Algebraic decoding of the Golden Code

LAURA LUZZI

joint work with G. Rekaya-Ben Othman and J.-C. Belfiore

"The arithmetics of wireless communications" PISA, 17 NOV 2008

Laura Luzzi (Télécom-ParisTech)

Algebraic reduction

17 nov 2008 1 / 30

Outline

Decoding for MIMO systems

- 2 Algebraic reduction for fast-fading channels
- 3 Algebraic reduction for the Golden Code
 - Principle
 - The algorithm
 - Performance

Outline

Decoding for MIMO systems

2 Algebraic reduction for fast-fading channels

3 Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4 Conclusion and perspectives

- The use of **multiple antennas** allows for increased data rates and reliability.
- Algebraic number theory is an effective tool to design codes that are full-rate and information-lossless.
- In order to increase data rates, both the number of antennas and the size of the signal set can be increased.
- This entails a high **decoding complexity** with is a real challenge for practical implementation.

System model

m transmit antennas, *n* receive antennas, *t* code length

$\mathbf{Y}_{n imes t}$	=	$\mathbf{H}_{n \times m}$	$\mathbf{X}_{m \times t}$	+	$\mathbf{N}_{n \times t}$
received signal		channel	codeword		noise

System model

m transmit antennas, n receive antennas, t code length

$\mathbf{Y}_{n \times t}$	=	$\mathbf{H}_{n \times m}$	$\mathbf{X}_{m \times t}$	+	$\mathbf{N}_{n \times t}$
received signal		channel	codeword		noise

- in our model, n = m = t
- A division algebra of degree n^2 over $\mathbb{Q}(i)$
- \mathcal{O} maximal order ($\mathbb{Z}[i]$ -lattice) of \mathcal{A} , $\mathcal{O}\alpha$ ideal of \mathcal{O}
- $\mathbf{X} \in \mathcal{O}\alpha$

System model

m transmit antennas, *n* receive antennas, *t* code length

$\mathbf{Y}_{n \times t}$	=	$\mathbf{H}_{n \times m}$	$\mathbf{X}_{m \times t}$	+	$\mathbf{N}_{n \times t}$
received signal		channel	codeword		noise

- in our model, n = m = t
- A division algebra of degree n^2 over $\mathbb{Q}(i)$
- \mathcal{O} maximal order ($\mathbb{Z}[i]$ -lattice) of \mathcal{A} , $\mathcal{O}\alpha$ ideal of \mathcal{O}

•
$$\mathbf{X} \in \mathcal{O}\alpha$$

Golden Code: n = 2, $(s_1, s_2, s_3, s_4) \in \mathbb{Z}[i]^4$ QAM symbols $\mathbf{X} = \frac{1}{\sqrt{5}} \begin{pmatrix} \alpha(s_1 + s_2\theta) & \alpha(s_3 + s_4\theta) \\ \bar{\alpha}i(s_3 + s_4\bar{\theta}) & \bar{\alpha}(s_1 + s_2\bar{\theta}) \end{pmatrix}, \quad \theta \text{ golden number}$ Matrix form: $\{\mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3, \mathbf{W}_4\}$ basis of $\alpha \mathcal{O}$ as a $\mathbb{Z}[i]$ -module. $\mathbf{X} = \sum s_i \mathbf{W}_i,$ $\mathbf{s} = (s_1, s_2, s_3, s_4) \in \mathbb{Z}[i]^4$ vector of QAM information signals

Vector form: $\mathbf{x} = \sum s_i \mathbf{w}_i = \Phi \mathbf{s}$

$$\mathbf{y} = \mathbf{H}_l \Phi \mathbf{s} + \mathbf{n}$$

- H_l linear map corresponding to left multiplication by H
- Φ generator matrix of the code lattice with columns $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$

ML decoding:

$$\hat{\mathbf{s}} = \operatorname*{argmin}_{\mathbf{s}\in\mathrm{QAM}} \|\mathbf{y} - \mathbf{H}_l \Phi \mathbf{s}\|$$

Decoding

Up to now, decoding has been performed using the lattice point representation

- ML decoders (Sphere Decoder, Schnorr-Euchner...)
 - optimal performance but with high complexity
- Suboptimal decoders (Zero-forcing, MMSE...)
 - reduced complexity but with poor performance

Decoding

Up to now, decoding has been performed using the lattice point representation

- ML decoders (Sphere Decoder, Schnorr-Euchner...)
 - optimal performance but with high complexity
- Suboptimal decoders (Zero-forcing, MMSE...)
 - reduced complexity but with poor performance

