Decoding of Space-Time Block Codes

Jean-Claude Belfiore

Telecom ParisTech

The Arithmetics of Wireless Communications Scuola Normale Superiore di Pisa November, 17th 2008

Part I

The MIMO Channel

The MIMO Channel

Representation of a space-time encoded MIMO channel

- Channel Model
- Representation of a space-time encoded MIMO channel

Definition and properties of a lattice

- Definition
- Parameters of a lattice
- Some Examples

Decoding of Space-Time Block Codes

- **X**

The quasi static fading channel

MIMO System

Decoding of Space-Time Block Codes

- 察嗣

The quasi static fading channel

MIMO System

Received signal

$$\boldsymbol{Y}_{n_r \times T} = \boldsymbol{H}_{n_r \times n_t} \cdot \boldsymbol{X}_{n_t \times T} + \boldsymbol{W}_{n_r \times T}$$
(1)

with *H* perfectly known at the receiver (coherent case).

• *H* is assumed constant during the transmission of one codeword.

Decoding of Space-Time Block Code

三条部門

Example of the Golden Code $(n_t = n_r = T = 2)$

Codeword

A codeword **X** of the Golden code is

$$\boldsymbol{X} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \alpha(s_1 + \theta s_2) & \alpha(s_3 + \theta s_4) \\ i\bar{\alpha}(s_3 + \bar{\theta} s_4) & \bar{\alpha}(s_1 + \bar{\theta} s_2) \end{bmatrix}$$

with $\theta = \frac{1+\sqrt{5}}{2}$, $\overline{\theta} = \frac{1-\sqrt{5}}{2}$, $\alpha = 1 + i - i\theta$, $\overline{\alpha} = 1 + i - i\overline{\theta}$ and s_l , l = 1...4 are the information symbols carved from a *q*-QAM.

Decoding of Space-Time Block Codes

Example of the Golden Code $(n_t = n_r = T = 2)$

Codeword

A codeword **X** of the Golden code is

$$\mathbf{X} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \alpha(s_1 + \theta s_2) & \alpha(s_3 + \theta s_4) \\ i\bar{\alpha}(s_3 + \bar{\theta}s_4) & \bar{\alpha}(s_1 + \bar{\theta}s_2) \end{bmatrix}$$

with $\theta = \frac{1+\sqrt{5}}{2}$, $\overline{\theta} = \frac{1-\sqrt{5}}{2}$, $\alpha = 1 + i - i\theta$, $\overline{\alpha} = 1 + i - i\overline{\theta}$ and s_l , l = 1...4 are the information symbols carved from a *q*-QAM.

Vectorization

$$\mathbf{y}_{n:T\times 1} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \mathbf{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{H} \end{bmatrix} \cdot \begin{bmatrix} \alpha & \alpha\theta & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & i\bar{\alpha} & i\bar{\alpha}\bar{\theta} \\ \mathbf{0} & \mathbf{0} & \alpha & \alpha\theta \\ \bar{\alpha} & \bar{\alpha}\bar{\theta} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} + \mathbf{w}$$
$$= \frac{1}{\sqrt{5}} \cdot \mathbf{H}_{n:T} \cdot \mathbf{\Phi}_{n:T} \cdot \mathbf{s}_{n:T\times 1} + \mathbf{w}_{n:T\times 1}$$

where $\mathbf{\Phi}_{n \cdot T}$ is a unitary matrix.

Decoding of Space-Time Block Codes

- **20**

Example of the Golden code (cont'd)

• Separation of the real and the imaginary parts

$$\mathbf{y}_{\mathbb{R}} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \Re(H) & 0 & -\Im(H) & 0 \\ 0 & \Re(H) & 0 & -\Im(H) \\ \Im(H) & 0 & \Re(H) & 0 \\ 0 & \Im(H) & 0 & \Re(H) \end{bmatrix} \cdot \begin{bmatrix} \Re(\Phi) & -\Im(\Phi) \\ \Im(\Phi) & \Re(\Phi) \end{bmatrix} \begin{bmatrix} \Re(s) \\ \Im(s) \end{bmatrix} + \begin{bmatrix} \Re(w) \\ \Im(w) \\ \Im(w) \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \cdot H_{\mathbb{R}} \cdot \boldsymbol{\sigma}_{\mathbb{R}} \cdot \boldsymbol{s}_{\mathbb{R}} + \boldsymbol{w}_{\mathbb{R}}$$

- 察嗣

Example of the Golden code (cont'd)

• Separation of the real and the imaginary parts

$$\mathbf{y}_{\mathbb{R}} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \Re(H) & 0 & -\Im(H) & 0 \\ 0 & \Re(H) & 0 & -\Im(H) \\ \Im(H) & 0 & \Re(H) & 0 \\ 0 & \Im(H) & 0 & \Re(H) \end{bmatrix} \cdot \begin{bmatrix} \Re(\Phi) & -\Im(\Phi) \\ \Im(\Phi) & \Re(\Phi) \end{bmatrix} \begin{bmatrix} \Re(s) \\ \Im(s) \end{bmatrix} + \begin{bmatrix} \Re(w) \\ \Im(w) \\ \Im(w) \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \cdot H_{\mathbb{R}} \cdot \Phi_{\mathbb{R}} \cdot s_{\mathbb{R}} + w_{\mathbb{R}}$$

Equivalent Channel

Let
$$M = \frac{1}{\sqrt{5}} \cdot H_{\mathbb{R}} \cdot \Phi_{\mathbb{R}}$$
, we get

$$y_{\mathbb{R}} = \boldsymbol{M} \cdot \boldsymbol{s}_{\mathbb{R}} + \boldsymbol{w}_{\mathbb{R}}$$

where vectors $y_{\mathbb{R}}$, $s_{\mathbb{R}}$ and $w_{\mathbb{R}}$ are 8-dimensional vectors and $s_{\mathbb{R}}$ is a vector with integer components.

Decoding of Space-Time Block Codes

- 名割

Example of the Golden code (cont'd)

• Separation of the real and the imaginary parts

$$\mathbf{y}_{\mathbb{R}} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \Re(H) & 0 & -\Im(H) & 0 \\ 0 & \Re(H) & 0 & -\Im(H) \\ \Im(H) & 0 & \Re(H) & 0 \\ 0 & \Im(H) & 0 & \Re(H) \end{bmatrix} \cdot \begin{bmatrix} \Re(\Phi) & -\Im(\Phi) \\ \Im(\Phi) & \Re(\Phi) \end{bmatrix} \begin{bmatrix} \Re(s) \\ \Im(s) \end{bmatrix} + \begin{bmatrix} \Re(w) \\ \Im(w) \\ \Im(w) \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \cdot H_{\mathbb{R}} \cdot \Phi_{\mathbb{R}} \cdot s_{\mathbb{R}} + w_{\mathbb{R}}$$

Equivalent Channel

Let
$$M = \frac{1}{\sqrt{5}} \cdot H_{\mathbb{R}} \cdot \Phi_{\mathbb{R}}$$
, we get

$$y_{\mathbb{R}} = \boldsymbol{M} \cdot \boldsymbol{s}_{\mathbb{R}} + \boldsymbol{w}_{\mathbb{R}}$$

where vectors $y_{\mathbb{R}}$, $s_{\mathbb{R}}$ and $w_{\mathbb{R}}$ are 8-dimensional vectors and $s_{\mathbb{R}}$ is a vector with integer components.

• More generally, the (real) dimension of the vectors is equal to $2 \cdot n_t \cdot T$.

Decoding of Space-Time Block Code

- 名割

The MIMO Channel

Representation of a space-time encoded MIMO channel Channel Model

• Representation of a space-time encoded MIMO channel

2 Definition and properties of a lattice

- Definition
- Parameters of a lattice
- Some Examples

Decoding of Space-Time Block Codes

- **X**

Lattice : Definition

Definition

A Euclidean lattice is a discrete additive subgroup with rank $p, p \le n$ of the Euclidean space \mathbb{R}^n . We assume p = n in the sequel.

Decoding of Space-Time Block Codes

- 客間

Lattice : Definition

Definition

A Euclidean lattice is a discrete additive subgroup with rank $p, p \le n$ of the Euclidean space \mathbb{R}^n . We assume p = n in the sequel.

- A lattice Λ is a set generated by vectors v_1, v_2, \dots, v_n of \mathbb{R}^n .
- An element v of Λ can be written as :

 $\boldsymbol{v} = a_1 \boldsymbol{v}_1 + a_2 \boldsymbol{v}_2 + \ldots + a_n \boldsymbol{v}_n, \ a_1, a_2, \ldots, a_n \in \mathbb{Z}$

- **X**

Lattice : Definition

Definition

A Euclidean lattice is a discrete additive subgroup with rank $p, p \le n$ of the Euclidean space \mathbb{R}^n . We assume p = n in the sequel.

- A lattice Λ is a set generated by vectors v_1, v_2, \dots, v_n of \mathbb{R}^n .
- An element v of Λ can be written as :

 $v = a_1 v_1 + a_2 v_2 + \ldots + a_n v_n, a_1, a_2, \ldots, a_n \in \mathbb{Z}$

• The lattice Λ can be defined as :

$$\mathbf{\Lambda} = \left\{ \sum_{i=1}^n a_i \boldsymbol{\nu}_i \mid a_i \in \mathbb{Z} \right\}$$

Decoding of Space-Time Block Codes

8/74

一般目的

Lattices : Parameters (1)

• The set of vectors v_1, v_2, \dots, v_n is a **lattice basis**, with **dimension** n

Definition

Matrix *M* whose columns are vectors $v_1, v_2, ..., v_n$ is a **generator matrix** of the lattice denoted Λ_M .

