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The quasi static fading channel
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Figure: The Channel Model

Received signal

Y nr×T = Hnr×nt ·X nt×T +W nr×T (1)

with H perfectly known at the receiver (coherent case).

H is assumed constant during the transmission of one codeword.
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Example of the Golden Code (nt = nr = T = 2)

Codeword

A codeword X of the Golden code is

X = 1p
5
·
[

α(s1 +θs2) α(s3 +θs4)
iᾱ(s3 + θ̄s4) ᾱ(s1 + θ̄s2)

]

with θ = 1+p5
2 , θ̄ = 1−p5

2 , α= 1+ i− iθ, α= 1+ i− iθ and sl , l = 1. . .4 are the
information symbols carved from a q-QAM.

Vectorization

yn·T×1 = 1p
5
·
[

H 0
0 H

]
·


α αθ 0 0
0 0 iᾱ iᾱθ̄
0 0 α αθ

ᾱ ᾱθ̄ 0 0




s1
s2
s3
s4

+w

= 1p
5
·Hn·T ·Φn·T · sn·T×1 +wn·T×1

whereΦn·T is a unitary matrix.
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iᾱ(s3 + θ̄s4) ᾱ(s1 + θ̄s2)
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Example of the Golden code (cont’d)

Separation of the real and the imaginary parts

yR = 1p
5
·


ℜ(H) 0 −ℑ(H) 0

0 ℜ(H) 0 −ℑ(H)
ℑ(H) 0 ℜ(H) 0

0 ℑ(H) 0 ℜ(H)

 ·
[ ℜ(Φ) −ℑ(Φ)

ℑ(Φ) ℜ(Φ)

][ ℜ(s)
ℑ(s)

]
+

[ ℜ(w)
ℑ(w)

]

= 1p
5
·HR ·ΦR · sR+wR

Equivalent Channel

Let M = 1p
5
·HR ·ΦR, we get

yR = M · sR+wR

where vectors yR, sR and wR are 8-dimensional vectors and sR is a vector with
integer components.

More generally, the (real) dimension of the vectors is equal to 2 ·nt ·T .
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Representation of a space-time encoded MIMO channel Definition and properties of a lattice

Lattice : Definition

Definition

A Euclidean lattice is a discrete additive subgroup with rank p, p ≤ n of the
Euclidean space Rn. We assume p = n in the sequel.

A latticeΛ is a set generated by vectors v1,v2, . . . ,vn of Rn.

An element v ofΛ can be written as :

v = a1v1 +a2v2 + . . .+anvn, a1,a2, . . . ,an ∈Z

The latticeΛ can be defined as :

Λ=
{

n∑
i=1

aivi | ai ∈Z
}
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Representation of a space-time encoded MIMO channel Definition and properties of a lattice

Lattices : Parameters (1)

The set of vectors v1,v2, . . . ,vn is a lattice basis, with dimension n

Definition

Matrix M whose columns are vectors v1,v2, . . . ,vn is a generator matrix of the
lattice denotedΛM .

Each vector x = (x1,x2, . . . ,xn) inΛM , can be written as,

x = M ·z

where z = (
z1,z2, . . . ,zp

)> ∈Zp.

LatticeΛM may be seen as the result of a linear transform applied to lattice Zn.
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Representation of a space-time encoded MIMO channel Definition and properties of a lattice

Lattices : Properties (2)

Let Q ∈Mn(R), such that Q ·Q> = In and detQ =±1. Q is an isometry. The two lattices
ΛM andΛQ·M are equivalent.

LatticeΛQ·M is a rotated version ofΛM .

If Q ∈Mn(Z) and detQ 6= ±1, then latticeΛM·Q is a sublattice ofΛM .

A sublattice ofΛM is a subgroup ofΛM .

An integer lattice is a sublattice of Zn.
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Representation of a space-time encoded MIMO channel Definition and properties of a lattice

Lattices : Properties (3)

The generator matrix M describes the latticeΛM , but it is not unique. All matrices M ·T
with T ∈Mn(Z) and detT =±1 are generator matrices ofΛM . T is called a unimodular
matrix.

We define then invariant parameters.

Definitions

The fundamental parallelotope ofΛM is the region,

P = {
x ∈Rn p x = a1v1 +a2v2 + . . .+anvn, 0 ≤ ai < 1, i = 1. . .n

}
The fundamental volume is the volume of the fundamental parallelotope. It is denoted
vol(ΛM ).