- The use of **preprocessing** before decoding can reduce the complexity of ML decoders and improve the performance of suboptimal decoders.
 - **left preprocessing** (MMSE-GDFE) to obtain a better conditioned channel matrix
 - right preprocessing (lattice reduction) to have a quasi-orthogonal lattice

- Up to now, algebraic tools have been used for coding but not for decoding
- Algebraic reduction is a right preprocessing method that exploits the ring structure of the code

Principle: Part of the channel is absorbed by the code

- Approximate the channel matrix with a unit of the maximal order $\mathcal O$
- The approximation error should be quasi-unitary

Decoding for MIMO systems

2 Algebraic reduction for fast-fading channels

3 Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4 Conclusion and perspectives

The SISO case: system model

У	=	н	х	+	n
received signal		channel	codeword		noise

• H is diagonal

- K cyclotomic extension of Q(i) of degree n, Gal(K/Q(i)) =< σ >
- \mathcal{O}_K ring of integers of K, $\{w_1, \ldots, w_n\}$ basis of \mathcal{O}_K over $\mathbb{Z}[i]$.
- canonical embedding $\mathcal{O}_K \to \mathbb{C}^n$

$$x \mapsto \mathbf{x} = (x, \sigma(x), \dots, \sigma^{n-1}(x))^t$$

• $x = s_1 w_1 + \ldots + s_n w_n \in \mathcal{O}_K$, $\mathbf{x} = \Phi \mathbf{s}$ codeword, $\mathbf{s} = (s_1, \ldots, s_n) \in \mathbb{Z}[i]^n$

イロト イポト イヨト イヨト

Algebraic reduction for fast fading channels [Rekaya, Belfiore, Viterbo 2004]

• Normalization of the received signal: $\mathbf{y}' = \frac{\mathbf{y}}{\sqrt[n]{\det(\mathbf{H})}} = \mathbf{H}_1 \mathbf{x} + \mathbf{n}'$

• **Principle:** approximate $\mathbf{H}_1 = \operatorname{diag}(h_1, \ldots, h_n)$ with $\mathbf{U} = \operatorname{diag}(u, \sigma(u), \ldots, \sigma^{n-1}(u))$, where *u* is a **unit** of \mathcal{O}_K .

u unit of $\mathcal{O}_K \Leftrightarrow \mathbf{U}\Phi = \Phi \mathbf{T}$ with **T** unimodular (with entries in $\mathbb{Z}[i]$).

$$\mathbf{y}' \sim \mathbf{U} \Phi \mathbf{s} + \mathbf{n}' = \Phi \mathbf{T} \mathbf{s} + \mathbf{n}' = \Phi \mathbf{s}' + \mathbf{n}', \qquad \mathbf{s}' \in \mathbb{Z}[i]^n$$

• Φ unitary \Rightarrow ZF decoding is quasi-optimal

How to find U?

イロト 不得 とくほ とくほ とうほう

Dirichlet unit theorem

 $u = u_1^{n_1} \cdots u_k^{n_k}, \qquad u_1, \ldots, u_k$ fundamental units.

• **u** canonical embedding of *u*.

$$\log |\mathbf{u}| = n_1 \log |\mathbf{u}_1| + \ldots + n_k \log |\mathbf{u}_k|$$

belongs to the **logarithmic lattice** generated by $\{\log |\mathbf{u}_1|, \ldots, \log |\mathbf{u}_1|\}$.

- Solution: find the closest point to $(\log |h_1|, \ldots, \log |h_n|)$ in the logarithmic lattice.
- Advantage: this lattice is fixed once and for all and doesn't depend on the channel.

Decoding for MIMO systems

2 Algebraic reduction for fast-fading channels

3 Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4 Conclusion and perspectives

Decoding for MIMO systems

2 Algebraic reduction for fast-fading channels

Algebraic reduction for the Golden CodePrinciple

- The algorithm
- Performance

4 Conclusion and perspectives

Perfect approximation

Normalization of the received signal: $Y' = \frac{Y}{\sqrt{\det(H)}}$

$$\mathbf{Y}' = \mathbf{H}_{\mathbf{1}}\mathbf{X} + \mathbf{N}', \quad \det(\mathbf{H}_{\mathbf{1}}) = 1$$

Ideal case

- Suppose that H_1 is a unit U of \mathcal{O} : Y' = UX + N'
- $\mathbf{U}\mathbf{X} = \mathbf{X}'$ is still a codeword:

$$\{\mathbf{U}\mathbf{X} \mid \mathbf{X} \in \mathcal{O}\alpha\} = \mathcal{O}\alpha$$

• It is equivalent to a non-fading channel $\mathbf{Y}' = \mathbf{X}' + \mathbf{N}'$