Decoding of Space-Time Block Codes

- 客間

Lattices : Parameters (1)

• The set of vectors v_1, v_2, \dots, v_n is a **lattice basis**, with **dimension** n

Definition

Matrix *M* whose columns are vectors $v_1, v_2, ..., v_n$ is a **generator matrix** of the lattice denoted Λ_M .

• Each vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$ in Λ_M , can be written as,

 $x = M \cdot z$

where $\boldsymbol{z} = (z_1, z_2, \dots, z_p)^\top \in \mathbb{Z}^p$.

• Lattice Λ_M may be seen as the result of a linear transform applied to lattice \mathbb{Z}^n .

Decoding of Space-Time Block Codes

- **20**

Lattices : Properties (2)

- Let $Q \in \mathcal{M}_n(\mathbb{R})$, such that $Q \cdot Q^{\top} = I_n$ and det $Q = \pm 1$. Q is an isometry. The two lattices Λ_M and $\Lambda_{Q \cdot M}$ are **equivalent**.
- Lattice $\Lambda_{Q \cdot M}$ is a rotated version of Λ_M .

- 客間

Lattices : Properties (2)

- Let $Q \in \mathcal{M}_n(\mathbb{R})$, such that $Q \cdot Q^{\top} = I_n$ and det $Q = \pm 1$. Q is an isometry. The two lattices Λ_M and $\Lambda_{Q \cdot M}$ are **equivalent**.
- Lattice $\Lambda_{Q \cdot M}$ is a rotated version of Λ_M .
- If $Q \in \mathcal{M}_n(\mathbb{Z})$ and det $Q \neq \pm 1$, then lattice $\Lambda_{M \cdot Q}$ is a **sublattice** of Λ_M .
- A sublattice of Λ_M is a subgroup of Λ_M .
- An integer lattice is a sublattice of \mathbb{Z}^n .

三般が

10 / 74

Lattices : Properties (3)

- The generator matrix M describes the lattice Λ_M , but it is not unique. All matrices $M \cdot T$ with $T \in \mathcal{M}_n(\mathbb{Z})$ and det $T = \pm 1$ are generator matrices of Λ_M . T is called a unimodular matrix.
- We define then invariant parameters.

Decoding of Space-Time Block Codes

Lattices : Properties (3)

- The generator matrix M describes the lattice Λ_M , but it is not unique. All matrices $M \cdot T$ with $T \in \mathcal{M}_n(\mathbb{Z})$ and det $T = \pm 1$ are generator matrices of Λ_M . T is called a unimodular matrix.
- We define then invariant parameters.

Definitions

• The **fundamental parallelotope** of Λ_M is the region,

$$\mathcal{P} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_n \mathbf{v}_n, \ 0 \le a_i < 1, \ i = 1 \ldots n \}$$

- The *fundamental volume* is the volume of the fundamental parallelotope. It is denoted $vol(\Lambda_M)$.
- $G = M^{\top} \cdot M$ is the *Gram matrix* of the lattice (not invariant).
- The fundamental volume of the lattice is $|\det(\mathbf{M})|$, which is $\sqrt{|\det(\mathbf{G})|}$ either.

Decoding of Space-Time Block Codes

「変調剤」

Lattices: Properties (4)

Definition

The *Voronoï cell* of a point *u* belonging to the lattice Λ is the region

$$\mathcal{V}(\boldsymbol{u}) = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \|\boldsymbol{x} - \boldsymbol{u}\| \le \|\boldsymbol{x} - \boldsymbol{y}\|, \, \boldsymbol{y} \in \Lambda \right\}$$

- Since a lattice is geometrically uniform, all Voronoï cells of a lattice are translated versions of the Voronoï cell of the zero point. This cell is called **Voronoï cell of the lattice**.
- The fundamental volume of a lattice is equal to the volume of its Voronoï cell.

「変数】 クタの

Decoding of Space-Time Block Codes

The \mathbb{Z}^2 -lattice

9 Q (P

Decoding of Space-Time Block Codes

- <u>8</u> m

The A₂ lattice

『第11 シマチ

Decoding of Space-Time Block Codes

Constellations defined from $\mathbb{Z}[j]$

- Perfect STBCs of dimension 3 and 6 use symbols carved from q HEX constellations.
- The lattice representation of a MIMO system using such codes needs some additional procedure. Simply, note that $\mathbb{Z}[j]$ is the hexagonal lattice A_2 with generator matrix.

$$\boldsymbol{B} = \begin{bmatrix} 1 & -0.5 \\ 0 & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$\mathbf{y}_{\mathbb{R}} = \begin{pmatrix} \Re(H) & \cdots & 0 & -\Im(H) & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \Re(H) & 0 & \cdots & -\Im(H) \\ \Im(H) & \cdots & 0 & \Re(H) & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \Im(H) & 0 & \cdots & \Re(H) \end{pmatrix} \cdot \begin{bmatrix} 1 & \cdots & 0 & -0.5 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & -0.5 \\ 0 & \cdots & 0 & \frac{\sqrt{3}}{2} & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & \frac{\sqrt{3}}{2} & \cdots \\ 0 & \cdots & 0 & 0 & \cdots & \frac{\sqrt{3}}{2} & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots$$

一般目的

Part II

Lattice Decoding

Lattice Decoding

3 Lattice Decoding

- Introduction
- Principles

Sphere Decoding

- Principle of Sphere Decoding
- Flow Chart and discussions

Schnorr-Euchner algorithm (SE)

- The algorithm
- Comparison SD/SE

- 客間

Introduction

• Traditional constellations (QAM, HEX) are carved from lattices (\mathbb{Z}^2 , A_2). Labelling and shaping is easier to perform.

- 察嗣

Introduction

- Traditional constellations (QAM, HEX) are carved from lattices (\mathbb{Z}^2 , A_2). Labelling and shaping is easier to perform.
- Another motivation is their decoding which can be derived from lattice decoding algorithms.
- Lattice decoding algorithms are now well-known, let's cite "sphere decoder, Schnorr-Euchner algorithm, sequential decoding,..."

三条数

Closest Point

• The **closest point** to y is the lattice point \hat{z} from Λ_M satisfying

$$\|\boldsymbol{y} - \hat{\boldsymbol{z}}\|^2 \le \|\boldsymbol{y} - \boldsymbol{z}\|^2$$
 for all $\boldsymbol{z} \in \Lambda_{\boldsymbol{M}}$

• Lattice decoding consists in finding the closest lattice point to *y*.

Decoding of Space-Time Block Codes

Closest Point

• The **closest point** to y is the lattice point \hat{z} from Λ_M satisfying

$$\|\boldsymbol{y} - \hat{\boldsymbol{z}}\|^2 \le \|\boldsymbol{y} - \boldsymbol{z}\|^2$$
 for all $\boldsymbol{z} \in \Lambda_{\boldsymbol{M}}$

- Lattice decoding consists in finding the closest lattice point to *y*.
- The main idea of lattice decoders is to search in some well-chosen region
 - Kannan's strategy : the region is a parallelotope
 - Pohst's strategy : the region is a sphere

三条数

Closest Point

• The **closest point** to *y* is the lattice point \hat{z} from Λ_M satisfying

$$\|\boldsymbol{y} - \hat{\boldsymbol{z}}\|^2 \le \|\boldsymbol{y} - \boldsymbol{z}\|^2$$
 for all $\boldsymbol{z} \in \Lambda_{\boldsymbol{M}}$

- Lattice decoding consists in finding the closest lattice point to *y*.
- The main idea of lattice decoders is to search in some well-chosen region
 - Kannan's strategy : the region is a parallelotope
 - Pohst's strategy : the region is a sphere
- Pohst's strategy is the more practical method. Lattice decoders have been inspired by him : **Sphere decoder** and **Schnorr-Euchner** algorithm.

1188111 シット

Lattice Decoding

- Introduction
- Principles

4 Sphere Decoding

- Principle of Sphere Decoding
- Flow Chart and discussions

- The algorithm
- Comparison SD/SE

- 客間

Sphere Decoding (1)

• Decoding consists in searching the lattice point

$$\hat{\boldsymbol{z}} = \arg\min_{\boldsymbol{z} \in \Lambda} \|\boldsymbol{y} - \boldsymbol{z}\|^2$$

which is equivalent to the minimization

 $\min_{\boldsymbol{w}\in\boldsymbol{y}-\Lambda}\|\boldsymbol{w}\|^2$

• We need to work in the translated lattice $y - \Lambda$.

Decoding of Space-Time Block Codes

Sphere Decoding (1)

• Decoding consists in searching the lattice point

$$\hat{\boldsymbol{z}} = \arg\min_{\boldsymbol{z} \in \Lambda} \|\boldsymbol{y} - \boldsymbol{z}\|^2$$

which is equivalent to the minimization

 $\min_{\boldsymbol{w}\in\boldsymbol{y}-\Lambda}\|\boldsymbol{w}\|^2$

• We need to work in the translated lattice $y - \Lambda$.

