Algebraic decoding of the Golden Code

LAURA LUZZI

joint work with G. Rekaya-Ben Othman and J.-C. Belfiore
"THE ARITHMETICS OF WIRELESS COMMUNICATIONS" PISA, 17 NOV 2008

Outline

(1) Decoding for MIMO systems
(2) Algebraic reduction for fast-fading channels
(3) Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4. Conclusion and perspectives

Outline

(1) Decoding for MIMO systems

(2) Algebraic reduction for fast-fading channels

(3) Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4. Conclusion and perspectives

MIMO systems

- The use of multiple antennas allows for increased data rates and reliability.
- Algebraic number theory is an effective tool to design codes that are full-rate and information-lossless.
- In order to increase data rates, both the number of antennas and the size of the signal set can be increased.
- This entails a high decoding complexity with is a real challenge for practical implementation.

System model

m transmit antennas, n receive antennas, t code length

$$
\underset{\text { received signal }}{\mathbf{Y}_{n \times t}}=\underset{\substack{\text { channel } \\ \text { chateword }}}{\mathbf{H}_{n \times m}} \underset{\substack{\text { codewor } \\ \text { coise }}}{\mathbf{X}_{m \times t}}+\underset{n \times t}{\mathbf{N}_{n \times t}}
$$

System model

m transmit antennas, n receive antennas, t code length

$$
\begin{aligned}
& \mathbf{Y}_{n \times t}=\mathbf{H}_{n \times m} \quad \mathbf{X}_{m \times t}+\mathbf{N}_{n \times t} \\
& \text { received signal channel codeword noise }
\end{aligned}
$$

- in our model, $n=m=t$
- \mathcal{A} division algebra of degree n^{2} over $\mathbb{Q}(i)$
- \mathcal{O} maximal order $(\mathbb{Z}[i]$-lattice $)$ of $\mathcal{A}, \quad \mathcal{O} \alpha$ ideal of \mathcal{O}
- $\mathbf{X} \in \mathcal{O} \alpha$

System model

m transmit antennas, n receive antennas, t code length

$$
\underset{\text { received signal }}{\mathbf{Y}_{n \times t}}=\underset{\text { channel }}{\mathbf{H}_{n \times m}} \underset{\substack{\text { codeword }}}{\mathbf{X}_{m \times t}}+\underset{\text { noise }}{\mathbf{N}_{n \times t}}
$$

- in our model, $n=m=t$
- \mathcal{A} division algebra of degree n^{2} over $\mathbb{Q}(i)$
- \mathcal{O} maximal order $(\mathbb{Z}[i]$-lattice $)$ of $\mathcal{A}, \quad \mathcal{O} \alpha$ ideal of \mathcal{O}
- $\mathbf{X} \in \mathcal{O} \alpha$

Golden Code: $\quad n=2, \quad\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \in \mathbb{Z}[i]^{4}$ QAM symbols

$$
\mathbf{X}=\frac{1}{\sqrt{5}}\left(\begin{array}{ll}
\alpha\left(s_{1}+s_{2} \theta\right) & \alpha\left(s_{3}+s_{4} \theta\right) \\
\bar{\alpha} i\left(s_{3}+s_{4} \bar{\theta}\right) & \bar{\alpha}\left(s_{1}+s_{2} \bar{\theta}\right)
\end{array}\right), \quad \theta \text { golden number }
$$

Lattice point representation

Matrix form: $\quad\left\{\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}, \mathbf{W}_{4}\right\} \quad$ basis of $\alpha \mathcal{O}$ as a $\mathbb{Z}[i]$-module.

$$
\mathbf{X}=\sum s_{i} \mathbf{W}_{i}, \quad \mathbf{s}=\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \in \mathbb{Z}[i]^{4} \text { vector of QAM information signals }
$$

Vector form: $\quad \mathbf{x}=\sum s_{i} \mathbf{w}_{i}=\Phi \mathbf{s}$

$$
\mathbf{y}=\mathbf{H}_{l} \Phi \mathbf{s}+\mathbf{n}
$$

- \mathbf{H}_{l} linear map corresponding to left multiplication by \mathbf{H}
- Φ generator matrix of the code lattice with columns $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}$

ML decoding: $\quad \hat{\mathbf{s}}=\underset{\mathbf{s} \in \mathrm{QAM}}{\operatorname{argmin}}\left\|\mathbf{y}-\mathbf{H}_{l} \Phi \mathbf{s}\right\|$