G = M> ·M is the Gram matrix of the lattice (not invariant).

The fundamental volume of the lattice is |det(M)|, which is
√

|det(G)| either.

11 / 74

Decoding of Space-Time Block Codes



Representation of a space-time encoded MIMO channel Definition and properties of a lattice

Lattices : Properties (3)

The generator matrix M describes the latticeΛM , but it is not unique. All matrices M ·T
with T ∈Mn(Z) and detT =±1 are generator matrices ofΛM . T is called a unimodular
matrix.

We define then invariant parameters.

Definitions

The fundamental parallelotope ofΛM is the region,

P = {
x ∈Rn p x = a1v1 +a2v2 + . . .+anvn, 0 ≤ ai < 1, i = 1. . .n

}
The fundamental volume is the volume of the fundamental parallelotope. It is denoted
vol(ΛM ).

G = M> ·M is the Gram matrix of the lattice (not invariant).

The fundamental volume of the lattice is |det(M)|, which is
√

|det(G)| either.

11 / 74

Decoding of Space-Time Block Codes
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Lattices : Properties (4)

Definition

The Voronoï cell of a point u belonging to the latticeΛ is the region

V (u) = {
x ∈Rn | ‖x−u‖ ≤ ∥∥x−y

∥∥ , y ∈Λ}

Since a lattice is geometrically uniform, all Voronoï cells of a lattice are translated
versions of the Voronoï cell of the zero point. This cell is called Voronoï cell of the
lattice.

The fundamental volume of a lattice is equal to the volume of its Voronoï cell.
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TheZ2 -lattice

Lattice Basis

v2

v1

(v1, v2)

Lattice Point

Voronoi region

Z[i] lattice

Fundamental Parallelotope
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The A2 lattice
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Representation of a space-time encoded MIMO channel Definition and properties of a lattice

Constellations defined fromZ[j]

Perfect STBCs of dimension 3 and 6 use symbols carved from q−HEX constellations.

The lattice representation of a MIMO system using such codes needs some additional
procedure. Simply, note that Z[j] is the hexagonal lattice A2with generator matrix.

B =
[

1 −0.5

0
p

3
2

]

yR =



ℜ(H) · · · 0 −ℑ(H) · · · 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 · · · ℜ(H) 0 · · · −ℑ(H)
ℑ(H) · · · 0 ℜ(H) · · · 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 · · · ℑ(H) 0 · · · ℜ(H)


·



1 · · · 0 −0.5 · · · 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 · · · 1 0 · · · −0.5

0 · · · 0
p

3
2 · · · 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 · · · 0 0 · · ·
p

3
2


·
[ ℜ(Φ) −ℑ(Φ)

ℑ(Φ) ℜ(Φ)

][ ℜ(s)
ℑ(s)

]
+

[ ℜ(w)
ℑ(w)

]
= HR ·B⊗ ·ΦR · sR+wR

15 / 74

Decoding of Space-Time Block Codes



Part II

Lattice Decoding



Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Lattice Decoding

3 Lattice Decoding
Introduction
Principles

4 Sphere Decoding
Principle of Sphere Decoding
Flow Chart and discussions

5 Schnorr-Euchner algorithm (SE)
The algorithm
Comparison SD/SE

17 / 74

Decoding of Space-Time Block Codes



Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Introduction

Traditional constellations (QAM, HEX) are carved from lattices (Z2, A2). Labelling and
shaping is easier to perform.

Another motivation is their decoding which can be derived from lattice decoding
algorithms.

Lattice decoding algorithms are now well-known, let’s cite “sphere decoder,
Schnorr-Euchner algorithm, sequential decoding,...”
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Closest Point

The closest point to y is the lattice point ẑ fromΛM satisfying∥∥y− ẑ
∥∥2 ≤ ∥∥y−z

∥∥2 for all z ∈ΛM

Lattice decoding consists in finding the closest lattice point to y.

The main idea of lattice decoders is to search in some well-chosen region

Kannan’s strategy : the region is a parallelotope
Pohst’s strategy : the region is a sphere

Pohst’s strategy is the more practical method. Lattice decoders have been inspired by
him : Sphere decoder and Schnorr-Euchner algorithm.
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Sphere Decoding (1)

Decoding consists in searching the lattice point

ẑ = argmin
z∈Λ

∥∥y−z
∥∥2

which is equivalent to the minimization

min
w∈y−Λ

‖w‖2

We need to work in the translated lattice y−Λ.