Change of coordinates

Let's define

$$z = M \cdot u, \quad u \in \mathbb{Z}^{n}$$

$$y = M \cdot \rho, \quad \rho = (\rho_{1}, \dots, \rho_{n})^{\top} \in \mathbb{R}^{n} \Rightarrow \text{The ZF point}$$

$$w = y - z = M \cdot (\rho - u) = M \cdot \xi, \quad \xi = (\xi_{1}, \dots, \xi_{n})^{\top} \in \mathbb{R}^{n}$$

Decoding of Space-Time Block Code

- 察嗣

Sphere Decoding (1)

• Decoding consists in searching the lattice point

$$\hat{\boldsymbol{z}} = \arg\min_{\boldsymbol{z} \in \Lambda} \|\boldsymbol{y} - \boldsymbol{z}\|^2$$

which is equivalent to the minimization

 $\min_{\pmb{w}\in \pmb{y}-\Lambda}\|\pmb{w}\|^2$

• We need to work in the translated lattice $y - \Lambda$.

Change of coordinates

Let's define

$$z = M \cdot u, \quad u \in \mathbb{Z}^{n}$$

$$y = M \cdot \rho, \quad \rho = (\rho_{1}, \dots, \rho_{n})^{\top} \in \mathbb{R}^{n} \Rightarrow \text{The ZF point}$$

$$w = y - z = M \cdot (\rho - u) = M \cdot \xi, \quad \xi = (\xi_{1}, \dots, \xi_{n})^{\top} \in \mathbb{R}^{n}$$

• Components ξ_i are those of vector \boldsymbol{u} of \mathbb{Z}^n in the new reference.

- 客間

Sphere Decoding

Sphere Decoder (2)

The aim is to find the lattice points in the sphere centered on the received signal and of radius √C. So,

 $\|\boldsymbol{w}\|^2 \leq C$

Decoding of Space-Time Block Codes
(Sphere Decoding

Schnorr-Euchner algorithm (SE)

Sphere Decoder (2)

The aim is to find the lattice points in the sphere centered on the received signal and of radius √C. So,
 ||w||² ≤ C

$$\|\boldsymbol{w}\|^{2} = Q(\boldsymbol{\xi}) = \boldsymbol{\xi}^{\top} \cdot \boldsymbol{M}^{\top} \cdot \boldsymbol{M} \cdot \boldsymbol{\xi} = \boldsymbol{\xi}^{\top} \cdot \boldsymbol{G} \cdot \boldsymbol{\xi} = \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij} \xi_{i} \xi_{j} \leq C$$

Sphere Decoder (2)

The aim is to find the lattice points in the sphere centered on the received signal and of radius √C. So,
 ||w||² ≤ C

$$\|\boldsymbol{w}\|^{2} = Q(\boldsymbol{\xi}) = \boldsymbol{\xi}^{\top} \cdot \boldsymbol{M}^{\top} \cdot \boldsymbol{M} \cdot \boldsymbol{\xi} = \boldsymbol{\xi}^{\top} \cdot \boldsymbol{G} \cdot \boldsymbol{\xi} = \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij} \xi_{i} \xi_{j} \leq C$$

• The Cholesky factorization of the Gram matrix $G = M^{\top} \cdot M$, gives $G = R \cdot R^{\top}$, where $R^{\top} = (r_{ji})_{i,j=1...n}$ is an upper triangular matrix.

$$Q(\boldsymbol{\xi}) = \boldsymbol{\xi}^{\top} \boldsymbol{R} \cdot \boldsymbol{R}^{\top} \boldsymbol{\xi} = \left\| \boldsymbol{R}^{\top} \cdot \boldsymbol{\xi} \right\|^{2} = \sum_{i=1}^{n} \left(r_{ii} \boldsymbol{\xi}_{i} + \sum_{j=i}^{n} r_{ij} \boldsymbol{\xi}_{j} \right)^{2} \leq C$$

Decoding of Space-Time Block Codes

- **201**

Sphere Decoding (3)

• Let

$$\begin{array}{rcl} q_{ii} & = & r_{ii}^2, \, i = 1, \dots, n \\ q_{ij} & = & \frac{r_{ij}}{r_{ii}}, \, i = 1, \dots, n, \, j = i + 1, \dots, n \end{array}$$

Decoding of Space-Time Block Codes

- 多計

Sphere Decoding (3)

Let

$$\begin{array}{lll} q_{ii} & = & r_{ii}^2, \, i = 1, \dots, n \\ q_{ij} & = & \frac{r_{ij}}{r_{ii}}, \, i = 1, \dots, n, \, j = i+1, \dots, n \end{array}$$

Ellipsoid

• We get

$$Q(\boldsymbol{\xi}) = \sum_{i=1}^{n} q_{ii} \left(\xi_i + \sum_{j=i+1}^{n} q_{ij} \xi_j \right)^2 \le C$$

$$Q(\boldsymbol{\xi}) = \sum_{i=1}^{n} q_{ii} U_i^2 \le C \Rightarrow$$
 Interior of an ellipsoid

Decoding of Space-Time Block Code

23 / 74

- <u>8</u> m

(Sphere Decoding

Sphere Decoding (4)

• In the new system defined by ξ , the sphere with radius \sqrt{C} , centered on the received point, is transformed into an ellipsoid centered on zero and defined by the bilinear form $Q(\xi)$.

副務部 シット (や

Sphere Decoding (5)

• In order to determine the ellipsoid boundaries, let do some processing on ξ_n

 $q_{nn}\xi_n^2 \leq C$

• We have $\xi_n = \rho_n - u_n$

$$\left[-\sqrt{\frac{C}{q_{nn}}} + \rho_n \right] \le u_n \le \left\lfloor \sqrt{\frac{C}{q_{nn}}} + \rho_n \right\rfloor$$

where $\lceil x \rceil$ is the smallest integer larger than x and $\lfloor x \rfloor$ is the largest integer smaller than x.

Sphere Decoding (5)

• In order to determine the ellipsoid boundaries, let do some processing on ξ_n

$$q_{nn}\xi_n^2 \le C$$

• We have $\xi_n = \rho_n - u_n$

$$\left\lceil -\sqrt{\frac{C}{q_{nn}}} + \rho_n \right\rceil \le u_n \le \left\lfloor \sqrt{\frac{C}{q_{nn}}} + \rho_n \right\rfloor$$

where [x] is the smallest integer larger than *x* and $\lfloor x \rfloor$ is the largest integer smaller than *x*.

• Now the ξ_i , i = n - 1, ..., 1.

$$q_{n-1,n-1}(\xi_{n-1} + q_{n,n-1}\xi_n)^2 + q_{nn}\xi_n^2 \le C$$

Decoding of Space-Time Block Code

- 客間

Sphere Decoding (6)

• We get

$$\left[-\sqrt{\frac{C-q_{nn}\xi_n^2}{q_{n-1,n-1}}} + \rho_{n-1} + q_{n-1,n}\xi_n\right] \le u_{n-1} \le \left\lfloor\sqrt{\frac{C-q_{nn}\xi_n^2}{q_{n-1,n-1}}} + \rho_{n-1} + q_{n-1,n}\xi_n\right\rfloor$$

Decoding of Space-Time Block Codes

- <u>8</u> m

Sphere Decoding (6)

• We get

$$\left[-\sqrt{\frac{C-q_{nn}\xi_n^2}{q_{n-1,n-1}}} + \rho_{n-1} + q_{n-1,n}\xi_n\right] \le u_{n-1} \le \left\lfloor\sqrt{\frac{C-q_{nn}\xi_n^2}{q_{n-1,n-1}}} + \rho_{n-1} + q_{n-1,n}\xi_n\right\rfloor$$

• This gives, for the i^{th} component u_i ,

$$\begin{bmatrix} -\sqrt{\frac{1}{q_{ii}}\left(C - \sum_{l=i+1}^{n} q_{ll}\left(\xi_l + \sum_{j=l+1}^{n} q_{lj}\xi_j\right)^2\right)} + \rho_i + \sum_{j=i+1}^{n} q_{ij}\xi_j \end{bmatrix} \leq u_i$$

$$\left\lfloor \sqrt{\frac{1}{q_{ii}}\left(C - \sum_{l=i+1}^{n} q_{ll}\left(\xi_l + \sum_{j=l+1}^{n} q_{lj}\xi_j\right)^2\right)} + \rho_i + \sum_{j=i+1}^{n} q_{ij}\xi_j \right\rfloor \geq u_i$$

Decoding of Space-Time Block Codes

「餐間」

Sphere Decoding (7)

• In order to simplify the decoding expressions, we define

$$S_{i} = \rho_{i} + \sum_{l=i+1}^{n} q_{il}\xi_{l}, i = 1, ..., n$$

$$T_{i-1} = C - \sum_{l=i}^{n} q_{ll} \left(\xi_{l} + \sum_{j=l+1}^{n} q_{lj}\xi_{j}\right)^{2} = T_{i} - q_{ii}(S_{i} - u_{i})^{2}$$

• We get

$$b_{\inf,i} = \left[-\sqrt{\frac{T_i}{q_{ii}}} + S_i \right] \le u_i \le \left\lfloor \sqrt{\frac{T_i}{q_{ii}}} + S_i \right\rfloor = b_{\sup,i}$$

「第三日 1990 で

Sphere Decoding (7)

• In order to simplify the decoding expressions, we define

$$S_{i} = \rho_{i} + \sum_{l=i+1}^{n} q_{il}\xi_{l}, i = 1, ..., n$$

$$T_{i-1} = C - \sum_{l=i}^{n} q_{ll} \left(\xi_{l} + \sum_{j=l+1}^{n} q_{lj}\xi_{j}\right)^{2} = T_{i} - q_{ii}(S_{i} - u_{i})^{2}$$

$$b_{\inf,i} = \left\lceil -\sqrt{\frac{T_i}{q_{ii}}} + S_i \right\rceil \le u_i \le \left\lfloor \sqrt{\frac{T_i}{q_{ii}}} + S_i \right\rfloor = b_{\sup,i}$$

• For each component of vector \boldsymbol{u} , we define an interval $I_i = [b_{\inf,i}, b_{\sup,i}]$ which contains it.

