Algebraic Space-Time Block Codes

Ghaya Rekaya-Ben Othman

TELECOM ParisTech

Pisa 17 November 2008

Presentation outline

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code
- 2 Diagonal Algebraic STBC
 - Principle
 - 2 × 2 DAST Code
 - M × M DAST Code
- 3 Threaded Algebraic STBC
 - Principle
 - 2 × 2 TAST Code
 - M × M TAST Code
- 4 Quaternionic Code
 - Principle
 - 2 × 2 Quaternionic Code
 - Cyclic Division Algebras
 - $M \times M$ Quaternionic Code
 - Examples of Quaternionic Codes
 - Capacity of MIMO Scheme with STBC
 - Perfect Codes
 - Principle
 - 2 × 2 Perfect code
 - M × M Perfect Codes
 - Examples of Perfect Codes

Introduction

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code
- 2 Diagonal Algebraic STBC
 - Principle
 - 2 × 2 DAST Code
 - *M* × *M* DAST Code
- Threaded Algebraic STBC
 - Principle
 - 2 × 2 TAST Code
 - *M* × *M* TAST Code
- Quaternionic Code
 - Principle
 - 2 × 2 Quaternionic Code
 - Cyclic Division Algebras
 - *M* × *M* Quaternionic Code
 - Examples of Quaternionic Codes
 - Capacity of MIMO Scheme with STBC
- 5 Perfect Codes
 - Principle
 - 2 × 2 Perfect code
 - *M* × *M* Perfect Codes
 - Examples of Perfect Codes

MIMO Transmission scheme

- Received signal : $\mathbf{Y}_{N \times T} = \mathbf{H}_{N \times M} \cdot \mathbf{X}_{M \times T} + \mathbf{W}_{N \times T}$
- T (temporal code length) = M
- Block fading channel
- Perfect channel state information at the receiver (Coherent code)

STBC Design Criteria

- [Tarokh et. al.] proposed design criteria to construct good Space-Time Block Codes (STBC)
- Let X and T be two distinct codewords and A = X T. We define B = A^HA. The pairwise error probability for quasi-static Rayleigh channel is asymptotically upper bounded by :

$$\operatorname{Prob}(\mathbf{X} \to \mathbf{T}) \leq \left(\prod_{i=1}^{r} \lambda_{i}\right)^{-N} \left(\frac{1}{\frac{E_{S}}{4N_{0}}}\right)^{rN}$$

where λ_i the eigenvalues of **B**.

Rank criterion : in order to achieve maximum diversity *MN*, the matrix **A** must be of maximum rank *M*.

Coding Advantage : in order to maximize the coding gain, $\min_{c \neq T} det(\mathbf{A})$ must be maximized.

• The Spatial Multiplexing Scheme for MIMO system with *M* transmit antennas and $N \ge M$ receive antennas have full rate but not full diversity.

- The Spatial Multiplexing Scheme for MIMO system with *M* transmit antennas and $N \ge M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1sym/cu and full diversity of 2.

- The Spatial Multiplexing Scheme for MIMO system with *M* transmit antennas and $N \ge M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1sym/cu and full diversity of 2.
- Full rate and full diversity Orthogonal Space-Time Block codes doesn't exist for a number of transmit antenna more than 2, and 1 receive antenna.

- The Spatial Multiplexing Scheme for MIMO system with *M* transmit antennas and $N \ge M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1sym/cu and full diversity of 2.
- Full rate and full diversity Orthogonal Space-Time Block codes doesn't exist for a number of transmit antenna more than 2, and 1 receive antenna.
- The Alamouti code have the full diversity for a MIMO system with 2 transmit and 2 receive antennas, but is no more full rate.

- The Spatial Multiplexing Scheme for MIMO system with *M* transmit antennas and $N \ge M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1sym/cu and full diversity of 2.
- Full rate and full diversity Orthogonal Space-Time Block codes doesn't exist for a number of transmit antenna more than 2, and 1 receive antenna.
- The Alamouti code have the full diversity for a MIMO system with 2 transmit and 2 receive antennas, but is no more full rate.

How to design full rate and full diversity STBC for MIMO system with *M* transmit antenna and *N* receive antennas ?

- The Spatial Multiplexing Scheme for MIMO system with *M* transmit antennas and $N \ge M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1sym/cu and full diversity of 2.
- Full rate and full diversity Orthogonal Space-Time Block codes doesn't exist for a number of transmit antenna more than 2, and 1 receive antenna.
- The Alamouti code have the full diversity for a MIMO system with 2 transmit and 2 receive antennas, but is no more full rate.

How to design full rate and full diversity STBC for MIMO system with *M* transmit antenna and *N* receive antennas ?

For that we use Algebraic Tools.