Change of coordinates

Let’s define

z = M ·u, u ∈Zn

y = M ·ρ, ρ = (ρ1, . . . ,ρn)> ∈Rn ⇒ The ZF point

w = y−z = M · (ρ−u) = M ·ξ, ξ= (ξ1, · · · ,ξn)> ∈Rn

Components ξi are those of vector u of Zn in the new reference.
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Sphere Decoder (2)

The aim is to find the lattice points in the sphere centered on the received signal and of
radius

p
C. So,

‖w‖2 ≤ C

‖w‖2 = Q(ξ) = ξ> ·M> ·M ·ξ= ξ> ·G ·ξ=
n∑

i=1

n∑
j=1

gijξiξj ≤ C

The Cholesky factorization of the Gram matrix G = M> ·M, gives G = R ·R>, where
R> = (rji)i,j=1...n is an upper triangular matrix.

Q(ξ) = ξ>R ·R>ξ=
∥∥∥R> ·ξ

∥∥∥2 =
n∑

i=1

(
riiξi +

n∑
j=i

rijξj

)2

≤ C
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Sphere Decoding (3)

Let

qii = r2
ii, i = 1, . . . ,n

qij =
rij

rii
, i = 1, . . . ,n, j = i+1, . . . ,n

Ellipsoid

We get

Q(ξ) =
n∑

i=1
qii

(
ξi +

n∑
j=i+1

qijξj

)2

≤ C

Q(ξ) =
n∑

i=1
qiiU2

i ≤ C ⇒ Interior of an ellipsoid
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Ellipsoid

We get

Q(ξ) =
n∑

i=1
qii

(
ξi +

n∑
j=i+1

qijξj

)2

≤ C

Q(ξ) =
n∑

i=1
qiiU2

i ≤ C ⇒ Interior of an ellipsoid
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Sphere Decoding (4)

In the new system defined by ξ, the sphere with radius
p

C, centered on the received
point, is transformed into an ellipsoid centered on zero and defined by the bilinear
form Q(ξ).

  

Reference

change
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Sphere Decoding (5)

In order to determine the ellipsoid boundaries, let do some processing on ξn

qnnξ
2
n ≤ C

We have ξn = ρn −un ⌈
−

√
C

qnn
+ρn

⌉
≤ un ≤

⌊√
C

qnn
+ρn

⌋

where dxe is the smallest integer larger than x and bxc is the largest integer smaller than
x.

Now the ξi, i = n−1, . . . ,1.

qn−1,n−1(ξn−1 +qn,n−1ξn)2 +qnnξ
2
n ≤ C
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Sphere Decoding (6)

We get⌈
−

√
C −qnnξ

2
n

qn−1,n−1
+ρn−1 +qn−1,nξn

⌉
≤ un−1 ≤

⌊√
C −qnnξ

2
n

qn−1,n−1
+ρn−1 +qn−1,nξn

⌋

This gives, for the ith component ui,ÈÌÌÌÌ−
√√√√√ 1

qii

(
C −

n∑
l=i+1

qll

(
ξl +

n∑
j=l+1

qljξj

)2)
+ρi +

n∑
j=i+1

qijξj

ÉÍÍÍÍ ≤ ui

ÌÌÌÌÊ
√√√√√ 1

qii

(
C −

n∑
l=i+1

qll

(
ξl +

n∑
j=l+1

qljξj

)2)
+ρi +

n∑
j=i+1

qijξj

ÍÍÍÍË ≥ ui
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Sphere Decoding (7)

In order to simplify the decoding expressions, we define

Si = ρi +
n∑

l=i+1
qilξl , i = 1, . . . ,n

Ti−1 = C −
n∑

l=i
qll

(
ξl +

n∑
j=l+1

qljξj

)2

= Ti −qii(Si −ui)2

We get

binf,i =
⌈
−

√
Ti

qii
+Si

⌉
≤ ui ≤

⌊√
Ti

qii
+Si

⌋
= bsup,i

For each component of vector u, we define an interval Ii =
[
binf,i,bsup,i

]
which

contains it.
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Sphere Decoding (8)

The Closest point search consists in descending a tree.