Decoding of Space-Time Block Code:

- 客間

Schnorr-Euchner algorithm (SE)

Sphere Decoding (8)

• The Closest point search consists in descending a tree.

「後期間 つくで

Sphere Decoding (8)

• The Closest point search consists in descending a tree.

• When a lattice point is found, its squared distance from the received point is given by,

$$\hat{d}^2 = C - T_1 + q_{11}(S_1 - u_1)^2$$

If $\hat{d}^2 \leq C$, the point is recorded.

- 彩靜

Sphere Decoding (8)

• The Closest point search consists in descending a tree.

• When a lattice point is found, its squared distance from the received point is given by,

$$\hat{d}^2 = C - T_1 + q_{11}(S_1 - u_1)^2$$

If $\hat{d}^2 \leq C$, the point is recorded.

• The search algorithm makes the sphere radius as well as bounds $b_{\inf,i}$ and $b_{\sup,i}$ for, $i = 1 \cdots n$, release dynamically along the research process when a point is found, i.e. $C \ge \hat{d}^2$.

Decoding of Space-Time Block Code

- **20**

Flow Chart

Sphere Decoding

Choice of the sphere radius

• The radius is a critical parameter for the complexity of the algorithm

- A too small radius : no point inside the sphere
- A too large radius : too many points inside the sphere, which increases the algorithm complexity

- 客間

Sphere Decoding

Choice of the sphere radius

• The radius is a critical parameter for the complexity of the algorithm

- A too small radius : no point inside the sphere
- A too large radius : too many points inside the sphere, which increases the algorithm complexity
- A good solution is to have the sphere radius equal to the covering radius of the lattice (too complex)

ecoding of Space-Time Block Codes

三条数

Sphere Decoding

Choice of the sphere radius

- The radius is a critical parameter for the complexity of the algorithm
 - A too small radius : no point inside the sphere
 - A too large radius : too many points inside the sphere, which increases the algorithm complexity
- A good solution is to have the sphere radius equal to the covering radius of the lattice (too complex)
- An easier solution is to choose

$$C = \min\left(\min_{i}\left(\left(\operatorname{diag}\boldsymbol{M}\cdot\boldsymbol{M}^{\top}\right)_{i}\right), 2n\sigma^{2}\right)$$

『器歌』 クへへ

30 / 74

Decoding of a finite part of a lattice

• First idea : add a routine which tests if a candidate point belongs or not to the constellation. Too complex.

Decoding of a finite part of a lattice

- First idea : add a routine which tests if a candidate point belongs or not to the constellation. Too complex.
- Decode the constellation with the same complexity as the lattice
- Only visit points inside the constellation

- 客間

Decoding of a finite part of a lattice

- First idea : add a routine which tests if a candidate point belongs or not to the constellation. Too complex.
- Decode the constellation with the same complexity as the lattice
- Only visit points inside the constellation

16 – **QAM**

redefine intervals

$$I = I_i \cap I_C = \left[\sup(b_{inf,i}, c_{min}), \inf(b_{sup,i}, c_{max}) \right]$$

where $I_C = [c_{min}, c_{max}] = [0, 3]$ is the set of the in phase and quadrature components of the constellation.

Decoding of Space-Time Block Code

31 / 74

一般目的

Lattice Decoding

- Introduction
- Principles

Sphere Decoding

- Principle of Sphere Decoding
- Flow Chart and discussions

5 Schnorr-Euchner algorithm (SE)

- The algorithm
- Comparison SD/SE

- 客間

Schnorr-Euchner algorithm (1)

- It is a variant of the Sphere Decoder (SD)
- Same principle than SD applies, that is, search the closest point inside a sphere centered on the received point.

- 客間

Schnorr-Euchner algorithm (1)

- It is a variant of the Sphere Decoder (SD)
- Same principle than SD applies, that is, search the closest point inside a sphere centered on the received point.
- The main idea of SE is to see the set of n-dimensional points (n-dimensional lattice) as a superposition of (n-1)-dimensional points (in hyperplans).
- The closest point is found by successive projections on hyperplans.
- We need a starting point in the lattice.

「彩き物」

Sphere Decoding

(Schnorr-Euchner algorithm (SE)

Example of a 3 dimensional lattice

1988日 シックへで

Schnorr-Euchner algorithm (2)

- The starting point is called "Babai point". It results from a suboptimal decoding.
- Starting from the Babai point, the algorithm visits the other lattice points inside the sphere centered on the received point, and whose radius is given by the distance between the **Babai point** and the received point.

- **201**

Schnorr-Euchner algorithm (2)

- The starting point is called "Babai point". It results from a suboptimal decoding.
- Starting from the Babai point, the algorithm visits the other lattice points inside the sphere centered on the received point, and whose radius is given by the distance between the **Babai point** and the received point.
- We visit all points inside the sphere, zigzaging around each component of the Babai point

Comparison SD/SE

Similarities

- same principle : search the closest point inside a sphere
- same performance : ML

Comparison SD/SE

Similarities

- same principle : search the closest point inside a sphere
- same performance : ML

Differences

• Strategies are different

- SD : points are visited from the boundary of the sphere towards its center
- SE : points are visited from the center of the sphere towards its boundaries

• Sphere radius

- SD : needs to initialize the radius
- SE : no initial radius to choose

Decoding of Space-Time Block Codes

36 / 74

- 名割

Part III

Preprocessing

Preprocessing

6 The preprocessing stage

- A more general problem formulation
- Why preprocessing?

Left Preprocessing

- The QR decomposition
- Taming the Channel: The MMSE-DFE

Right Preprocessing

• The general technique

Algebraic reduction for DAST codes

- Problem Statement
- The reduction algorithm

Decoding of Space-Time Block Codes

38 / 74

- 梁静神

A more general problem formulation

Definition

A lattice code $\mathscr{C}(\Lambda, t, \mathscr{S})$ is the set of points of $\Lambda + t$ inside the shaping region \mathscr{S} that is,

```
\mathscr{C}(\Lambda, \boldsymbol{t}, \mathscr{S}) = \{\Lambda + \boldsymbol{t}\} \cap \mathscr{S}
```

• The considered communication model is

$$y = H \cdot (x + t) + w$$

where $\boldsymbol{x} = \boldsymbol{\Phi} \cdot \boldsymbol{u}, \, \boldsymbol{u} \in \mathbb{Z}^m$ and $\boldsymbol{H} \in \mathbb{R}^{n \times m}$.

• Φ is the precoding matrix.

A more general problem formulation

Definition

A lattice code $\mathscr{C}(\Lambda, t, \mathscr{S})$ is the set of points of $\Lambda + t$ inside the shaping region \mathscr{S} that is,

```
\mathscr{C}(\Lambda, \boldsymbol{t}, \mathscr{S}) = \{\Lambda + \boldsymbol{t}\} \cap \mathscr{S}
```

• The considered communication model is

$$y = H \cdot (x + t) + w$$

where $\boldsymbol{x} = \boldsymbol{\Phi} \cdot \boldsymbol{u}, \, \boldsymbol{u} \in \mathbb{Z}^m$ and $\boldsymbol{H} \in \mathbb{R}^{n \times m}$.

• Φ is the precoding matrix.

Decoding problem

Find

$$\hat{\boldsymbol{u}} = \arg\min_{\boldsymbol{u}\in\mathscr{U}\subset\mathbb{Z}^m} \|\boldsymbol{y}-\boldsymbol{H}\cdot\boldsymbol{t}-\boldsymbol{H}\cdot\boldsymbol{\Phi}\cdot\boldsymbol{u}\|^2$$

(2)

Why preprocessing?

• Applications of sphere decoding suffers from two inconveniences

- **()** When rank $(H \cdot \Phi) < m$ or $H \cdot \Phi$ is ill-conditioned the spread of the diagonal elements of $H \cdot \Phi$ is large and the search can be very complex.
- 2 Enforcing u is very difficult when constellation $\mathcal U$ has a complicated shape
- Lattice decoding can solve this problem by searching over $\mathbb{Z}^{\overline{m}}$ (instead of \mathscr{U}) but it is far from ML in general.

- **201**

Why preprocessing?

• Applications of sphere decoding suffers from two inconveniences

- **()** When rank $(H \cdot \Phi) < m$ or $H \cdot \Phi$ is ill-conditioned the spread of the diagonal elements of $H \cdot \Phi$ is large and the search can be very complex.
- 2 Enforcing u is very difficult when constellation $\mathcal U$ has a complicated shape
- Stattice decoding can solve this problem by searching over Z^m (instead of 𝒜) but it is far from ML in general.
- Solution: Preprocessing!
- In addition, preprocessing H and Φ can have a great effect on the complexity of the search stage to make the tree more "friendly" (improving the quality of the ZF-DFE).