Introductio

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code

Diagonal Algebraic STBC

- Principle
- 2 × 2 DAST Code
- *M* × *M* DAST Code
- 3 Threaded Algebraic STBC
 - Principle
 - 2 × 2 TAST Code
 - *M* × *M* TAST Code
- Quaternionic Code
 - Principle
 - 2 × 2 Quaternionic Code
 - Cyclic Division Algebras
 - *M* × *M* Quaternionic Code
 - Examples of Quaternionic Codes
 - Capacity of MIMO Scheme with STBC
- 5 Perfect Codes
 - Principle
 - 2 × 2 Perfect code
 - *M* × *M* Perfect Codes
 - Examples of Perfect Codes

Principle of DAST Codes

- DAST codes are Diagonal Algebraic Space Time Code designed for MIMO system with *M* transmit antennas and 1 receive antenna, that have :
 - full rate of 1sym/cu
 - full diversity of M

Principle of DAST Codes

- DAST codes are Diagonal Algebraic Space Time Code designed for MIMO system with *M* transmit antennas and 1 receive antenna, that have :
 - full rate of 1sym/cu
 - full diversity of M
- The Construction is based on unitary matrices constructed using number fields.
- Two steps of the construction:
 - Construction of an optimal unitary matrix of dimension M having the maximal diversity
 - Using Hadamard transformation to multiplex information symbols in space and in time.
- The construction is available for M = 2 and M multiple of 4.

2×2 DAST Code : unitary matrix construction

 $K = \mathbb{Q}(e^{\frac{i\pi}{4}})$ number filed of degree 2 over $\mathbb{Q}(i)$.

- The minimum polynomial of $\theta = e^{\frac{i\pi}{4}}$ is $\mu_{\theta}(x) = X^2 i$, its conjugate is $\overline{\theta} = -e^{\frac{i\pi}{4}}$.
- $B = (1, \theta)$ is the integral basis of K, each element x of K can be written as $x = a + b\theta$, $a, b \in \mathbb{Q}(i)$.
- Let $\sigma: \theta \mapsto -\theta$ be the generator of the Galois group of K
- Canonical embedding of K in C² is :

$$\begin{aligned} \sigma : & K & \longmapsto \mathbb{C}^2 \\ & x & \longrightarrow (x, \sigma(x)) \end{aligned}$$

The lattice Λ = σ(O_K), where O_K the ring of integers O_K = {a + bθ, a, b ∈ Z[i]}, have as generator matrix:

$$\mathbf{R} = \begin{bmatrix} 1 & 1 \\ \theta & \overline{\theta} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ e^{i\pi} & -e^{i\pi} \end{bmatrix}$$

• $\mathbf{R}' = \frac{1}{\sqrt{2}}\mathbf{R}$ is a unitary matrix of dimension 2.

2×2 DAST : Code construction (1)

• First Step :

- Let $\mathbf{s} = (a_1, a_2)^T$ be the QAM information symbol vector
- Vector ${\boldsymbol x}$ obtained by the rotation of vector ${\boldsymbol s}$ by ${\boldsymbol R}'$ is :

$$\mathbf{x} = \mathbf{R}' \cdot \mathbf{s} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & \theta \\ 1 & -\theta \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 \\ a_1 - \theta a_2 \end{bmatrix}$$

 This operation alloaws to increase the algebraic dimension of the constellation, as K is a vector space of dimension 2 over Q(i).

2×2 DAST : Code construction (1)

• First Step :

- Let $\mathbf{s} = (a_1, a_2)^T$ be the QAM information symbol vector
- Vector **x** obtained by the rotation of vector **s** by **R**' is :

$$\mathbf{x} = \mathbf{R}' \cdot \mathbf{s} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & \theta \\ 1 & -\theta \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 \\ a_1 - \theta a_2 \end{bmatrix}$$

- This operation alloaws to increase the algebraic dimension of the constellation, as K is a vector space of dimension 2 over Q(i).
- The DAST codeword can be written in this form :

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 & 0 \\ 0 & a_1 - \theta a_2 \end{bmatrix}$$

2×2 DAST : Code construction (2)

• Second step :

• Hadamard matrix in dimension 2, verify $H_2^T \cdot H_2 = 2I_2$ is :

$$\mathbf{H_2} = \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$$

• A better balanced DAST codeword is :

$$\mathbf{X} = \mathbf{H}_{\mathbf{2}} \cdot \operatorname{diag}(\mathbf{x}) = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 & -(a_1 - \theta a_2) \\ a_1 + \theta a_2 & a_1 - \theta a_2 \end{bmatrix}$$

• The coding gain is :

$$\delta(C) = \frac{1}{2} \min_{a_1 \neq a_2 \neq 0 \in S} (N_{K/\mathbb{Q}}(a_1 + \theta a_2)) \neq 0$$

$M \times M$ DAST : Code construction

- For MIMO System with M = T multiple of 4 and N = 1.
- Construct an optimal unitary matrix of dimension *M*.
- Take $\mathbf{s} = (a_1, a_2, \dots, a_M)^T$ QAM information symbol vector
- H_M is the Hadamard matrix in dimension M.
- The codeword matrix is :