Decoding

Up to now, decoding has been performed using the lattice point representation

- ML decoders (Sphere Decoder, Schnorr-Euchner...)
- optimal performance but with high complexity
- Suboptimal decoders (Zero-forcing, MMSE...)
- reduced complexity but with poor performance

Decoding

Up to now, decoding has been performed using the lattice point representation

- ML decoders (Sphere Decoder, Schnorr-Euchner...)
- optimal performance but with high complexity
- Suboptimal decoders (Zero-forcing, MMSE...)
- reduced complexity but with poor performance
- The use of preprocessing before decoding can reduce the complexity of ML decoders and improve the performance of suboptimal decoders.
- left preprocessing (MMSE-GDFE) to obtain a better conditioned channel matrix
- right preprocessing (lattice reduction) to have a quasi-orthogonal lattice

Algebraic reduction

- Up to now, algebraic tools have been used for coding but not for decoding
- Algebraic reduction is a right preprocessing method that exploits the ring structure of the code

Principle: Part of the channel is absorbed by the code

- Approximate the channel matrix with a unit of the maximal order \mathcal{O}
- The approximation error should be quasi-unitary

Outline

(1) Decoding for MIMO systems

(2) Algebraic reduction for fast-fading channels

(3) Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4. Conclusion and perspectives

The SISO case: system model

$$
\begin{array}{cccc}
\mathbf{y} & = & \mathbf{H} & \mathbf{x} \\
\text { received signal }
\end{array}
$$

- \mathbf{H} is diagonal

- K cyclotomic extension of $\mathbb{Q}(i)$ of degree $n, \quad \operatorname{Gal}(K / \mathbb{Q}(i))=\langle\sigma\rangle$
- \mathcal{O}_{K} ring of integers of $K, \quad\left\{w_{1}, \ldots, w_{n}\right\}$ basis of \mathcal{O}_{K} over $\mathbb{Z}[i]$.
- canonical embedding $\mathcal{O}_{K} \rightarrow \mathbb{C}^{n}$

$$
x \mapsto \mathbf{x}=\left(x, \sigma(x), \ldots, \sigma^{n-1}(x)\right)^{t}
$$

- $x=s_{1} w_{1}+\ldots+s_{n} w_{n} \in \mathcal{O}_{K}, \quad \mathbf{x}=\Phi \mathbf{s}$ codeword, $\quad \mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{Z}[i]^{n}$

Algebraic reduction for fast fading channels
 [Rekaya, Belfiore, Viterbo 2004]

- Normalization of the received signal: $\mathbf{y}^{\prime}=\frac{\mathbf{y}}{\sqrt[n]{\operatorname{det}(\mathbf{H})}}=\mathbf{H}_{\mathbf{1}} \mathbf{x}+\mathbf{n}^{\prime}$
- Principle: approximate $\mathbf{H}_{\mathbf{1}}=\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ with $\mathbf{U}=\operatorname{diag}\left(u, \sigma(u), \ldots, \sigma^{n-1}(u)\right)$, where u is a unit of \mathcal{O}_{K}.
u unit of $\mathcal{O}_{K} \quad \Leftrightarrow \quad \mathbf{U} \Phi=\Phi \mathbf{T}$ with \mathbf{T} unimodular (with entries in $\mathbb{Z}[i]$).

$$
\mathbf{y}^{\prime} \sim \mathbf{U} \Phi \mathbf{s}+\mathbf{n}^{\prime}=\Phi \mathbf{T} \mathbf{s}+\mathbf{n}^{\prime}=\Phi \mathbf{s}^{\prime}+\mathbf{n}^{\prime}, \quad \mathbf{s}^{\prime} \in \mathbb{Z}[i]^{n}
$$

- Φ unitary \Rightarrow ZF decoding is quasi-optimal
- How to find U?

The logarithmic lattice

Dirichlet unit theorem

$$
u=u_{1}^{n_{1}} \cdots u_{k}^{n_{k}}, \quad u_{1}, \ldots, u_{k} \quad \text { fundamental units. }
$$

- u canonical embedding of u.

$$
\log |\mathbf{u}|=n_{1} \log \left|\mathbf{u}_{\mathbf{1}}\right|+\ldots+n_{k} \log \left|\mathbf{u}_{\mathbf{k}}\right|
$$

belongs to the logarithmic lattice generated by $\left\{\log \left|\mathbf{u}_{\mathbf{1}}\right|, \ldots, \log \left|\mathbf{u}_{\mathbf{1}}\right|\right\}$.