The prepro	ocessing	stage
------------	----------	-------

Left Preprocessing

Right Preprocessin

Algebraic reduction for DAST codes

The preprocessing stage

● *Left Preprocessing* (→ ×*H*): Modifies *H* and *w* such that the resulting CLosest Point Search (CLPS) is not equivalent to ML but has a much better conditioned "channel" matrix and makes lattice decoding near-optimal.

Decoding of Space-Time Block Codes

- 客間
| The prepro | ocessing | stage |
|------------|----------|-------|
|------------|----------|-------|

The preprocessing stage

- *Left Preprocessing* (→ ×*H*): Modifies *H* and *w* such that the resulting CLosest Point Search (CLPS) is not equivalent to ML but has a much better conditioned "channel" matrix and makes lattice decoding near-optimal.
- *Right preprocessing* ($\Phi \times \leftarrow$): When boundary region is removed, we have the freedom of choosing the lattice basis which is more convenient for the search algorithm.

Decoding of Space-Time Block Codes

三般語

The preprocessing stage

Left Preprocessing

Right Preprocessin

Algebraic reduction for DAST codes

The preprocessing stage

- *Left Preprocessing* (→ ×*H*): Modifies *H* and *w* such that the resulting CLosest Point Search (CLPS) is not equivalent to ML but has a much better conditioned "channel" matrix and makes lattice decoding near-optimal.
- *Right preprocessing* ($\Phi \times \leftarrow$): When boundary region is removed, we have the freedom of choosing the lattice basis which is more convenient for the search algorithm.

Preprocessing

Left preprocessing applied only on the channel matrix; right preprocessing applied on the whole. **Important:** any preprocessing should not destruct the code structure

「第一部】 シックへ (や

Preprocessing

The preprocessing stage

- A more general problem formulation
- Why preprocessing?

Left Preprocessing

- The QR decomposition
- Taming the Channel: The MMSE-DFE

B Right Preprocessing

• The general technique

Algebraic reduction for DAST codes

- Problem Statement
- The reduction algorithm

- 梁静神

The QR decomposition

• QR decomposition applies to *H*.

- It can be seen as ZF-DFE with
 - Feedforward matrix **Q**
 - Backward matrix *R*

• When
$$y = H \cdot x + w$$
, CLPS is $\min_{x} ||y - H \cdot x||^2$ equivalent to $\min_{x} ||Q^{\dagger} \cdot y - R \cdot x||^2$.
Hence, a tree of the channel can be constructed.

Decoding of Space-Time Block Codes

- 客間

The MMSE-DFE (1)

• MMSE-DFE outperforms ZF-DFE in terms of SINR

$$\tilde{\boldsymbol{H}} \triangleq \begin{bmatrix} \boldsymbol{H} \\ \boldsymbol{I} \end{bmatrix} = \tilde{\boldsymbol{Q}} \cdot \boldsymbol{R}_1$$

- <u>8</u> m

The MMSE-DFE (1)

• MMSE-DFE outperforms ZF-DFE in terms of SINR

$$\tilde{\boldsymbol{H}} \triangleq \begin{bmatrix} \boldsymbol{H} \\ \boldsymbol{I} \end{bmatrix} = \tilde{\boldsymbol{Q}} \cdot \boldsymbol{R}_1$$

• Let Q_1 be the upper $n \times m$ part of \tilde{Q} . Transformed CLPS is

$$\min_{\boldsymbol{u}\in\mathscr{U}}\left\|\boldsymbol{Q}_{1}^{\dagger}\cdot\boldsymbol{r}-\boldsymbol{R}_{1}\cdot\boldsymbol{\Phi}\cdot\boldsymbol{u}\right\|^{2}$$

which is not equivalent to (2) with $r = y - H \cdot t$ since Q_1 is not unitary.

The MMSE-DFE (2)

• We have

$$Q_1^{\dagger} \cdot \mathbf{r} = Q_1^{\dagger} \cdot \mathbf{H} \cdot \mathbf{\Phi} \cdot \mathbf{u} + Q_1^{\dagger} \cdot \mathbf{w}$$
$$= \mathbf{R}_1 \cdot \mathbf{\Phi} \cdot \mathbf{u} + \mathbf{z}$$

• The additive noise $z = Q_1^{\dagger} \cdot r - R_1 \cdot \Phi \cdot u$ has a Gaussian component $Q_1^{\dagger} \cdot w$ and a non-Gaussian (signal dependent) component $(Q_1^{\dagger} \cdot H - R_1) \cdot x$.

The MMSE-DFE (2)

• We have

$$Q_1^{\dagger} \cdot \mathbf{r} = Q_1^{\dagger} \cdot \mathbf{H} \cdot \mathbf{\Phi} \cdot \mathbf{u} + Q_1^{\dagger} \cdot \mathbf{w}$$
$$= \mathbf{R}_1 \cdot \mathbf{\Phi} \cdot \mathbf{u} + \mathbf{z}$$

• The additive noise $\boldsymbol{z} = \boldsymbol{Q}_1^{\dagger} \cdot \boldsymbol{r} - \boldsymbol{R}_1 \cdot \boldsymbol{\Phi} \cdot \boldsymbol{u}$ has a Gaussian component $\boldsymbol{Q}_1^{\dagger} \cdot \boldsymbol{w}$ and a non-Gaussian (signal dependent) component $(\boldsymbol{Q}_1^{\dagger} \cdot \boldsymbol{H} - \boldsymbol{R}_1) \cdot \boldsymbol{x}$.

The noise is white!!

$$\left[\boldsymbol{R}_{1}-\boldsymbol{Q}_{1}^{\dagger}\cdot\boldsymbol{H}\right]\left[\boldsymbol{R}_{1}-\boldsymbol{Q}_{1}^{\dagger}\cdot\boldsymbol{H}\right]^{\dagger}+\boldsymbol{Q}_{1}^{\dagger}\cdot\boldsymbol{Q}_{1}=\boldsymbol{I}$$

「第三日 1990 で

The preprocessing stage	eprocessing stage
-------------------------	-------------------

The MMSE-DFE (3)

• When dimension goes to infinity, then noise *W* tends to be Gaussian. But why it works even for finite dimensions and finite SNRs is still an **open problem**.

Decoding of Space-Time Block Codes

- 察嗣

The preprocessing stage	(Left Preprocessing)	Right Preprocessing	Algebraic reduction for DAST codes
	The M	MSE-DFE (3)	

- When dimension goes to infinity, then noise *W* tends to be Gaussian. But why it works even for finite dimensions and finite SNRs is still an **open problem**.
- MMSE-DFE followed by optimal search is ML when Φ = *I* and the constellation is constant modulus (QPSK)

- 察嗣

			rocess	ing st	tage
--	--	--	--------	--------	------

The MMSE-DFE (3)

- When dimension goes to infinity, then noise *W* tends to be Gaussian. But why it works even for finite dimensions and finite SNRs is still an **open problem**.
- MMSE-DFE followed by optimal search is ML when $\Phi = I$ and the constellation is constant modulus (QPSK)
- We can solve under-determined linear systems since matrix R_1 is always full rank with eigenvalues ≥ 1 .

「後の間

The preprocessing stage

The MMSE-DFE (3)

- When dimension goes to infinity, then noise *W* tends to be Gaussian. But why it works even for finite dimensions and finite SNRs is still an **open problem**.
- MMSE-DFE followed by optimal search is ML when $\Phi = I$ and the constellation is constant modulus (QPSK)
- We can solve under-determined linear systems since matrix R_1 is always full rank with eigenvalues ≥ 1 .
- MMSE-DFE atenuates the problem of **boundary control** in the next steps.

Preprocessing

The preprocessing stage

- A more general problem formulation
- Why preprocessing?

Left Preprocessing

- The QR decomposition
- Taming the Channel: The MMSE-DFE

8 Right Preprocessing

- The general technique
- Algebraic reduction for DAST codes
 - Problem Statement
 - The reduction algorithm

- 梁静神

Right preprocessing (1)

• When left preprocessing has been done, we need to QR-decompose matrix

 $\boldsymbol{R}_1 \cdot \boldsymbol{\Phi} = \boldsymbol{Q} \cdot \boldsymbol{R}$

We want R to be as sparse as possible (e.g. $R \to I)$

Left Preprocessing

Right Preprocessing

Right preprocessing (1)

• When left preprocessing has been done, we need to QR-decompose matrix

 $\boldsymbol{R}_1 \cdot \boldsymbol{\Phi} = \boldsymbol{Q} \cdot \boldsymbol{R}$

We want **R** to be as sparse as possible (e.g. $R \rightarrow I$)

Problem

Find a unimodular matrix T such that QR decomposition $R_1 \cdot \Phi \cdot T^{-1}$ minimizes the sparsity index of R.

$$\boldsymbol{\varsigma}(\boldsymbol{R}) \triangleq \max_{k=1,2,\dots,m} \frac{\sum_{i=k+1}^{m} r_{i,i}^2}{r_{i,i}^2}$$

Left Preprocessing

(Right Preprocessing

Right preprocessing (1)

• When left preprocessing has been done, we need to QR-decompose matrix

 $\boldsymbol{R}_1 \cdot \boldsymbol{\Phi} = \boldsymbol{Q} \cdot \boldsymbol{R}$

We want **R** to be as sparse as possible (e.g. $R \rightarrow I$)

Problem

Find a unimodular matrix T such that QR decomposition $R_1 \cdot \Phi \cdot T^{-1}$ minimizes the sparsity index of R.

$$\varsigma(\mathbf{R}) \triangleq \max_{k=1,2,\dots,m} \frac{\sum_{i=k+1}^{m} r_{i,i}^2}{r_{i,i}^2}$$

• Good approximations to the solutions of this problem exist

Decoding of Space-Time Block Codes

- 名割

Right Preprocessing (2)

- Lattice reduction: Lenstra, Lenstra and Lovász (LLL) algorithm (possibly with deep insertion [Schnorr-Euchner]). Find a new lattice basis with reduced vectors $H \cdot \Phi \cdot T_1^{-1}$ (i.e., small norms and/or as orthogonal as possible).
- Column permutation Π of $H \cdot \Phi \cdot T_1^{-1}$ such that $\min_i r_{i,i}$ is maximized.
- Right multiply by

$$\boldsymbol{T}^{-1} = \boldsymbol{T}_1^{-1} \cdot \boldsymbol{\Pi}^{-1}$$

• Right multiplication by unimodular matrices does not alter lattice decoding.