 $\mathbf{X} = \mathbf{H}_M \cdot \text{diag}(\mathbf{R} \cdot \mathbf{s})$

Introductio

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code
- 2 Diagonal Algebraic STBC
 - Principle
 - 2 × 2 DAST Code
 - *M* × *M* DAST Code

Threaded Algebraic STBC

- Principle
- 2 × 2 TAST Code
- *M* × *M* TAST Code

Quaternionic Code

- Principle
- 2 × 2 Quaternionic Code
- Cyclic Division Algebras
- *M* × *M* Quaternionic Code
- Examples of Quaternionic Codes
- Capacity of MIMO Scheme with STBC
- 5 Perfect Codes
 - Principle
 - 2 × 2 Perfect code
 - *M* × *M* Perfect Codes
 - Examples of Perfect Codes

Principle

Principle of TAST Codes

- TAST codes are Threaded Algebraic STBC designed for MIMO system with *M* transmit antennas and $N \ge M$, which have :
 - Full rate of M symbols/c.u
 - Full diversity of $M \cdot N$.

Principle of TAST Codes

- TAST codes are Threaded Algebraic STBC designed for MIMO system with *M* transmit antennas and $N \ge M$, which have :
 - Full rate of M symbols/c.u
 - Full diversity of $M \cdot N$.
- The idea is to design layered architecture code and to associate to each layer an algebraic sub-space (DAST Code), such that the layers are transparent to each others.
- An example of optimal layered architecture is :

2×2 TAST : Code construction

- We consider a MIMO system with M = N = T = 2
- $\mathbf{a} = (a_1, a_2, a_3, a_4)$ is the QAM information symbol vector.
- $\theta = \exp(i\lambda)$ with $\lambda \in \mathbb{R}$, and $\phi^2 = \theta$.
- A 2 × 2 DAST code is associated to each layer, and the two layers are separated by the parameter φ.

2×2 TAST : Code construction

- We consider a MIMO system with M = N = T = 2
- $\mathbf{a} = (a_1, a_2, a_3, a_4)$ is the QAM information symbol vector.
- $\theta = \exp(i\lambda)$ with $\lambda \in \mathbb{R}$, and $\phi^2 = \theta$.
- A 2 \times 2 DAST code is associated to each layer, and the two layers are separated by the parameter ϕ .
- The codeword is:

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 & \phi(a_3 + \theta a_4) \\ \phi(a_3 - \theta a_4) & a_1 - \theta a_2 \end{bmatrix}$$

• The coding gain is equal to : $\delta(C) = \frac{1}{2} \min(a_1^2 - a_3^2\theta - a_2^2\theta^2 + a_4^2\theta^3)$.

2×2 TAST : Code construction

- We consider a MIMO system with M = N = T = 2
- $\mathbf{a} = (a_1, a_2, a_3, a_4)$ is the QAM information symbol vector.
- $\theta = \exp(i\lambda)$ with $\lambda \in \mathbb{R}$, and $\phi^2 = \theta$.
- A 2 \times 2 DAST code is associated to each layer, and the two layers are separated by the parameter ϕ .
- The codeword is:

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 & \phi(a_3 + \theta a_4) \\ \phi(a_3 - \theta a_4) & a_1 - \theta a_2 \end{bmatrix}$$

- The coding gain is equal to : $\delta(C) = \frac{1}{2} \min(a_1^2 a_3^2\theta a_2^2\theta^2 + a_4^2\theta^3)$.
- Choice of θ:
 - To satisfy the rank criterion and so insure the full diversity, θ have to be choosing such that $\delta(C) \neq 0$.
 - Also, θ have be to be choosing to maximise δ(C) for a fixed constellation size.
 - θ could be an either algebraic or a transcendant number.

If θ is an algebraic number of degree 2 over Q(i), for example θ = e^{i^π/4}. As θ is not a norm of an element in O_K, then :

$$\delta(C) = \frac{1}{2}\min(N_{K/\mathbb{Q}(i)}(x_1) - \theta N(x_2)_{K/\mathbb{Q}(i)}) \neq 0$$

where $x_1 = a_1 + a_2 \theta$ and $x_2 = a_3 + a_4 \theta$.

If θ is an algebraic number of degree 2 over Q(i), for example θ = e^{i^π/4}. As θ is not a norm of an element in O_K, then :

$$\delta(C) = \frac{1}{2} \min(N_{K/\mathbb{Q}(i)}(x_1) - \theta N(x_2)_{K/\mathbb{Q}(i)}) \neq 0$$

where $x_1 = a_1 + a_2 \theta$ and $x_2 = a_3 + a_4 \theta$.

If θ = e^{iλ} is transcendant, it is proved using Diophantine approximation that δ(C) ≠ 0. The values of λ maximizing the coding gain for a fixed constellation are obtained by numerical optimisation.