1

1 0 1

0 1 0 1 0 1 0 1

0

0

u3

u1

u2

Root

When a lattice point is found, its squared distance from the received point is given by,

d̂2 = C −T1 +q11(S1 −u1)2

If d̂2 ≤ C , the point is recorded.

The search algorithm makes the sphere radius as well as bounds binf,i and bsup,i for,
i = 1 · · ·n, release dynamically along the research process when a point is found, i.e.
C ≥ d̂2.
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Flow Chart

Input

Search phase

Predecoding phase

Output

d2 = C

Tn = C

Sk = ρk , 1...n

ui = ui + 1

ui > Li

i > 1

d̂2 < d2

i = n

i = i + 1

Tn = d̂2

Ti−1 = Ti − qii(Si − ui)2

εi−1 = ρi − ui

i = i− 1

No

Yes No

Yes

No

Yes

No Yes

d2 = d̂2

ûk = uk, k = 1 · · ·n

û, d̂2

Cholesky decomposition of M

Calculus of Q

Calculus of M−1

Calculus of the ZF point: ρ = yM−1

y, C,M,

i ≤ n

d2 = Tn − T1 + q11(S1 − u1)2

Li = floor(

r
Ti
qii

+ Si)

ui = ceil(−
r

Ti
qii

+ Si)− 1

Si−1 = ρi−1 +
Pn

j=i qi−1,jεj



Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Choice of the sphere radius

The radius is a critical parameter for the complexity of the algorithm

A too small radius : no point inside the sphere
A too large radius : too many points inside the sphere, which increases the algorithm
complexity

A good solution is to have the sphere radius equal to the covering radius of the lattice
(too complex)

An easier solution is to choose

C = min

(
min

i

((
diagM ·M>)

i

)
,2nσ2

)
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Decoding of a finite part of a lattice

First idea : add a routine which tests if a candidate point belongs or not to the
constellation. Too complex.

Decode the constellation with the same complexity as the lattice

Only visit points inside the constellation

16−QAM

redefine intervals

I = Ii ∩ IC =
[

sup(binf ,i,cmin), inf(bsup,i,cmax)
]

where IC = [
cmin,cmax

]= [0,3] is the set of the in phase and quadrature
components of the constellation.
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Lattice Decoding

3 Lattice Decoding
Introduction
Principles

4 Sphere Decoding
Principle of Sphere Decoding
Flow Chart and discussions

5 Schnorr-Euchner algorithm (SE)
The algorithm
Comparison SD/SE
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Schnorr-Euchner algorithm (1)

It is a variant of the Sphere Decoder (SD)

Same principle than SD applies, that is, search the closest point inside a sphere
centered on the received point.

The main idea of SE is to see the set of n−dimensional points (n−dimensional lattice)
as a superposition of (n−1)−dimensional points (in hyperplans).

The closest point is found by successive projections on hyperplans.

We need a starting point in the lattice.
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Example of a 3 dimensional lattice
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Schnorr-Euchner algorithm (2)

The starting point is called “Babai point”. It results from a suboptimal decoding.

Starting from the Babai point, the algorithm visits the other lattice points inside the
sphere centered on the received point, and whose radius is given by the distance
between the Babai point and the received point.

We visit all points inside the sphere, zigzaging around each component of the Babai
point

ui − 2 ui − 1 ui ui + 1 ui + 2
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Lattice Decoding Sphere Decoding Schnorr-Euchner algorithm (SE)

Comparison SD/SE

Similarities

same principle : search the closest point inside a sphere

same performance : ML

Differences

Strategies are different

SD : points are visited from the boundary of the sphere towards its center
SE : points are visited from the center of the sphere towards its boundaries

Sphere radius

SD : needs to initialize the radius
SE : no initial radius to choose
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Part III

Preprocessing



The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

Preprocessing

6 The preprocessing stage
A more general problem formulation
Why preprocessing?

7 Left Preprocessing
The QR decomposition
Taming the Channel: The MMSE-DFE

8 Right Preprocessing
The general technique

9 Algebraic reduction for DAST codes
Problem Statement
The reduction algorithm
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

A more general problem formulation

Definition

A lattice code C (Λ,t,S ) is the set of points ofΛ+ t inside the shaping region S

that is,
C (Λ,t,S ) = {Λ+ t}∩S

The considered communication model is

y = H · (x+ t)+w

where x =Φ ·u, u ∈Zm and H ∈Rn×m.