In vectorized form:

$$\mathbf{y}' = \mathbf{U}_l \Phi \mathbf{s} + \mathbf{n}'$$

- U_l linear map corresponding to left multiplication by U
- Φ generator matrix of the code lattice
- $\mathbf{s} \in \mathbb{Z}[i]^4$ vector of QAM information signals

U unit
$$\Leftrightarrow$$
 U_l $\Phi = \Phi$ **T** with **T** unimodular

$$\mathbf{y}' = \Phi \mathbf{T} \mathbf{s} + \mathbf{n}' = \Phi \mathbf{s}' + \mathbf{n}' \qquad \mathbf{s}' \in \mathbb{Z}[i]^4$$

In general the approximation is not perfect:

 $\mathbf{H}_1 = \mathbf{E}\mathbf{U}, \qquad \mathbf{E}$ approximation error

< 口 > < 同

.

In general the approximation is not perfect:

 $\mathbf{H}_1 = \mathbf{E}\mathbf{U}, \qquad \mathbf{E}$ approximation error

Perfect approximation

$$\mathbf{y}' = \mathbf{U}_l \Phi \mathbf{s} + \mathbf{n}' =$$

= $\Phi \mathbf{T} \mathbf{s} + \mathbf{n}'$

 Φ unitary

 \Rightarrow ZF decoding is optimal

 $\mathbf{s}' = \mathbf{T}\mathbf{s} = \left[\Phi^{-1}\mathbf{y}'\right]$

In general the approximation is not perfect:

 $\mathbf{H}_1 = \mathbf{E}\mathbf{U}, \qquad \mathbf{E}$ approximation error

< ロ > < 同 > < 回 > < 回 > < 回 > <

Decoding for MIMO systems

2 Algebraic reduction for fast-fading channels

3 Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4 Conclusion and perspectives

The group of units of \mathcal{O} is a **discrete subgroup** Γ of $SL_2(\mathbb{C})$.

How to find U?

The group of units of \mathcal{O} is a **discrete subgroup** Γ of $SL_2(\mathbb{C})$.

Problem: $\mathbf{H}_1 \in \mathrm{SL}_2(\mathbb{C}) \longrightarrow \text{find } \mathbf{U} \in \Gamma \text{ s.t. } \|\mathbf{E}\|_F = \|\mathbf{H}_1 \mathbf{U}^{-1}\|_F \text{ is small}$

How to find U?

Problem:

The group of units of \mathcal{O} is a **discrete subgroup** Γ of $SL_2(\mathbb{C})$.

 $\mathbf{H}_1 \in \mathrm{SL}_2(\mathbb{C}) \longrightarrow \text{find } \mathbf{U} \in \Gamma \text{ s.t. } \|\mathbf{E}\|_F = \|\mathbf{H}_1 \mathbf{U}^{-1}\|_F \text{ is small}$

Action of $SL_2(\mathbb{C})$ on hyperbolic 3-space \mathbb{H}^3

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$J = (0, 0, 1) \quad \mapsto \quad A(J) = \left(\frac{\operatorname{Re}(b\bar{d} + a\bar{c})}{|c|^2 + |d|^2}, \frac{\operatorname{Im}(b\bar{d} + a\bar{c})}{|c|^2 + |d|^2}, \frac{1}{|c|^2 + |d|^2}\right)$$

How to find U?

The group of units of \mathcal{O} is a **discrete subgroup** Γ of $SL_2(\mathbb{C})$.

Problem:

 $\mathbf{H}_1 \in \mathrm{SL}_2(\mathbb{C}) \quad \longrightarrow \quad \text{find } \mathbf{U} \in \Gamma \text{ s.t. } \|\mathbf{E}\|_F = \left\|\mathbf{H}_1\mathbf{U}^{-1}\right\|_F \text{ is small}$

Action of $SL_2(\mathbb{C})$ on hyperbolic 3-space \mathbb{H}^3

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$J = (0, 0, 1) \quad \mapsto \quad A(J) = \left(\frac{\operatorname{Re}(b\bar{d} + a\bar{c})}{|c|^2 + |d|^2}, \frac{\operatorname{Im}(b\bar{d} + a\bar{c})}{|c|^2 + |d|^2}, \frac{1}{|c|^2 + |d|^2}\right)$$

 $\left\|\mathbf{H}_{\mathbf{1}}\mathbf{U}^{-1}\right\|_{F}$ is small $\Leftrightarrow \mathbf{U}^{-1}(J)$ is close to $\mathbf{H}_{\mathbf{1}}^{-1}(J)$ in hyperbolic distance