If θ is an algebraic number of degree 2 over Q(i), for example θ = e^{i^π/4}. As θ is not a norm of an element in O_K, then :

$$\delta(C) = \frac{1}{2} \min(N_{K/\mathbb{Q}(i)}(x_1) - \theta N(x_2)_{K/\mathbb{Q}(i)}) \neq 0$$

where $x_1 = a_1 + a_2 \theta$ and $x_2 = a_3 + a_4 \theta$.

- If θ = e^{iλ} is transcendant, it is proved using Diophantine approximation that δ(C) ≠ 0. The values of λ maximizing the coding gain for a fixed constellation are obtained by numerical optimisation.
- For both cases the coding gain takes its values in \mathbb{R} .

If θ is an algebraic number of degree 2 over Q(i), for example θ = e^{i^π/4}. As θ is not a norm of an element in O_K, then :

$$\delta(\mathcal{C}) = \frac{1}{2} \min(N_{\mathcal{K}/\mathbb{Q}(i)}(x_1) - \theta N(x_2)_{\mathcal{K}/\mathbb{Q}(i)}) \neq 0$$

where $x_1 = a_1 + a_2 \theta$ and $x_2 = a_3 + a_4 \theta$.

- If θ = e^{iλ} is transcendant, it is proved using Diophantine approximation that δ(C) ≠ 0. The values of λ maximizing the coding gain for a fixed constellation are obtained by numerical optimisation.
- For both cases the coding gain takes its values in \mathbb{R} .
- Numerical optimisations lead to the values of λ giving the best coding gain

	$e^{i\frac{\pi}{8}}$	e ⁱ	e ^{i0.448}	$e^{i\frac{\pi}{4}}$
4-QAM	0.1304	0.2369	-	0.0858
16-QAM	0.059	0.0367	0.1397	0.0272

• The coding gain decreases when constellation size increases : Vanishing Determinant

M × M TAST : Code construction

- Let $K = \mathbb{Q}(i, \theta)$ be a cyclic extension of $\mathbb{Q}(i)$ of degree M, with $\theta = \exp(\frac{i\Pi}{2M})$.
- $B = (1, \theta, \dots, \theta^{M-1})$ is an integral basis of *K*.
- *K* is a number field, unitary matrix **R** is obtained by canonical embedding of *B* in \mathbb{C}^M :

$$\mathbf{R} = \frac{1}{\sqrt{M}} \begin{bmatrix} 1 & \sigma(\theta) & \dots & \sigma(\theta^{M-1}) \\ 1 & \sigma^2(\theta) & \dots & \sigma^2(\theta^{M-1}) \\ & \vdots & \ddots & \vdots \\ 1 & \sigma^{M-1}(\theta) & \dots & \sigma^{M-1}(\theta^{M-1}) \end{bmatrix}$$

- Let (a₁,..., a_{M²}) be the QAM information symbol vector, divided in *M* vectors v₁,..., v_M of length *M*, and φ such that φ^M = θ.
- Construction of vectors $\beta_1, \ldots, \beta_{n_t}, \beta_i = \mathbf{R}.\mathbf{v}_i$.
- Matrix codeword is :

$$\mathbf{X} = (\phi^{|j-i|}\beta_{i,|j-i+1|})_{1 \le i,j \le M}$$

Introductio

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code

2 Diagonal Algebraic STBC

- Principle
- 2 × 2 DAST Code
- *M* × *M* DAST Code
- 3 Threaded Algebraic STBC
 - Principle
 - 2 × 2 TAST Code
 - *M* × *M* TAST Code

Quaternionic Code

- Principle
- 2 × 2 Quaternionic Code
- Cyclic Division Algebras
- *M* × *M* Quaternionic Code
- Examples of Quaternionic Codes
- Capacity of MIMO Scheme with STBC
- Perfect Codes
 - Principle
 - 2 × 2 Perfect code
 - *M* × *M* Perfect Codes
 - Examples of Perfect Codes

Principle of Quaternionic Codes

Quaternionic codes are STBC designed for MIMO systems with *M* transmit antenans and $N \ge M$ receive antennas, that have :

- Full rate : *M* symbols/c.u (*q*-QAM or *q*-HEX information symbols)
- Full diversity : diversity order $M \cdot N$
- Non-Vanishing Determinants (NVD) when spectral efficiency increases

For that we use Cyclic Division Algebras with center $L = \mathbb{Q}(i)$ or $L = \mathbb{Q}(j)$

2×2 Quaternionic : code construction (1)

- $\bullet~2\times2$ Quaternionic code construction based on 2 \times 2 TAST code
 - **a** = (*a*₁, *a*₂, *a*₃, *a*₄) QAM information symbol vector
 - $\theta = \exp(\frac{i\pi}{4})$ • $\gamma \in K = \mathbb{Q}(e^{\frac{i\pi}{4}})$ the parameter used to separate the two layers
 - The codeword is:

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 & (a_3 + \theta a_4) \\ \gamma(a_3 - \theta a_4) & a_1 - \theta a_2 \end{bmatrix}$$