- Solution: find the closest point to $\left(\log \left|h_{1}\right|, \ldots, \log \left|h_{n}\right|\right)$ in the logarithmic lattice.
- Advantage: this lattice is fixed once and for all and doesn't depend on the channel.

Outline

(1) Decoding for MIMO systems

(2) Algebraic reduction for fast-fading channels

(3) Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4 Conclusion and perspectives

Outline

(1) Decoding for MIMO systems

(2) Algebraic reduction for fast-fading channels

(3) Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4 Conclusion and perspectives

Perfect approximation

Normalization of the received signal: $\quad \mathbf{Y}^{\prime}=\frac{\mathbf{Y}}{\sqrt{\operatorname{det}(\mathbf{H})}}$

$$
\mathbf{Y}^{\prime}=\mathbf{H}_{\mathbf{1}} \mathbf{X}+\mathbf{N}^{\prime}, \quad \operatorname{det}\left(\mathbf{H}_{\mathbf{1}}\right)=1
$$

Ideal case

- Suppose that $\mathbf{H}_{\mathbf{1}}$ is a unit \mathbf{U} of $\mathcal{O}: \quad \mathbf{Y}^{\prime}=\mathbf{U X}+\mathbf{N}^{\prime}$
- $\mathbf{U X}=\mathbf{X}^{\prime}$ is still a codeword:

$$
\{\mathbf{U X} \mid \mathbf{X} \in \mathcal{O} \alpha\}=\mathcal{O} \alpha
$$

- It is equivalent to a non-fading channel $\quad \mathbf{Y}^{\prime}=\mathbf{X}^{\prime}+\mathbf{N}^{\prime}$

Perfect approximation

In vectorized form:

$$
\mathbf{y}^{\prime}=\mathbf{U}_{l} \Phi \mathbf{s}+\mathbf{n}^{\prime}
$$

- \mathbf{U}_{l} linear map corresponding to left multiplication by \mathbf{U}
- Φ generator matrix of the code lattice
- $\mathbf{s} \in \mathbb{Z}[i]^{4}$ vector of QAM information signals

U unit $\quad \Leftrightarrow \quad \mathbf{U}_{l} \Phi=\Phi \mathbf{T}$ with \mathbf{T} unimodular

$$
\mathbf{y}^{\prime}=\Phi \mathbf{T} \mathbf{s}+\mathbf{n}^{\prime}=\Phi \mathbf{s}^{\prime}+\mathbf{n}^{\prime} \quad \mathbf{s}^{\prime} \in \mathbb{Z}[i]^{4}
$$

General case

In general the approximation is not perfect:

$$
\mathbf{H}_{1}=\mathbf{E} \mathbf{U}, \quad \mathbf{E} \quad \text { approximation error }
$$

General case

In general the approximation is not perfect:

$$
\mathbf{H}_{1}=\mathbf{E U}, \quad \mathbf{E} \quad \text { approximation error }
$$

Perfect approximation

$$
\begin{aligned}
& \mathbf{y}^{\prime}=\mathbf{U}_{l} \Phi \mathbf{s}+\mathbf{n}^{\prime}= \\
& =\Phi \mathbf{T} \mathbf{s}+\mathbf{n}^{\prime}
\end{aligned}
$$

Φ unitary
\Rightarrow ZF decoding is optimal

$$
\mathbf{s}^{\prime}=\mathbf{T} \mathbf{s}=\left[\Phi^{-1} \mathbf{y}^{\prime}\right]
$$

General case

In general the approximation is not perfect:

$$
\mathbf{H}_{1}=\mathbf{E U}, \quad \mathbf{E} \quad \text { approximation error }
$$

Perfect approximation

$$
\begin{aligned}
& \mathbf{y}^{\prime}=\mathbf{U}_{l} \Phi \mathbf{s}+\mathbf{n}^{\prime}= \\
& =\Phi \mathbf{T} \mathbf{s}+\mathbf{n}^{\prime}
\end{aligned}
$$

$\Rightarrow \mathbf{Z F}$ decoding is optimal

$$
\mathbf{s}^{\prime}=\mathbf{T} \mathbf{s}=\left[\Phi^{-1} \mathbf{y}^{\prime}\right]
$$

General case

$$
\begin{aligned}
& \mathbf{y}^{\prime}=\mathbf{E}_{l} \mathbf{U}_{l} \Phi \mathbf{s}+\mathbf{n}^{\prime}= \\
& =\mathbf{E}_{l} \Phi \mathbf{T} \mathbf{s}+\mathbf{n}^{\prime}
\end{aligned}
$$

To have quasi-optimal decoding E must be quasi-unitary
$\Rightarrow \quad$ Choose U such that $\|E\|_{F}$ is minimized

Outline

(1) Decoding for MIMO systems

(2) Algebraic reduction for fast-fading channels
(3) Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4. Conclusion and perspectives

How to find \mathbf{U} ?