19811

The preprocessing stage

Left Preprocessing

Right Preprocessing

Form the tree of the system

- We give H the channel matrix and Φ the precoding matrix (after vectorization).
- Perform left and right preprocessing
- QR-decompose $\boldsymbol{Q}_1^{\dagger} \cdot \boldsymbol{H} \cdot \boldsymbol{\Phi} \cdot \boldsymbol{T}^{-1} = \boldsymbol{Q} \cdot \boldsymbol{R}$

Right Preprocessing

Form the tree of the system

- We give H the channel matrix and Φ the precoding matrix (after vectorization).
- Perform left and right preprocessing

• QR-decompose
$$\boldsymbol{Q}_1^{\dagger} \cdot \boldsymbol{H} \cdot \boldsymbol{\Phi} \cdot \boldsymbol{T}^{-1} = \boldsymbol{Q} \cdot \boldsymbol{R}$$

Equivalent System

With convenient notations, we get,

Decoding of Space-Time Block Codes

「彩き物」

Preprocessing

The preprocessing stage

- A more general problem formulation
- Why preprocessing?

Left Preprocessing

- The QR decomposition
- Taming the Channel: The MMSE-DFE

8 Right Preprocessing • The general technique

Algebraic reduction for DAST codes

- Problem Statement
- The reduction algorithm

Decoding of Space-Time Block Codes

51 / 74

8 m

System model

Assumptions

- Rayleigh Flat Fading Channel
- MISO system
- DAST Codes used

System model

Assumptions

- Rayleigh Flat Fading Channel
- MISO system
- DAST Codes used

What are the parameters?

H is a diagonal matrix and Φ is a unitary transform defined on a number field (rows of Φ are conjugated).

言楽調研

System model

Assumptions	What are the parameters?
 Rayleigh Flat Fading Channel MISO system DAST Codes used 	H is a diagonal matrix and Φ is a unitary transform defined on a number field (rows of Φ are conjugated).

Received signal and aim of this section

$$y = H \cdot \Phi \cdot x + n$$

(4)

where

 $\boldsymbol{H} = \operatorname{diag}\left[h_1, h_2, \ldots, h_n\right]$

n is the i.i.d. Gaussian noise and Φ is a unitary transform bringing modulation diversity to the system. The aim is to design a "not too complex" detector by doing some new lattice reduction.

Decoding of Space-Time Block Codes

- **X**

Assumptions on the unitary transform

Background

- We use $\mathbb{F} = \mathbb{Q}(i)$ as the base field with ring of integer $\mathbb{Z}[i]$ (QAM).
- K = F(θ) is the smallest field containing F and θ, an element of order n. Its ring of integers is O_K.
- $Gal_{\mathbb{K}/\mathbb{F}}$ is the Galois group of automorphisms on \mathbb{K} with elements denoted $\sigma_i, i = 1, ..., n$.

- 名割

Assumptions on the unitary transform

Background

- We use $\mathbb{F} = \mathbb{Q}(i)$ as the base field with ring of integer $\mathbb{Z}[i]$ (QAM).
- K = F(θ) is the smallest field containing F and θ, an element of order n. Its ring of integers is O_K.
- $Gal_{\mathbb{K}/\mathbb{F}}$ is the Galois group of automorphisms on \mathbb{K} with elements denoted $\sigma_i, i = 1, ..., n$.

The Φ matrix (diversity of modulation)

The structure of Φ is the following,

$$\boldsymbol{\Phi} = \boldsymbol{\Delta} \cdot \begin{bmatrix} \sigma_1(\omega_1) & \sigma_1(\omega_2) & \cdots & \sigma_1(\omega_n) \\ \sigma_2(\omega_1) & \sigma_2(\omega_2) & \cdots & \sigma_2(\omega_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n(\omega_1) & \sigma_n(\omega_2) & \cdots & \sigma_n(\omega_n) \end{bmatrix}$$
(5)

where $\omega_1, \omega_2, \dots, \omega_n \in \mathcal{O}_{\mathbb{K}}$ are linearly independent on \mathbb{F} . Δ is diagonal.

Decoding of Space-Time Block Cod

三般語

A 2 dimensional example

Background

 $\mathbb{K} = \mathbb{F}(\theta)$ with $\theta = \frac{1+\sqrt{5}}{2}$, an element of order 2. Its ring of integers is $\mathcal{O}_{\mathbb{K}} = \mathbb{Z}[i, \frac{1+\sqrt{5}}{2}]$. Minimal polynomial of θ is $\mu_{\theta}(X) = X^2 - X - 1$.

• $Gal_{\mathbb{K}/\mathbb{F}}$ is the Galois group of \mathbb{K} with elements $\{1, \sigma\}$ such that

$$\sigma: \theta \longmapsto \bar{\theta} = \frac{1 - \sqrt{5}}{2}$$

A 2 dimensional example

Background

 $\mathbb{K} = \mathbb{F}(\theta)$ with $\theta = \frac{1+\sqrt{5}}{2}$, an element of order 2. Its ring of integers is $\mathcal{O}_{\mathbb{K}} = \mathbb{Z}[i, \frac{1+\sqrt{5}}{2}]$. Minimal polynomial of θ is $\mu_{\theta}(X) = X^2 - X - 1$.

• $Gal_{\mathbb{K}/\mathbb{F}}$ is the Galois group of \mathbb{K} with elements $\{1, \sigma\}$ such that

$$\sigma: \theta \longmapsto \bar{\theta} = \frac{1 - \sqrt{5}}{2}$$

The Φ matrix ("Golden Field")

Take $\omega_1 = 1 + i(1 - \theta)$ and $\omega_2 = \theta - i$. Then,

$$\mathbf{\Phi} = \frac{1}{\sqrt{5}} \begin{bmatrix} \omega_1 & \omega_2 \\ \sigma(\omega_1) & \sigma(\omega_2) \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1+i(1-\theta) & \theta-i \\ 1+i(1-\bar{\theta}) & \bar{\theta}-i \end{bmatrix}$$

Decoding of Space-Time Block Codes

- 梁静神

Matrix representation of an algebraic number

Example 1: $\mathbb{C} \longrightarrow \mathcal{M}_2(\mathbb{R})$

$$z = x + iy \longmapsto \mathbf{T}_z = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$
$$N_{\mathbb{C}/\mathbb{R}}(z) = x^2 + y^2 = \det \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

Matrix representation of an algebraic number

Example 1: $\mathbb{C} \longrightarrow \mathcal{M}_2(\mathbb{R})$

$$z = x + iy \longmapsto \mathbf{T}_z = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$
$$N_{\mathbb{C}/\mathbb{R}}(z) = x^2 + y^2 = \det \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

Example 2: $\mathbb{Q}\left(e^{\frac{i\pi}{4}}\right) \longrightarrow \mathcal{M}_2(\mathbb{Q}(i))$

$$z = x + y\theta \longmapsto \mathbf{T}_{z} = \begin{pmatrix} x & iy \\ y & x \end{pmatrix}$$
$$N_{\mathbb{Q}\left(e^{\frac{i\pi}{4}}\right)/\mathbb{Q}(i)}(z) = x^{2} - iy^{2} = \det\begin{pmatrix} x & iy \\ y & x \end{pmatrix}$$

Transforming Fadings into a Basis Change (1)

• Matrix *H* can be expressed as

$$\boldsymbol{H} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \operatorname{diag}\left[a_1, a_2, \dots, a_n\right]$$

with $\left|\prod_{i=1}^{n} a_i\right| = 1.$

Transforming Fadings into a Basis Change (1)

• Matrix *H* can be expressed as

$$\boldsymbol{H} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \operatorname{diag}\left[a_1, a_2, \dots, a_n\right]$$

with $\left|\prod_{i=1}^{n} a_i\right| = 1.$

• Assume that the vector $(|a_1|, |a_2|, ..., |a_n|)$ is composed by the magnitudes of the conjugates of some unit u in $\mathcal{O}_{\mathbb{K}_k}$, i.e., $a_k = e^{i\beta_k} \sigma_k(u)$, $\forall k$ with $\beta_k = \arg a_k - \arg \sigma_k(u)$. The received signal can then be expressed as

$$\mathbf{y} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \operatorname{diag} \left[e^{i\beta_1}, \dots, e^{i\beta_n} \right] \cdot \operatorname{diag} \left[\sigma_1(u), \dots, \sigma_n(u) \right] \cdot \mathbf{\Phi} \cdot \mathbf{x} + \mathbf{n}$$
(6)