• The coding gain is equal to : $\delta(C) = \frac{1}{2} \min(N_{K/\mathbb{Q}(i)}(x_1) - \gamma N(x_2)_{K/\mathbb{Q}(i)})$

2×2 Quaternionic : code construction (1)

- $\bullet~2\times2$ Quaternionic code construction based on 2 \times 2 TAST code
 - **a** = (*a*₁, *a*₂, *a*₃, *a*₄) QAM information symbol vector
 - $\theta = \exp(\frac{i\pi}{4})$ • $\gamma \in K = \mathbb{Q}(e^{\frac{i\pi}{4}})$ the parameter used to separate the two layers
 - The codeword is:

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 & (a_3 + \theta a_4) \\ \gamma(a_3 - \theta a_4) & a_1 - \theta a_2 \end{bmatrix}$$

- The coding gain is equal to : $\delta(C) = \frac{1}{2} \min(N_{K/\mathbb{Q}(i)}(x_1) \gamma N(x_2)_{K/\mathbb{Q}(i)})$
- Choice of γ :

$$\begin{cases} \delta(C) \neq 0 \qquad \Rightarrow \gamma \notin \mathcal{N}(\mathcal{K}^*) \\ \text{For non-vanishing determinant} \qquad \Rightarrow \delta(C) \in \mathbb{Z}[i] \Rightarrow \gamma \in \mathbb{Z}[i] \end{cases}$$

2×2 Quaternionic : code construction (1)

- $\bullet~2\times2$ Quaternionic code construction based on 2 \times 2 TAST code
 - **a** = (*a*₁, *a*₂, *a*₃, *a*₄) QAM information symbol vector
 - $\theta = \exp(\frac{i\pi}{4})$ • $\gamma \in K = \mathbb{Q}(e^{\frac{i\pi}{4}})$ the parameter used to separate the two layers
 - The codeword is:

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{bmatrix} a_1 + \theta a_2 & (a_3 + \theta a_4) \\ \gamma(a_3 - \theta a_4) & a_1 - \theta a_2 \end{bmatrix}$$

• The coding gain is equal to : $\delta(C) = \frac{1}{2} \min(N_{K/\mathbb{Q}(i)}(x_1) - \gamma N(x_2)_{K/\mathbb{Q}(i)})$

• Choice of γ :

$$\begin{cases} \delta(C) \neq 0 \qquad \Rightarrow \gamma \notin \mathcal{N}(K^*) \\ \text{For non-vanishing determinant} \qquad \Rightarrow \delta(C) \in \mathbb{Z}[i] \Rightarrow \gamma \in \mathbb{Z}[i] \end{cases}$$

We use ideal factorization :

$$5\mathbb{Z}[i] = (2+i)(2-i)$$

The Ideal (2 + i) is a prime principal ideal, then taking $\gamma = 2 + i$ is a solution.

 $\bullet\,$ Codeword of the 2 \times 2 Quaternionic Code is :

$$\mathbf{X} = \begin{bmatrix} a_1 + a_2\theta & a_3 + a_4\theta \\ (2+i)(a_3 - a_4\theta) & a_1 - a_2\theta \end{bmatrix}$$

• Coding gain:

$$\delta(\mathcal{C}) = \min\left(N_{\mathcal{K}/\mathbb{Q}(i)}(a_1 + a_2\theta) - (2+i)N_{\mathcal{K}/\mathbb{Q}(i)}(a_3 + a_4\theta)\right) \in \mathbb{Z}[i] = 1$$

• Codeword of the 2 \times 2 Quaternionic Code is :

$$\mathbf{X} = \begin{bmatrix} a_1 + a_2\theta & a_3 + a_4\theta \\ (2+i)(a_3 - a_4\theta) & a_1 - a_2\theta \end{bmatrix}$$

Coding gain:

$$\delta(\mathcal{C}) = \min\left(N_{\mathcal{K}/\mathbb{Q}(i)}(a_1 + a_2\theta) - (2+i)N_{\mathcal{K}/\mathbb{Q}(i)}(a_3 + a_4\theta)\right) \in \mathbb{Z}[i] = 1$$

- Let A = (K/L, σ, γ) be the Quaternion algebra D_{i,γ}(L), where L = Q(i) is the base field (q-QAM information symbols), K = Q(e^{iπ/4}) cyclotomic extension, with θ = e^{iπ/4}, andσ : θ ↦ -θ the generator of the Galois group of K.
- The Quaternionic code C is a finite subset of $D_{i,\gamma}(L)$

2×2 Quaternionic Code : performance

Cyclic Division Algebras (1)

- Let K be a cyclic extension of $L(\mathbb{Q}(i) \text{ or } \mathbb{Q}(j))$ of degree M, with Galois group $\mathcal{G}_{K/L} = \langle \sigma \rangle$
- $\mathcal{A} = (K/L, \sigma, \gamma)$ is a cyclic algebra of degree *M* iff

 $\mathcal{A} = 1.K \oplus e.K \oplus \cdots \oplus e^{M-1}.K$

 $e \in A$ such that $e^M = \gamma \in L$ and $x \cdot e = e \cdot \sigma(x)$.