Φ is the precoding matrix.

Decoding problem

Find

û = arg min
u∈U⊂Zm

∥∥y−H · t −H ·Φ ·u
∥∥2 (2)
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

Why preprocessing?

Applications of sphere decoding suffers from two inconveniences

1 When rank(H ·Φ) < m or H ·Φ is ill-conditioned the spread of the diagonal elements of H ·Φ is
large and the search can be very complex.

2 Enforcing u is very difficult when constellation U has a complicated shape
3 Lattice decoding can solve this problem by searching over Zm (instead of U ) but it is far from

ML in general.

Solution: Preprocessing!

In addition, preprocessing H andΦ can have a great effect on the complexity of the
search stage to make the tree more “friendly” (improving the quality of the ZF-DFE).
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

The preprocessing stage

Left Preprocessing (→×H): Modifies H and w such that the resulting CLosest Point
Search (CLPS) is not equivalent to ML but has a much better conditioned “channel”
matrix and makes lattice decoding near-optimal.

Right preprocessing (Φ×←): When boundary region is removed, we have the freedom
of choosing the lattice basis which is more convenient for the search algorithm.

Preprocessing

Left preprocessing applied only on the channel matrix; right preprocessing
applied on the whole. Important: any preprocessing should not destruct the code
structure
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

Preprocessing
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

The QR decomposition

QR decomposition applies to H .

H = Q · R

Unitary Matrix Triangular Matrix

It can be seen as ZF-DFE with

Feedforward matrix Q
Backward matrix R

When y = H ·x+w, CLPS is min
x

∥∥y−H ·x
∥∥2 equivalent to min

X

∥∥∥Q† ·y−R ·x
∥∥∥2

.

Hence, a tree of the channel can be constructed.
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

The MMSE-DFE (1)

MMSE-DFE outperforms ZF-DFE in terms of SINR

H̃ ,
[

H
I

]
= Q̃ ·R1

Let Q1 be the upper n×m part of Q̃. Transformed CLPS is

min
u∈U

∥∥∥Q†
1 · r −R1 ·Φ ·u

∥∥∥2

which is not equivalent to (2) with r = y−H · t since Q1 is not unitary.
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

The MMSE-DFE (2)

We have

Q†
1 · r = Q†

1 ·H ·Φ ·u+Q†
1 ·w

= R1 ·Φ ·u+z

The additive noise z = Q†
1 · r −R1 ·Φ ·u has a Gaussian component Q†

1 ·w and a

non-Gaussian (signal dependent) component
(
Q†

1 ·H −R1

)
·x.

The noise is white!! [
R1 −Q†

1 ·H
][

R1 −Q†
1 ·H

]† +Q†
1 ·Q1 = I
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

The MMSE-DFE (3)

When dimension goes to infinity, then noise W tends to be Gaussian. But why it works
even for finite dimensions and finite SNRs is still an open problem.

MMSE-DFE followed by optimal search is ML whenΦ= I and the constellation is
constant modulus (QPSK)

We can solve under-determined linear systems since matrix R1 is always full rank with
eigenvalues ≥ 1.

MMSE-DFE atenuates the problem of boundary control in the next steps.
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Right preprocessing (1)

When left preprocessing has been done, we need to QR-decompose matrix

R1 ·Φ= Q ·R

We want R to be as sparse as possible (e.g. R → I)

Problem

Find a unimodular matrix T such that QR decomposition R1 ·Φ ·T−1 minimizes
the sparsity index of R.

ς(R) , max
k=1,2,...,m

m∑
i=k+1

r2
i,j

r2
i,i

Good approximations to the solutions of this problem exist
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Right Preprocessing (2)

Lattice reduction: Lenstra, Lenstra and Lovász (LLL) algorithm (possibly with deep
insertion [Schnorr-Euchner]). Find a new lattice basis with reduced vectors H ·Φ ·T−1

1
(i.e., small norms and/or as orthogonal as possible).

Column permutationΠ of H ·Φ ·T−1
1 such that mini ri,i is maximized.

Right multiply by
T−1 = T−1

1 ·Π−1

Right multiplication by unimodular matrices does not alter lattice decoding.
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Form the tree of the system

We give H the channel matrix andΦ the precoding matrix (after vectorization).