Example: action of \mathbb{Z}^2 on \mathbb{R}^2

• the area enclosed by **bisectors** is a **fundamental domain** for the action

• the images of the fundamental domain form a **tiling** of \mathbb{R}^2

Action of Γ on \mathbb{H}^3

Example: action of \mathbb{Z}^2 on \mathbb{R}^2

• the area enclosed by **bisectors** is a **fundamental domain** for the action

• the images of the fundamental domain form a **tiling** of \mathbb{R}^2

Action of Γ on \mathbb{H}^3

Example: action of \mathbb{Z}^2 on \mathbb{R}^2 Action of Γ on \mathbb{H}^3 • the area enclosed by **bisectors** is a fundamental domain for the action • the images of the fundamental domain form a **tiling** of \mathbb{R}^2

Laura Luzzi (Télécom-ParisTech)

Algebraic reduction

17 nov 2008 20 / 30

Action of Γ on \mathbb{H}^3

Example: action of \mathbb{Z}^2 on \mathbb{R}^2

• the area enclosed by **bisectors** is a **fundamental domain** for the action

• the images of the fundamental domain form a **tiling** of \mathbb{R}^2

Action of Γ on \mathbb{H}^3

• the bisectors are Euclidean spheres

- the fundamental domain is a **hyperbolic polyhedron**
- the images of the fundamental domain form a tiling of ℍ³

< □ ▶ < 同

Intersecting bisectors

Laura Luzzi (Télécom-ParisTech)

э 17 nov 2008 21/30

イロト イポト イヨト イヨト

590

Intersecting bisectors

Projection on the plane $\{z = 0\}$

Image: A matrix and a matrix

The fundamental polyhedron

• The **generators** of the group correspond to the **side-pairings** of the fundamental polyhedron

• The **generators** of the group correspond to the **side-pairings** of the fundamental polyhedron

Golden Code: 8 generators for the unit group

$$U_{1} = \begin{pmatrix} i\theta & 0\\ 0 & i\overline{\theta} \end{pmatrix} \qquad U_{5} = \begin{pmatrix} 1+i & 1+i\overline{\theta}\\ i(1+i\theta) & 1+i \end{pmatrix}$$
$$U_{2} = \begin{pmatrix} i & 1+i\\ i-1 & i \end{pmatrix} \qquad U_{6} = \begin{pmatrix} 1+i & 1+i\overline{\theta}\\ i(1+i\overline{\theta}) & 1+i \end{pmatrix}$$
$$U_{3} = \begin{pmatrix} \theta & 1+i\\ i-1 & \overline{\theta} \end{pmatrix} \qquad U_{7} = \begin{pmatrix} 1-i & \overline{\theta}+i\\ i(\theta+i) & 1-i \end{pmatrix}$$
$$U_{4} = \begin{pmatrix} \theta & -1-i\\ -i+1 & \overline{\theta} \end{pmatrix} \qquad U_{8} = \begin{pmatrix} 1-i & \theta+i\\ i(\overline{\theta}+i) & 1-i \end{pmatrix}$$

Laura Luzzi (Télécom-ParisTech)

• the polyhedra adjacent to the fundamental polyhedron \mathcal{P} are of the form $U(\mathcal{P})$, with U a generator

Unit search algorithm

- 1) find the generator U such that U(J) is closest to $H_1^{-1}(J)$
- 2) every U is an isometry \Rightarrow apply U⁻¹
 - Repeat steps 1-2 until *J* is the closest point to $\mathbf{H_1}^{-1}(J)$

 $\overset{\bullet}{H}{}_{1}^{-1}(J)$

Decoding for MIMO systems

2 Algebraic reduction for fast-fading channels

3 Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4 Conclusion and perspectives

Performance of the algebraic reduction - 4-QAM

Laura Luzzi (Télécom-ParisTech)

17 nov 2008 27 / 30

Comparison with LLL reduction - 16-QAM

17 nov 2008 28 / 30

<ロ> < 回 > < 回 > < 回 > < 回 > < 回

Decoding for MIMO systems

2 Algebraic reduction for fast-fading channels

3 Algebraic reduction for the Golden Code

- Principle
- The algorithm
- Performance

4 Conclusion and perspectives

Conclusion

- **performance:** algebraic reduction is at 3.4 dB from ML performance using MMSE-GDFE preprocessing and ZF decoding
- advantage over LLL reduction: for slow-fading channels, the search algorithm only requires a small update at each step instead of a full reduction

Open problems

- find good codes such that the group of units has the **smallest possible number of generators**
- extend algebraic reduction to **higher-dimensional** space-time codes based on division algebras (e.g. Perfect Codes)