Cyclic Division Algebras (1)

- Let K be a cyclic extension of L (Q(i) or Q(j)) of degree M, with Galois group G_{K/L} = ⟨σ⟩
- $\mathcal{A} = (K/L, \sigma, \gamma)$ is a cyclic algebra of degree *M* iff

 $\mathcal{A} = 1.K \oplus e.K \oplus \cdots \oplus e^{M-1}.K$

 $e \in A$ such that $e^M = \gamma \in L$ and $x \cdot e = e \cdot \sigma(x)$.

- \mathcal{A} is a cyclic division algebra iff $\gamma, \gamma^2, \cdots, \gamma^{M-1}$ are not norms in K^*
- Elements of A have matrix representation
- Non null elements of $\mathcal A$ have an inverse

 \Rightarrow A Space-Time code can be defined as a finite subset of $\mathcal A$

Cyclic Division Algebras (2)

- To obtain the matrix representation of Algebra elements, we define linear applications $\lambda_d : x \in \mathcal{A} \longmapsto d.x, d$ element of \mathcal{A} .
- Example of cyclic division algebra of dimension 2:
 - Let $d = k_1 + ek_2$, where k_1 and k_2 are element of K.

•
$$\lambda_d(1) = d = k_1 + ek_2$$
 and $\lambda_d(e) = (k_1 + ek_2) \cdot e = \gamma \sigma(k_2) + e \sigma(k_1)$:

$$M_d = \begin{bmatrix} k_1 & k_2 \\ \gamma \sigma(k_2) & \sigma(k_1) \end{bmatrix} = \begin{bmatrix} k_1 & 0 \\ 0 & \sigma(k_1) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} k_2 & 0 \\ 0 & \sigma(k_2) \end{bmatrix} \begin{bmatrix} 0 & 1 \\ \gamma & 0 \end{bmatrix}$$

Cyclic Division Algebras (2)

- To obtain the matrix representation of Algebra elements, we define linear applications $\lambda_d : x \in \mathcal{A} \longmapsto d.x, d$ element of \mathcal{A} .
- Example of cyclic division algebra of dimension 2:
 - Let $d = k_1 + ek_2$, where k_1 and k_2 are element of K.

•
$$\lambda_d(1) = d = k_1 + ek_2$$
 and $\lambda_d(e) = (k_1 + ek_2) \cdot e = \gamma \sigma(k_2) + e\sigma(k_1)$:

$$M_d = \begin{bmatrix} k_1 & k_2 \\ \gamma \sigma(k_2) & \sigma(k_1) \end{bmatrix} = \begin{bmatrix} k_1 & 0 \\ 0 & \sigma(k_1) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} k_2 & 0 \\ 0 & \sigma(k_2) \end{bmatrix} \begin{bmatrix} 0 & 1 \\ \gamma & 0 \end{bmatrix}$$

• In dimension *M* :

$$M_d = M_{k_1} I + M_{k_2} M_e + \dots + M_{k_M} M_e^{M-1}$$

with
$$M_{e} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \gamma & \cdots & 0 & 0 \end{bmatrix}$$
 and $M_{k_{j}} = \begin{bmatrix} k_{j} & \cdots & 0 & 0 \\ \vdots & \sigma(k_{j}) & 0 \\ 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^{M-1}(k_{j}) \end{bmatrix}$

• Choice of base field : $L = \mathbb{Q}(i)$ (q-QAM constellations) or $L = \mathbb{Q}(j)$ (q-HEX constellations)

- Choice of base field : $L = \mathbb{Q}(i)$ (q-QAM constellations) or $L = \mathbb{Q}(j)$ (q-HEX constellations)
- Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois group $\mathcal{G}_{K/L} = \langle \sigma \rangle$

- Choice of base field : $L = \mathbb{Q}(i)$ (q-QAM constellations) or $L = \mathbb{Q}(j)$ (q-HEX constellations)
- Choice of the extension field : *K* must be a cyclic extension of *L* of degree *M*, with Galois group $\mathcal{G}_{K/L} = \langle \sigma \rangle$
- **()** Definition of the cyclic algebra : $A = (K/L, \sigma, \gamma)$ is a cyclic algebra of degree M

- Choice of base field : $L = \mathbb{Q}(i)$ (q-QAM constellations) or $L = \mathbb{Q}(j)$ (q-HEX constellations)
- Choice of the extension field : *K* must be a cyclic extension of *L* of degree *M*, with Galois group $\mathcal{G}_{K/L} = \langle \sigma \rangle$
- **O** Definition of the cyclic algebra : $A = (K/L, \sigma, \gamma)$ is a cyclic algebra of degree M
- Choice of γ :

 $\begin{cases} \text{For non-vanishing determinants} \to \gamma \in \mathcal{O}_L \\ \mathcal{A} \text{ be cyclic division algebra} \to \gamma, \cdots \gamma^{M-1} \notin \mathcal{N}(\mathcal{K}^*) \end{cases}$