The group of units of \mathcal{O} is a discrete subgroup Γ of $\mathrm{SL}_{2}(\mathbb{C})$.

How to find \mathbf{U} ?

The group of units of \mathcal{O} is a discrete subgroup Γ of $\mathrm{SL}_{2}(\mathbb{C})$.

Problem:

$\mathbf{H}_{1} \in \mathrm{SL}_{2}(\mathbb{C}) \quad \longrightarrow \quad$ find $\mathbf{U} \in \Gamma$ s.t. $\|\mathbf{E}\|_{F}=\left\|\mathbf{H}_{\mathbf{1}} \mathbf{U}^{-\mathbf{1}}\right\|_{F}$ is small

How to find \mathbf{U} ?

The group of units of \mathcal{O} is a discrete subgroup Γ of $\mathrm{SL}_{2}(\mathbb{C})$.

Problem:

$$
\mathbf{H}_{1} \in \mathrm{SL}_{2}(\mathbb{C}) \quad \longrightarrow \quad \text { find } \mathbf{U} \in \Gamma \text { s.t. }\|\mathbf{E}\|_{F}=\left\|\mathbf{H}_{\mathbf{1}} \mathbf{U}^{-\mathbf{1}}\right\|_{F} \text { is small }
$$

Action of $\mathrm{SL}_{2}(\mathbb{C})$ on hyperbolic 3 -space \mathbb{H}^{3}

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& J=(0,0,1) \quad \mapsto \quad A(J)=\left(\frac{\operatorname{Re}(b \bar{d}+a \bar{c})}{|c|^{2}+|d|^{2}}, \frac{\operatorname{Im}(b \bar{d}+a \bar{c})}{|c|^{2}+|d|^{2}}, \frac{1}{|c|^{2}+|d|^{2}}\right)
\end{aligned}
$$

How to find \mathbf{U} ?

The group of units of \mathcal{O} is a discrete subgroup Γ of $\mathrm{SL}_{2}(\mathbb{C})$.

Problem:

$$
\mathbf{H}_{1} \in \mathrm{SL}_{2}(\mathbb{C}) \quad \longrightarrow \quad \text { find } \mathbf{U} \in \Gamma \text { s.t. }\|\mathbf{E}\|_{F}=\left\|\mathbf{H}_{\mathbf{1}} \mathbf{U}^{-\mathbf{1}}\right\|_{F} \text { is small }
$$

Action of $\mathrm{SL}_{2}(\mathbb{C})$ on hyperbolic 3 -space \mathbb{H}^{3}

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& J=(0,0,1) \quad \mapsto \quad A(J)=\left(\frac{\operatorname{Re}(b \bar{d}+a \bar{c})}{|c|^{2}+|d|^{2}}, \frac{\operatorname{Im}(b \bar{d}+a \bar{c})}{|c|^{2}+|d|^{2}}, \frac{1}{|c|^{2}+|d|^{2}}\right)
\end{aligned}
$$

$\left\|\mathbf{H}_{\mathbf{1}} \mathbf{U}^{-\mathbf{1}}\right\|_{F}$ is small $\quad \Leftrightarrow \quad \mathbf{U}^{-1}(J)$ is close to $\mathbf{H}_{\mathbf{1}}^{-1}(J)$ in hyperbolic distance