「彩き物」

Transforming Fadings into a Basis Change (1)

• Matrix *H* can be expressed as

$$\boldsymbol{H} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \operatorname{diag}\left[a_1, a_2, \dots, a_n\right]$$

with $\left|\prod_{i=1}^{n} a_i\right| = 1.$

• Assume that the vector $(|a_1|, |a_2|, ..., |a_n|)$ is composed by the magnitudes of the conjugates of some unit u in $\mathcal{O}_{\mathbb{K}_k}$, i.e., $a_k = e^{i\beta_k} \sigma_k(u)$, $\forall k$ with $\beta_k = \arg a_k - \arg \sigma_k(u)$. The received signal can then be expressed as

$$\mathbf{y} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \operatorname{diag} \left[e^{i\beta_1}, \dots, e^{i\beta_n} \right] \cdot \operatorname{diag} \left[\sigma_1(u), \dots, \sigma_n(u) \right] \cdot \mathbf{\Phi} \cdot \mathbf{x} + \mathbf{n}$$
(6)

So,

$$\mathbf{y} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \mathbf{\Psi} \cdot \mathbf{\Phi} \cdot \mathbf{T}_u \cdot \mathbf{x} + \mathbf{n}$$
(7)

with $\Psi = \text{diag}\left[e^{i\beta_1}, e^{i\beta_2}, \dots, e^{i\beta_n}\right]$ and T_u (unimodular) being the matrix representation of the unit *u*.

g of Space-Time Block Codes

- **20**

Transforming Fadings into a Basis Change (2)

• Denote
$$\boldsymbol{z} = \left| 1 / \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \boldsymbol{\Phi}^{\dagger} \cdot \boldsymbol{\Psi}^{\dagger} \cdot \boldsymbol{y}$$
, then

$$z = T_u \cdot x + w$$

where $\boldsymbol{w} = \left| 1 / \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \boldsymbol{\Phi}^{\dagger} \cdot \boldsymbol{\Psi}^{\dagger} \cdot \boldsymbol{n}$ remains an *i.i.d.* noise vector.

• Now, since $||\det T_u| = 1|$, (*u* is a unit), then a ML lattice decoder is obvious as it is a slicer followed by the product with matrix T_u^{-1} .

· 梁言辞

Transforming Fadings into a Basis Change (2)

• Denote
$$\boldsymbol{z} = \left| 1 / \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \boldsymbol{\Phi}^{\dagger} \cdot \boldsymbol{\Psi}^{\dagger} \cdot \boldsymbol{y}$$
, then

$$\boldsymbol{z} = \boldsymbol{T}_{\boldsymbol{u}} \cdot \boldsymbol{x} + \boldsymbol{w}$$

where $\boldsymbol{w} = \left| 1 / \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \boldsymbol{\Phi}^{\dagger} \cdot \boldsymbol{\Psi}^{\dagger} \cdot \boldsymbol{n}$ remains an *i.i.d.* noise vector.

• Now, since $||\det T_u| = 1|$, (*u* is a unit), then a ML lattice decoder is obvious as it is a slicer followed by the product with matrix T_u^{-1} .

Approximation

What happens if $(|a_1|, |a_2|, ..., |a_n|)$ is not composed by the modules of conjugates of some unit u?

Decoding of Space-Time Block Codes

- 我曾辞得

The Logarithmic Lattice

Theorem (Dirichlet)

Let K be an extension of \mathbb{Q} with signature (r, s) (with degree r + 2s). Then there exists r + s - 1 units named "*fundamental units*" $u_1, u_2, \ldots, u_{r+s-1}$ such that any unit u can be expressed as

$$u = \epsilon \cdot \prod_{i=1}^{r+s-1} u_i^k$$

where ϵ is a complex number with module equal to 1 and $k_i \in \mathbb{Z}$.

The Logarithmic Lattice

Theorem (Dirichlet)

Let K be an extension of \mathbb{Q} with signature (r, s) (with degree r + 2s). Then there exists r + s - 1 units named "*fundamental units*" $u_1, u_2, \ldots, u_{r+s-1}$ such that any unit u can be expressed as

$$u = \epsilon \cdot \prod_{i=1}^{r+s-1} u_i^k$$

where ϵ is a complex number with module equal to 1 and $k_i \in \mathbb{Z}$.

• Now from a unit *u*, construct the vector

$$\boldsymbol{u}_{\log} = \left(\log|\sigma_1(\boldsymbol{u})|, \dots, \log|\sigma_{r+s}(\boldsymbol{u})|\right)^{\top}$$

Then vector u_{log} lies in a hyperplane with equation

$$\sum_{i=1}^{r+s} x_i = 0$$

Decoding of Space-Time Block Codes

- **20**
The Logarithmic Lattice

Theorem (Dirichlet)

Let K be an extension of \mathbb{Q} with signature (r, s) (with degree r + 2s). Then there exists r + s - 1 units named "*fundamental units*" $u_1, u_2, \ldots, u_{r+s-1}$ such that any unit u can be expressed as

$$u = \epsilon \cdot \prod_{i=1}^{r+s-1} u_i^k$$

where ϵ is a complex number with module equal to 1 and $k_i \in \mathbb{Z}$.

• Now from a unit *u*, construct the vector

$$\boldsymbol{u}_{\log} = \left(\log|\sigma_1(\boldsymbol{u})|, \dots, \log|\sigma_{r+s}(\boldsymbol{u})|\right)^{\top}$$

Then vector u_{log} lies in a hyperplane with equation

$$\sum_{i=1}^{r+s} x_i = 0$$

• All vectors of type *u*log are in a lattice named the logarithmic lattice, with generator matrix,

 $\begin{bmatrix} \log |\sigma_1(u_1)| & \log |\sigma_2(u_1)| & \cdots & \log |\sigma_{r+s}(u_1)| \\ \log |\sigma_1(u_2)| & \log |\sigma_2(u_2)| & \cdots & \log |\sigma_{r+s}(u_2)| \\ \vdots & \vdots & \ddots & \vdots \\ \log |\sigma_1(u_{r+s-1})| & \log |\sigma_2(u_{r+s-1})| & \cdots & \log |\sigma_{r+s}(u_{r+s-1})| \end{bmatrix}$ and fundamental volume *R*, the regulator.

Decoding of Space-Time Block Code

58 / 74

- **20**

Golden Field

• Let $\mathbb{K} = \mathbb{Q}(i, \sqrt{5})$ with $\Phi = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 + i(1-\theta) & \theta - i \\ 1 + i(1-\bar{\theta}) & \bar{\theta} - i \end{bmatrix}$ and $\theta = \frac{1+\sqrt{5}}{2}$. The logarithmic lattice $(\cong \mathbb{Z})$ has generator matrix $\begin{bmatrix} 0.481 & -0.481 \end{bmatrix}$.

$$\boldsymbol{H} = \begin{pmatrix} h_1 & 0\\ 0 & h_2 \end{pmatrix}$$

• Assume that fadings are
$$h_1 = 1.271e^{i\eta_1}$$
 and $h_2 = 0.071e^{i\eta_2}$. We get

$$\boldsymbol{H} = \left(\begin{array}{cc} h_1 & 0\\ 0 & h_2 \end{array}\right) = 0.3 \left(\begin{array}{cc} e^{i\eta_1} & 0\\ 0 & -e^{i\eta_2} \end{array}\right) \left(\begin{array}{cc} \theta^3 & 0\\ 0 & \bar{\theta}^3 \end{array}\right)$$

Decoding of Space-Time Block Codes

- 客間

Golden Field

• Let $\mathbb{K} = \mathbb{Q}(i, \sqrt{5})$ with $\Phi = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 + i(1-\theta) & \theta - i \\ 1 + i(1-\bar{\theta}) & \bar{\theta} - i \end{bmatrix}$ and $\theta = \frac{1+\sqrt{5}}{2}$. The logarithmic lattice $(\cong \mathbb{Z})$ has generator matrix $\begin{bmatrix} 0.481 & -0.481 \end{bmatrix}$.

$$\boldsymbol{H} = \begin{pmatrix} h_1 & 0\\ 0 & h_2 \end{pmatrix}$$

• Assume that fadings are
$$h_1 = 1.271e^{i\eta_1}$$
 and $h_2 = 0.071e^{i\eta_2}$. We get

$$\boldsymbol{H} = \left(\begin{array}{cc} h_1 & 0 \\ 0 & h_2 \end{array} \right) = 0.3 \left(\begin{array}{cc} e^{i\eta_1} & 0 \\ 0 & -e^{i\eta_2} \end{array} \right) \left(\begin{array}{cc} \theta^3 & 0 \\ 0 & \bar{\theta}^3 \end{array} \right)$$

Reduction

Equations (6) and (7) give

$$\mathbf{y} = \mathbf{H} \mathbf{\Phi} \mathbf{x} + \mathbf{n} = 0.3 \begin{pmatrix} e^{i\eta_1} & 0 \\ 0 & -e^{i\eta_2} \end{pmatrix} \begin{pmatrix} \theta^3 & 0 \\ 0 & \overline{\theta}^3 \end{pmatrix} \mathbf{\Phi} \mathbf{x} + \mathbf{n}$$
$$= 0.3 \begin{pmatrix} e^{i\eta_1} & 0 \\ 0 & -e^{i\eta_2} \end{pmatrix} \mathbf{\Phi} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \mathbf{x} + \mathbf{n}$$

501

Decoding of Space-Time Block Codes

- 察嗣

In fact, the true received signal is (after reduction)

$$\mathbf{y} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \Psi \Lambda \Phi T_u \mathbf{x} + \mathbf{n}$$

- 察嗣

In fact, the true received signal is (after reduction)

$$\boldsymbol{y} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \boldsymbol{\Psi} \boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{T}_{\boldsymbol{u}} \boldsymbol{x} + \boldsymbol{n}$$

• If **H** is proportional to a unitary transform, then $\Lambda = I$, else, the nearest unit (in the logarithmic lattice) is chosen and Λ is a diagonal matrix whose dynamic is bounded (covering radius) and controlled by the logarithmic lattice.

