is defined as

Vk’¢)k :jkT(kv t)

with

T(k, t) = /(u’1 -ubou'Ye KTV,

T —
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The spectral view

The Fourier transform of the Karman -Howarth equation is then

OE(k, t)
ot
(F=F[(uy - f5 +uj - f1)]).

— Vi ok, t) = —vk?E(k, t) + F(k, t)

A

Since ¢, (k) = ¢(k)k (k = k/k), with the spherical averages
B =5 [ REMAR i) =5 [ ok)an

the equation for the spectrum reads

OE(k,t)  O0Pk(k,t)
ot 0Ok

— 20k?E(k, t) + F(k, t)



Spectral balance in the low-wn (forcing) range k < kr

Assume F(k, t) of compact support in k-space, i.e. F(k,t) =0 for
k > kr.
In the low wave-number band 0 < k < kg integrate to get

d [k

_ _ ke _ ke _
= | E(kt)= CDk(k,:,t)—ZV/ K2E (k, t)dk+/ F(k, t)dk
dt Jo 0 0

In a statistically steady state, decreasing v one ends up with
_ ke
Bulke) = [ F)k
0

We have an energy flux across kg from low to high wavenumbers
&4 (kr) which exactly removes the power injected by the forcing s

@ SAPIFNZA



Spectral balance in the high-wn (dissipative) range
kr << kp < k

Now vk?E(k,t) =0 for k < Kp(v).
In the high wave-number band kp(v) < k < +o0 integrate to get

— — +OO —
E(k,t) = —®u(kp, t) — 2u/k k2E(k, t)dk
D

d +o00
dt J,
In a statistically steady state, one ends up with
—+00
Sy (kp) = —2;//[( k?E(k, t)dk

D

We have an energy flux across kp entering the high wn-band which
feeds the scales where energy dissipation takes place
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Spectral balance in the intermediate (inertial) range
krp << k << kp

Now vk?E(k,t) = F(k,t) =0 for ke << k << Kp(v).
In the inertial band kr << k << kp(v) integrate to get

d [k

CT E(k, t) = &)k(kg,t)—&)k(kl,t)
t Ky

In a statistically steady state, one ends up with
i (ko) = Bu(ki) = Su(ke) = Sx(kp)

Constant energy flux across the inertial range ® (k) = ®.
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Energy transfer through the inertial range
The energy balance, e, = (u’ - f’) , leads to the conclusion that

o =26, =2(u’ - )

Dimensional analisys provides an estimate for the viscous scale,

n=\-—

6T
_ E k
E(k) = h(k,v,e.; k) => B F

T

- When k >> kg, E/(e,k=>/3) ~ h*(kn,0) = hj(kn)
- In the inertial range, kn << 1, h§(kn) ~ h5(0) = Ck

= —-5/3 i
E(K) = Cerk™® O oo



From KH to Kolmogorov

Homogeneous, isotropic, stationary turbulence

1. Define du = uy — uq, 6u? = u - du

2. In the KH equation express (homogeneity)
-V, {(ug - updu) = 1/2V, - (5u?6u)
- (u1 - up) = —1/2(60%) + (v?)
- <f2'll1+f1 'U2> = —<(5f(5[l> +2<fu>

3. Use the turbulent kinetic energy equation (f - u) =€,

It follows a form of the Kolmogorov equation (see e.g. Frish)

8<(5U2> 2 2
+ V.- (du“du) = —4(e,) + 2(6f - du) + 2v A, (6u”)
ot ——

Flusso ®, nello spazio delle scale




Kolmogorov equation

In isotropic conditions (f =r/r)

b, = P, F, b, =du‘du,
Vr b = ﬁa (r q)r) ﬁa (r q>r) ~ —4<€>
4 . .
¢, = —§<e>r + corrections + unsteadiness

- Small scale corrections due to diffusion by viscosity
- Large scale corrections due to velocity-forcing correlation
- Under isotropy we also have (6u?du,) = 5/3(0u) (6u, = Suy)

One finally has

4 d{su?)
<5UE> = _geTr+ bv er




Consequences of Kolmogorov equation

In the inertial range r >>n

In the dissipative range r ~ 7

d{6u?) 2 ) 1,

dr = EETr => <6UL> = ]571/67_"
- In the inertial range du; 61T/3r1/3
- In the dissipative range du; o €/2r

T

Order of magnitude estimate for the gradients

V| oy [ 7= = 01/ V)




Kolmogorov '41 Theory

For isotropic ensembles the z
pdf of velocity increments 5 1 /7
' RAC AR
r -
ou(r) = [u(x+r) —u(x)] - p; R Mg e ¥

is invariant under rotations
For its characteristic function

21/ (6u, r)e 75%d (§u)

we have

==




K'41 Theory

The structure functions depend on € and v and dimensional
analysis yields

([6u(r)]¥) = Sk(rie,v) = Cufi(r/n) (er)/

where the Kolmogorov scale is

n=\—_—
€

In the Inertial Range (r/n — oo, fx — 1)

S(r) o €3 k13

T —
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Intermittency

In fact dissipation is a highly intermittent field € = €(x, t).
In a ball B, of radius r the spatial average dissipation

3 3
=1 /, e(x, t)d>x

is itself a stochastic variable, and its moments manifest scaling
laws of the form

((er)) o<,
The flatness
((er)®)
((er)?)?

increases decreasing the scale in the inertial range
(limy—o limge— o0 Fa(r, Re) = 00).

F4(r) =




Intermittency corrections and K'62

The intermittency of the dissipation field affects the structure
functions

<(5U)k> X <(€r)k/3>rk/3 o (k)

where the scaling exponents include intermittency corrections

(k) = k/3+7(k/3)
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Multifractal formalism

In a stat. homogeneous Holder continous field
u(y) —u(x)| < ¢ly —x|") the pdf p(h) is
x-independent.

The exponent h is found on a set S(h) of
dimension D(h).

The probability a ball B, intersects S(h) is
P x r3—D(h)

The scaling du* oc rho, hg € [h, h + dh], occurs
with probability p(h)r3=P(dh

<((5U)k> O(/p(h)rkh+3_D(h)dh

—
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Multifractal formalism 11
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((6u)ky o r(R)

((k) = min [kh+3 — D(h)]

h = h(k) : %[kh+3—D(h)] =0
C(k) = kh(k) +3— D [E(k)}
dg(k) _ ¢
gk~
D [E(k)} - kdi(kk) — (k) +3