Perform left and right preprocessing

QR-decompose Q†
1 ·H ·Φ ·T−1 = Q ·R

Equivalent System

With convenient notations, we get,


ym

...

...
y1

=


rm,m · · · · · · rm,1

0 rm−1,m−1 · · · rm−1,1
...

. . .
. . .

...
0 · · · 0 r1,1

 ·


xm

...

...
x1

+


wm

...

...
w1

 (3)
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6 The preprocessing stage
A more general problem formulation
Why preprocessing?

7 Left Preprocessing
The QR decomposition
Taming the Channel: The MMSE-DFE

8 Right Preprocessing
The general technique

9 Algebraic reduction for DAST codes
Problem Statement
The reduction algorithm

51 / 74

Decoding of Space-Time Block Codes



The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

System model

Assumptions

Rayleigh Flat Fading Channel

MISO system

DAST Codes used

What are the parameters?

H is a diagonal matrix andΦ is a unitary
transform defined on a number field
(rows ofΦ are conjugated).

Received signal and aim of this section

y = H ·Φ ·x+n (4)

where
H = diag[h1,h2, . . . ,hn]

n is the i.i.d. Gaussian noise andΦ is a unitary transform bringing modulation
diversity to the system. The aim is to design a “not too complex” detector by doing
some new lattice reduction.
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Assumptions on the unitary transform

Background

We use F=Q(i) as the base field with ring of integer Z[i] (QAM).

K= F(θ) is the smallest field containing F and θ, an element of order n. Its ring of
integers is OK.

GalK/F is the Galois group of automorphisms onKwith elements denoted
σi, i = 1, . . . ,n.

TheΦmatrix (diversity of modulation)

The structure ofΦ is the following,

Φ=∆ ·


σ1 (ω1) σ1 (ω2) · · · σ1 (ωn)
σ2 (ω1) σ2 (ω2) · · · σ2 (ωn)

...
...

. . .
...

σn (ω1) σn (ω2) · · · σn (ωn)

 (5)

where ω1,ω2, . . . ,ωn ∈OK are linearly independent on F. ∆ is diagonal.
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A 2 dimensional example

Background

K= F(θ) with θ = 1+p5
2 , an element of order 2. Its ring of integers is OK =Z[i, 1+p5

2 ].

Minimal polynomial of θ is µθ(X) = X2 −X −1.

GalK/F is the Galois group ofKwith elements {1,σ} such that

σ : θ 7−→ θ̄ = 1−p
5

2

TheΦmatrix (“Golden Field”)

Take ω1 = 1+ i(1−θ) and ω2 = θ− i. Then,

Φ= 1p
5

[
ω1 ω2

σ (ω1) σ (ω2)

]
= 1p

5

[
1+ i(1−θ) θ− i
1+ i(1− θ̄) θ̄− i

]
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Matrix representation of an algebraic number

Example 1: C−→M2(R)

z = x+ iy 7−→ Tz =
(

x −y
y x

)
NC/R(z) = x2 +y2 = det

(
x −y
y x

)

Example 2: Q
(
e

iπ
4

)
−→M2(Q(i))

z = x+yθ 7−→ Tz =
(

x iy
y x

)
N
Q

(
e

iπ
4

)
/Q(i)

(z) = x2 − iy2 = det

(
x iy
y x

)
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Transforming Fadings into a Basis Change (1)

Matrix H can be expressed as

H =
∣∣∣∣∣ n∏
i=1

hi

∣∣∣∣∣
1
n
·diag [a1 ,a2 , . . . ,an]

with
∣∣∣∏n

i=1 ai

∣∣∣= 1.

Assume that the vector (|a1| , |a2| , . . . , |an|) is composed by the magnitudes of the conjugates of some

unit u in OK, i.e., ak = eiβkσk(u),∀k with βk = argak −argσk(u). The received signal can then be
expressed as

y =
∣∣∣∣∣ n∏
i=1

hi

∣∣∣∣∣
1
n
·diag

[
eiβ1 , . . . ,eiβn

]
·diag [σ1(u), . . . ,σn(u)] ·Φ ·x+n (6)

So,

y =
∣∣∣∣∣ n∏
i=1

hi

∣∣∣∣∣
1
n
·Ψ ·Φ ·T u ·x+n (7)

withΨ= diag
[

eiβ1 ,eiβ2 , . . . ,eiβn
]

and T u (unimodular) being the matrix representation of the

unit u.
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Transforming Fadings into a Basis Change (2)

Denote z =
∣∣∣1/

∏n
i=1 hi

∣∣∣ 1
n ·Φ† ·Ψ† ·y, then

z = T u ·x+w

where w =
∣∣∣∣∣1/

n∏
i=1

hi

∣∣∣∣∣
1
n

·Φ† ·Ψ† ·n remains an i.i.d. noise vector.