Discrete subgroups and fundamental domains

Example: action of \mathbb{Z}^{2} on \mathbb{R}^{2}

- the area enclosed by bisectors is a fundamental domain for the action

- the images of the fundamental domain form a tiling of \mathbb{R}^{2}

Discrete subgroups and fundamental domains

Example: action of \mathbb{Z}^{2} on \mathbb{R}^{2}

- the area enclosed by bisectors is a fundamental domain for the action

Action of Γ on \mathbb{H}^{3}

- the images of the fundamental domain form a tiling of \mathbb{R}^{2}

Discrete subgroups and fundamental domains

Example: action of \mathbb{Z}^{2} on \mathbb{R}^{2}

- the area enclosed by bisectors is a fundamental domain for the action

- the images of the fundamental domain form a tiling of \mathbb{R}^{2}

Discrete subgroups and fundamental domains

Example: action of \mathbb{Z}^{2} on \mathbb{R}^{2}

- the area enclosed by bisectors is a fundamental domain for the action

- the images of the fundamental domain form a tiling of \mathbb{R}^{2}

Discrete subgroups and fundamental domains

Example: action of \mathbb{Z}^{2} on \mathbb{R}^{2}

- the area enclosed by bisectors is a fundamental domain for the action

- the images of the fundamental domain form a tiling of \mathbb{R}^{2}

Discrete subgroups and fundamental domains

Example: action of \mathbb{Z}^{2} on \mathbb{R}^{2}

- the area enclosed by bisectors is a fundamental domain for the action

- the images of the fundamental domain form a tiling of \mathbb{R}^{2}

Discrete subgroups and fundamental domains

Example: action of \mathbb{Z}^{2} on \mathbb{R}^{2}

- the area enclosed by bisectors is a fundamental domain for the action

- the images of the fundamental domain form a tiling of \mathbb{R}^{2}

Action of Γ on \mathbb{H}^{3}

- the bisectors are Euclidean spheres

- the fundamental domain is a hyperbolic polyhedron
- the images of the fundamental domain form a tiling of \mathbb{H}^{3}

Intersecting bisectors

Intersecting bisectors

Projection on the plane $\{z=0\}$

The fundamental polyhedron

Finding the generators

- The generators of the group correspond to the side-pairings of the fundamental polyhedron

Finding the generators

- The generators of the group correspond to the side-pairings of the fundamental polyhedron

Golden Code: 8 generators for the unit group

$$
\begin{array}{rlrl}
U_{1} & =\left(\begin{array}{cc}
i \theta & 0 \\
0 & i \bar{\theta}
\end{array}\right) & U_{5} & =\left(\begin{array}{cc}
1+i & 1+i \bar{\theta} \\
i(1+i \theta) & 1+i \\
1+i & 1+i \theta \\
U_{2} & =\left(\begin{array}{cc}
i+i \\
i-1 & i
\end{array}\right) \\
U_{6} & =\left(\begin{array}{cc}
\theta(1+i \bar{\theta}) & 1+i
\end{array}\right) \\
U_{3} & =\left(\begin{array}{cc}
\bar{\theta} & 1+i \\
i-1 & \bar{\theta}
\end{array}\right) \\
U_{4} & =\left(\begin{array}{cc}
1-i & \bar{\theta}+i \\
\theta & -1-i \\
-i+1 & \bar{\theta}
\end{array}\right)
\end{array}\right. \\
U_{8} & =\left(\begin{array}{cc}
1(\theta+i) & 1-i \\
1-i & \theta+i \\
i(\bar{\theta}+i) & 1-i
\end{array}\right)
\end{array}
$$

The algorithm

- the polyhedra adjacent to the

$$
\dot{H}_{1}^{-1}(J)
$$ fundamental polyhedron \mathcal{P} are of the form $\mathbf{U}(\mathcal{P})$, with \mathbf{U} a generator

Unit search algorithm

1) find the generator \mathbf{U} such that $\mathbf{U}(J)$ is closest to $\mathbf{H}_{\mathbf{1}}{ }^{-1}(J)$
2) every \mathbf{U} is an isometry
$\Rightarrow \quad$ apply \mathbf{U}^{-1}

- Repeat steps 1-2 until J is the closest point to $\mathbf{H}_{\mathbf{1}}{ }^{-1}(J)$

Outline

(1) Decoding for MIMO systems

(2) Algebraic reduction for fast-fading channels

(3) Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4. Conclusion and perspectives

Performance of the algebraic reduction - 4-QAM

Comparison with LLL reduction - 16-QAM

Outline

(1) Decoding for MIMO systems

(2) Algebraic reduction for fast-fading channels
(3) Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance
(4) Conclusion and perspectives

Conclusion and perspectives

Conclusion

- performance: algebraic reduction is at 3.4 dB from ML performance using MMSE-GDFE preprocessing and ZF decoding
- advantage over LLL reduction: for slow-fading channels, the search algorithm only requires a small update at each step instead of a full reduction

Open problems

- find good codes such that the group of units has the smallest possible number of generators
- extend algebraic reduction to higher-dimensional space-time codes based on division algebras (e.g. Perfect Codes)