• Choice of base field : $L = \mathbb{Q}(i)$ (q-QAM constellations) or $L = \mathbb{Q}(j)$ (q-HEX constellations)

• Choice of the extension field : *K* must be a cyclic extension of *L* of degree *M*, with Galois group $\mathcal{G}_{K/L} = \langle \sigma \rangle$

① Definition of the cyclic algebra : $\mathcal{A} = (K/L, \sigma, \gamma)$ is a cyclic algebra of degree *M*

Choice of γ : $\begin{cases}
\text{For non-vanishing determinants} \rightarrow \gamma \in \mathcal{O}_L \\
\mathcal{A} \text{ be cyclic division algebra} \rightarrow \gamma, \cdots \gamma^{M-1} \notin N(K^*)
\end{cases}$

Construction of the ST code : the Quaternionic code is a finite subset of A

$$\mathbf{X} = \begin{bmatrix} \sum_{i=1}^{M} a_{1,i}v_i & \sum_{i=1}^{M} a_{2,i}v_i & \cdots & \sum_{i=1}^{M} a_{M,i}v_i \\ \gamma \sigma (\sum_{i=1}^{M} a_{M,i}v_i) & \sigma (\sum_{i=1}^{M} a_{1,i}v_i) & \cdots & \sigma (\sum_{i=1}^{M} a_{M-1,i}v_i) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma \sigma^{M-1} (\sum_{i=1}^{M} a_{2,i}v_i) & \gamma \sigma^{M-1} (\sum_{i=1}^{M} a_{3,i}v_i) & \cdots & \sigma^{M-1} (\sum_{i=1}^{M} a_{1,i}v_i) \end{bmatrix}$$

$M \times M$ Quaternionic : code construction Validation

- Full rate : M symbols/c.u.
- Full diversity : $M \cdot N$
- Non Vanishing Determinant :
 - We have $\gamma \in \mathcal{O}_L$, and $a_{i,j} \in \mathcal{O}_L$ then $\sigma^I(s_{i,j}) \in \mathcal{O}_K \Rightarrow \det(\mathbf{X}) \in \mathcal{O}_K$
 - *A* = (K/L, σ, γ) is a cyclic division algebra, the reduced norm of an element of A (which is the determinant of X) belongs to L.

$$\det(\mathbf{X}) \in \mathcal{O}_{\mathcal{K}} \cap L = \mathcal{O}_{L}$$

• To obtain a discrete determinant : $\mathcal{O}_L = \mathbb{Z}[i]$ or $\mathbb{Z}[j]$.

3×3 Quaternionic Code

•
$$L = \mathbb{Q}(j), K = \mathbb{Q}(e^{\frac{i2\pi}{9}}), \theta = e^{\frac{i2\pi}{9}}, \sigma : \theta \mapsto j\theta \text{ and } \gamma = 3 + j$$

• Quaternionic code 3 × 3 is a subset of the cyclic division algebra of degree 3, $\mathcal{A} = (K/L, \sigma, \gamma).$

4×4 Quaternionic Code

•
$$L = \mathbb{Q}(i), K = \mathbb{Q}(e^{\frac{i\pi}{16}}), \theta = e^{\frac{i\pi}{16}}, \sigma : \theta \mapsto i\theta \text{ and } \gamma = 2 + i$$

• Quaternionic code 4 × 4 is a subset of the cyclic division algebra of degree 4 $\mathcal{A} = (K/L, \sigma, \gamma)$

• The instantaneous MIMO channel capacity is :

$$\mathcal{C}(\mathbf{H}) = \log_2 \det \left(\mathbf{I}_N + \frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H} \mathbf{H}^\dagger \right)$$

• The instantaneous MIMO channel capacity is :

$$C(\mathbf{H}) = \log_2 \det \left(\mathbf{I}_N + \frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H} \mathbf{H}^\dagger \right)$$

• The instantaneous Channel capacity using STBC is :

$$C_{\textit{code}}(\mathbf{H}) = \frac{1}{M} \log_2 \det \left(\mathbf{I}_{\textit{N.T}} + \frac{\text{SNR}}{M} \mathbf{H}_1 \Phi \Phi^{\dagger} \mathbf{H}_1^{\dagger} \right)$$

 $\bullet\,$ Example of 2 \times 2 Quaternionic Code : the vectorisation of received signal, and isolation of information symbols lead to :

$$\mathbf{y} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \mathbf{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{H} \end{bmatrix} \cdot \begin{bmatrix} 1 & \theta & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 & \theta \\ \mathbf{0} & \mathbf{0} & \gamma & -\gamma\theta \\ 1 & -\theta & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \\ \mathbf{s}_3 \\ \mathbf{s}_4 \end{bmatrix} + \mathbf{w}$$
$$= \frac{1}{\sqrt{5}} \cdot \mathbf{H}_1 \cdot \mathbf{\Phi} \cdot \mathbf{s} + \mathbf{w}$$