Now, since |detT u| = 1 , (u is a unit), then a ML lattice decoder is obvious as it is a

slicer followed by the product with matrix T−1
u .

Approximation

What happens if (|a1| , |a2| , . . . , |an|) is not composed by the modules of conjugates
of some unit u?
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The Logarithmic Lattice

Theorem (Dirichlet)

LetK be an extension ofQwith signature (r,s) (with degree r+2s). Then there
exists r+ s−1 units named “fundamental units” u1,u2, . . . ,ur+s−1 such that any unit u
can be expressed as

u = ε ·
r+s−1∏

i=1
uki

i

where ε is a complex number with module equal to 1 and ki ∈Z.

Now from a unit u, construct the vector

ulog = (
log |σ1(u)| , . . . , log |σr+s(u)|)>

Then vector ulog lies in a hyperplane with equation

r+s∑
i=1

xi = 0

All vectors of type ulog are in a lattice named the logarithmic lattice, with generator matrix,
log |σ1(u1)| log |σ2(u1)| · · · log |σr+s(u1)|
log |σ1(u2)| log |σ2(u2)| · · · log |σr+s(u2)|

.

.

.
.
.
.

. . .
.
.
.

log |σ1(ur+s−1)| log |σ2(ur+s−1)| · · · log |σr+s(ur+s−1)|


and fundamental volume R, the regulator.
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Golden Field

LetK=Q(i,
p

5) withΦ= 1p
5

[
1+ i(1−θ) θ− i
1+ i(1− θ̄) θ̄− i

]
and θ = 1+p5

2 . The logarithmic lattice (∼=Z) has

generator matrix
[

0.481 −0.481
]
.

H =
(

h1 0
0 h2

)

Assume that fadings are h1 = 1.271eiη1 and h2 = 0.071eiη2 . We get

H =
(

h1 0
0 h2

)
= 0.3

(
eiη1 0

0 −eiη2

)(
θ3 0
0 θ̄3

)

Reduction

Equations (6) and (7) give

y = HΦx+n = 0.3

(
eiη1 0

0 −eiη2

)(
θ3 0
0 θ̄3

)
Φx+n

= 0.3

(
eiη1 0

0 −eiη2

)
Φ

(
1 2
2 3

)
x+n
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The Reduction

In fact, the true received signal is (after reduction)

y =
∣∣∣∣∣ n∏
i=1

hi

∣∣∣∣∣
1
n

·ΨΛΦT ux+n

If H is proportional to a unitary transform, thenΛ= I, else, the nearest unit (in the
logarithmic lattice) is chosen andΛ is a diagonal matrix whose dynamic is bounded
(covering radius) and controlled by the logarithmic lattice.

T u is the unimodular basis change matrix; it is the reduction matrix.
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The preprocessing stage Left Preprocessing Right Preprocessing Algebraic reduction for DAST codes

The diversity property (with ZF)

Theorem

The asymptotic (γ→∞) expression of the codeword error probability for the zero
forcing detection is

Pe(γ) ≤ O

(
logn−1γ

γn

)
where n is the dimension

Sketch of the proof

In fact, Pe(γ) ≤ ∫ ∞
0 pX (x)e−γxdx where X = n

√∏n
i=1 Xi (by using the covering radius of

the logarithmic lattice as an upperbound)

Xi are i.i.d. random variables with an exponential distribution

Recursion on n gives the result.
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Part IV

Tree Search Strategy



Branch and Bound Classification Conclusion

Tree Search Strategy

10 Branch and Bound
General Branch and Bound
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Breadth First Search
Depth First Search
Best First Search
The best tradeoff
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General Branch and Bound (1)

We keep notations from (3). We have

y = R ·x+z

with x ∈Zm.