Decoding of Space-Time Block Codes

三般語

In fact, the true received signal is (after reduction)

$$\boldsymbol{y} = \left| \prod_{i=1}^{n} h_i \right|^{\frac{1}{n}} \cdot \boldsymbol{\Psi} \boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{T}_{\boldsymbol{u}} \boldsymbol{x} + \boldsymbol{n}$$

- If **H** is proportional to a unitary transform, then $\Lambda = I$, else, the nearest unit (in the logarithmic lattice) is chosen and Λ is a diagonal matrix whose dynamic is bounded (covering radius) and controlled by the logarithmic lattice.
- T_u is the unimodular basis change matrix; it is **the** reduction matrix.

||「 || 1990 || 1900

Right Preprocessing

The diversity property (with ZF)

Theorem

The asymptotic $(\gamma \to \infty)$ expression of the codeword error probability for the zero forcing detection is

$$P_e(\gamma) \le O\left(\frac{\log^{n-1}\gamma}{\gamma^n}\right)$$

where *n* is the dimension

ecoding of Space-Time Block Codes

- 客間

Right Preprocessing

The diversity property (with ZF)

Theorem

The asymptotic $(\gamma \to \infty)$ expression of the codeword error probability for the zero forcing detection is

$$P_e(\gamma) \le O\left(\frac{\log^{n-1}\gamma}{\gamma^n}\right)$$

where n is the dimension

Sketch of the proof

- In fact, $P_e(\gamma) \le \int_0^\infty p_X(x)e^{-\gamma x} dx$ where $X = \sqrt[n]{\prod_{i=1}^n X_i}$ (by using the covering radius of the logarithmic lattice as an upperbound)
- X_i are i.i.d. random variables with an exponential distribution
- Recursion on *n* gives the result.

Decoding of Space-Time Block Codes

後間開

Part IV

Tree Search Strategy

Tree Search Strategy

Branch and Bound

• General Branch and Bound

D Classification

- Breadth First Search
- Depth First Search
- Best First Search
- The best tradeoff

General Branch and Bound (1)

• We keep notations from (3). We have

$$y = \mathbf{R} \cdot \mathbf{x} + \mathbf{z}$$

with $\mathbf{x} \in \mathbb{Z}^m$.

• The node at level k is denoted $x_1^k = (x_1, x_2, ..., x_k)$. Every node is associated to the metric

$$w_k(\mathbf{x}_1^k) = \left| \mathbf{y}_k - \sum_{i=1}^k r_{k,i} x_i \right|^2$$

• Branch and Bound (BB) reduces the complexity of tree search by determining if an intermediate node x_1^k has any chance of giving the optimum leaf node, when extended.

ng of Space-Time Block Codes

「彩き物」

General Branch and Bound (2)

- The decision is taken by comparing a cost function (namely $f(x_1^k)$) against a bounding function t_k .
- BB maintains a list of valid nodes that can be extended, \mathcal{N} . BB ends when \mathcal{N} is empty.
- Different BB algorithms differ in their cost functions, bounding functions and the rules to generate and sort the nodes.

三般語

General Branch and Bound (2)

- The decision is taken by comparing a cost function (namely $f(x_1^k)$) against a bounding function t_k .
- BB maintains a list of valid nodes that can be extended, \mathcal{N} . BB ends when \mathcal{N} is empty.
- Different BB algorithms differ in their cost functions, bounding functions and the rules to generate and sort the nodes.

A unified framework

BB brings a unified framework for many searching algorithms, considered as special cases. Sphere Decoder, Schnorr-Euchner, Sequential decoding, ...

1997日 つへで

65 / 74

Tree Search Strategy

General Branch and Bound

D Classification

- Breadth First Search
- Depth First Search
- Best First Search
- The best tradeoff

Breadth First Search (1)

- Bounding function is fixed and cost function is never updated.
- Pohst Enumeration: Bounding function is

 $t_k = C_0$ (sphere radius).

Cost function is

$$f\left(\boldsymbol{x}_{1}^{k}\right) = \sum_{i=1}^{k} w_{i}\left(\boldsymbol{x}_{1}^{i}\right) \leq C_{0}.$$

• All nodes satisfying $\sum_{i=1}^{k} w_i(\mathbf{x}_1^i) \le C_0$ are generated before termination.

ecoding of Space-Time Block Codes

- 客間

Branch and Bound

(Classification

Breadth First Search (2)

- Generating the child nodes is simplified. For any parent node x_1^k , the condition $\sum_{i=1}^k w_i (x_1^i) \le C_0$ implies for the child nodes that component *k* of the generated nodes lies in some interval (see SD).
- We can apply some heuristic statistical pruning, e.g. increased radii ($t_k < t_{k+1}$).
- Variants can be found. M- and T-algorithms
 - *M*-algorithm only keeps the *M* best survivors whereas the *T*-algorithm adjusts the bounding function by the best cost function at the level *k* combined with a predefined threshold (use of the Fano metric, for instance).
- This algorithm remains complex.

Decoding of Space-Time Block Codes

一般目前

Classification

Depth First Search

Principle

Order nodes in ${\mathcal N}$ in reverse order of generation. The final bound vector is

 $\boldsymbol{t} = \left[\min\left(t_1, f\left(\mathbf{x}_1^m\right)\right), \min\left(t_2, f\left(\mathbf{x}_1^m\right)\right), \dots, \min\left(t_m, f\left(\mathbf{x}_1^m\right)\right)\right].$

Different DFS depends on the way children are generated and on the partial bounds and the ordering of the generated child nodes.

- Viterbo-Boutros algorithm: We have $f(\mathbf{x}_1^k) = \sum_{i=1}^k w_i(\mathbf{x}_1^i)$ and for any node \mathbf{x}_1^{k-1} , its valid children (verifying $\sum_{i=1}^k w_i(\mathbf{x}_1^i) \le C_0$) are generated lexicographically.
- Schnorr-Euchner algorithm: Same properties, but the child nodes are generated *w.r.t.* the accumulated squared distance $\sum_{i=1}^{k} w_i (\mathbf{x}_1^i)$.

Decoding of Space-Time Block Code

後間開

(Classification

Best First Search (1)

- $\bullet~$ Sort nodes in ${\mathcal N}$ such that their cost functions are increasing.
- Search can be terminated once a leaf node reaches the top of \mathcal{N} .
- Stack algorithm (sequential decoding) is BeFS with cost function

$$f(\mathbf{x}_{1}^{k}) = \sum_{i=1}^{k+1} w_{i}(\mathbf{x}_{1,b}^{k+1}) - b(k+1)$$

where $x_{1,b}^{k+1}$ is the best child of x_1^k not generated yet and $f(x_1^m) = -\infty$. *b* is the *bias*.

Theorem

The stack algorithm with b = 0 generates the least number of nodes among all optimal tree search algorithms.

Decoding of Space-Time Block Codes

「彩き物」

Best First Search (2)

- The stack algorithm offers a natural solution for the problem of choosing the initial radius (or radii): $t_k = \infty$.
- The stack allows for a systematic approach for trading-off performance for complexity: $b = 0 \Rightarrow$ Optimal CLPS. $b = \infty \Rightarrow$ MMSE-Babai point decoder.
- In general, for systems with small dimension *m*, and/or high SNRs/"friendly" channels, one can obtain near-optimal performance with relatively large values of *b* (i.e., reduced complexity).
- **Disadvantage:** The required memory to maintain the active list \mathcal{N} can be prohibitive.

「後の間

Classification

The best tradeoff

- In general, the choice of the algorithm depends on the dimensions, codes, ...
- For a large variety of MIMO channel, the best tradeoff complexity/performance is given by

Best strategy

Left preprocessing (MMSE-DFE) + **Right** preprocessing (Lattice reduction and reordering), followed by a stack search stage in the lattice.

• Sphere decoding has been the first ML decoding algorithm for MIMO (encoded) channels

- Sphere decoding has been the first ML decoding algorithm for MIMO (encoded) channels
- Sequential decoding has also been proposed as a near optimal decoder but with much less complexity than SD.

- Sphere decoding has been the first ML decoding algorithm for MIMO (encoded) channels
- Sequential decoding has also been proposed as a near optimal decoder but with much less complexity than SD.
- Preprocessing can decrease a lot the searching complexity

- 客間

- Sphere decoding has been the first ML decoding algorithm for MIMO (encoded) channels
- Sequential decoding has also been proposed as a near optimal decoder but with much less complexity than SD.
- Preprocessing can decrease a lot the searching complexity
- Now, do processing at the matrix form level and not at the vector form level.

- **201**

Thank You