The node at level k is denoted xk
1 = (

x1,x2, . . . ,xk
)
. Every node is associated to the metric

wk

(
xk

1

)
=

∣∣∣∣∣yk −
k∑

i=1
rk,ixi

∣∣∣∣∣
2

Branch and Bound (BB) reduces the complexity of tree search by determining if an
intermediate node xk

1 has any chance of giving the optimum leaf node, when extended.
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General Branch and Bound (2)

The decision is taken by comparing a cost function (namely f
(
xk

1

)
) against a bounding

function tk .

BB maintains a list of valid nodes that can be extended, N . BB ends when N is empty.

Different BB algorithms differ in their cost functions, bounding functions and the rules
to generate and sort the nodes.

A unified framework

BB brings a unified framework for many searching algorithms, considered as
special cases. Sphere Decoder, Schnorr-Euchner, Sequential decoding, ...
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Breadth First Search (1)

Bounding function is fixed and cost function is never updated.

Pohst Enumeration: Bounding function is

tk = C0 (sphere radius).

Cost function is

f
(
xk

1

)
=

k∑
i=1

wi

(
xi

1

)
≤ C0.

All nodes satisfying
∑k

i=1 wi

(
xi

1

)
≤ C0 are generated before termination.

67 / 74

Decoding of Space-Time Block Codes



Branch and Bound Classification Conclusion

Breadth First Search (2)

Generating the child nodes is simplified. For any parent node xk
1 , the condition∑k

i=1 wi

(
xi

1

)
≤ C0 implies for the child nodes that component k of the generated nodes

lies in some interval (see SD).

We can apply some heuristic statistical pruning, e.g. increased radii (tk < tk+1).

Variants can be found. M− and T−algorithms

M−algorithm only keeps the M best survivors whereas the T−algorithm adjusts the bounding
function by the best cost function at the level k combined with a predefined threshold (use of
the Fano metric, for instance).

This algorithm remains complex.
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Branch and Bound Classification Conclusion

Depth First Search

Principle

Order nodes in N in reverse order of generation. The final bound vector is

t = [
min

(
t1, f

(
xm

1
))

,min
(
t2, f

(
xm

1
))

, . . . ,min
(
tm, f

(
xm

1
))]

.

Different DFS depends on the way children are generated and on the partial
bounds and the ordering of the generated child nodes.

Viterbo-Boutros algorithm: We have f
(
xk

1

)
=∑k

i=1 wi

(
xi

1

)
and for any node xk−1

1 , its

valid children (verifying
∑k

i=1 wi

(
xi

1

)
≤ C0) are generated lexicographically.

Schnorr-Euchner algorithm: Same properties, but the child nodes are generated w.r.t.

the accumulated squared distance
∑k

i=1 wi

(
xi

1

)
.
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Best First Search (1)

Sort nodes in N such that their cost functions are increasing.

Search can be terminated once a leaf node reaches the top of N .

Stack algorithm (sequential decoding) is BeFS with cost function

f
(
xk

1

)
=

k+1∑
i=1

wi

(
xk+1

1,b

)
−b(k+1)

where xk+1
1,b is the best child of xk

1 not generated yet and f
(
xm

1

)=−∞. b is the bias.

Theorem

The stack algorithm with b = 0 generates the least number of nodes among all
optimal tree search algorithms.
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Branch and Bound Classification Conclusion

Best First Search (2)

The stack algorithm offers a natural solution for the problem of choosing the initial
radius (or radii): tk =∞.

The stack allows for a systematic approach for trading-off performance for complexity:
b = 0 ⇒ Optimal CLPS. b =∞⇒ MMSE-Babai point decoder.

In general, for systems with small dimension m, and/or high SNRs/”friendly” channels,
one can obtain near-optimal performance with relatively large values of b (i.e., reduced
complexity).

Disadvantage: The required memory to maintain the active list N can be prohibitive.
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Branch and Bound Classification Conclusion

The best tradeoff

In general, the choice of the algorithm depends on the dimensions, codes, ...

For a large variety of MIMO channel, the best tradeoff complexity/performance is given
by

Best strategy

Left preprocessing (MMSE-DFE) + Right preprocessing (Lattice reduction and
reordering), followed by a stack search stage in the lattice.
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Branch and Bound Classification Conclusion

Conclusion and perspectives

Sphere decoding has been the first ML decoding algorithm for MIMO (encoded)
channels

Sequential decoding has also been proposed as a near optimal decoder but with much
less complexity than SD.

Preprocessing can decrease a lot the searching complexity

Now, do processing at the matrix form level and not at the vector form level.
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