• The instantaneous MIMO channel capacity is :

$$C(\mathbf{H}) = \log_2 \det \left(\mathbf{I}_N + \frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H} \mathbf{H}^\dagger \right)$$

• The instantaneous Channel capacity using STBC is :

$$\mathcal{C}_{\textit{code}}(\mathbf{H}) = \frac{1}{M} \log_2 \det \left(\mathbf{I}_{\textit{N.T}} + \frac{\text{SNR}}{M} \mathbf{H}_1 \Phi \Phi^{\dagger} \mathbf{H}_1^{\dagger} \right)$$

 $\bullet\,$ Example of 2 \times 2 Quaternionic Code : the vectorisation of received signal, and isolation of information symbols lead to :

$$\mathbf{y} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \mathbf{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{H} \end{bmatrix} \cdot \begin{bmatrix} 1 & \theta & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 & \theta \\ \mathbf{0} & \mathbf{0} & \gamma & -\gamma\theta \\ 1 & -\theta & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \\ \mathbf{s}_3 \\ \mathbf{s}_4 \end{bmatrix} + \mathbf{w}$$
$$= \frac{1}{\sqrt{5}} \cdot \mathbf{H}_1 \cdot \mathbf{\Phi} \cdot \mathbf{s} + \mathbf{w}$$

• The code is information lossless if $C_{code}(\mathbf{H}) = C(\mathbf{H})$, which is achieved if matrix Φ is unitary.

• The instantaneous MIMO channel capacity is :

$$C(\mathbf{H}) = \log_2 \det \left(\mathbf{I}_N + \frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H} \mathbf{H}^\dagger \right)$$

• The instantaneous Channel capacity using STBC is :

$$\mathcal{C}_{\textit{code}}(\mathbf{H}) = \frac{1}{M} \log_2 \det \left(\mathbf{I}_{\textit{N.T}} + \frac{\text{SNR}}{M} \mathbf{H}_1 \Phi \Phi^{\dagger} \mathbf{H}_1^{\dagger} \right)$$

 $\bullet\,$ Example of 2 \times 2 Quaternionic Code : the vectorisation of received signal, and isolation of information symbols lead to :

$$\mathbf{y} = \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} \mathbf{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{H} \end{bmatrix} \cdot \begin{bmatrix} 1 & \theta & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 & \theta \\ \mathbf{0} & \mathbf{0} & \gamma & -\gamma\theta \\ 1 & -\theta & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \\ \mathbf{s}_3 \\ \mathbf{s}_4 \end{bmatrix} + \mathbf{w}$$
$$= \frac{1}{\sqrt{5}} \cdot \mathbf{H}_1 \cdot \mathbf{\Phi} \cdot \mathbf{s} + \mathbf{w}$$

- The code is information lossless if $C_{code}(\mathbf{H}) = C(\mathbf{H})$, which is achieved if matrix Φ is unitary.
- Unfortunately, Quaternionic codes are not information lossless, which explain their bad performances.

G. Rekaya-Ben Othman

Algebraic Space-Time Block Codes

Introduction

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code
- 2 Diagonal Algebraic STBC
 - Principle
 - 2 × 2 DAST Code
 - *M* × *M* DAST Code
- 3 Threaded Algebraic STBC
 - Principle
 - 2 × 2 TAST Code
 - *M* × *M* TAST Code
- Quaternionic Code
 - Principle
 - 2 × 2 Quaternionic Code
 - Cyclic Division Algebras
 - *M* × *M* Quaternionic Code
 - Examples of Quaternionic Codes
 - Capacity of MIMO Scheme with STBC

Perfect Codes

- Principle
- 2 × 2 Perfect code
- *M* × *M* Perfect Codes
- Examples of Perfect Codes

Principle of Perfect code

Perfect codes are STBC designed for MIMO systems with *M* transmit antenans and $N \ge M$ receive antennas, that have :

- Full rate (M symbols/c.u)
- Full diversity $(M \cdot N)$
- Non-Vanishing Determinants when the spectral efficiency increases
- Energy efficiency
 - Uniform energy distribution : the same average energy is transmitted by each antenna at each instant time
 - No shaping loss : the transmitted constellations have no shaping loss compared to signal constellation → Exploit the layered structure of the code constructed from division algebras: transmit on each layer a rotated version of Z[*i*]^M or A^M₂

2×2 Perfect Code construction (1)

- Base field : $L = \mathbb{Q}(i)$ (q-QAM information symbols)
- Cyclic extension : let $\theta = \frac{1+\sqrt{5}}{2}$. Galois group $\mathcal{G}_{K/L} = \langle \sigma \rangle, \sigma : \theta \mapsto \overline{\theta} = \frac{1-\sqrt{5}}{2}$

2×2 Perfect Code construction (1)

- Base field : L = Q(i) (q-QAM information symbols)
- Cyclic extension : let $\theta = \frac{1+\sqrt{5}}{2}$. Galois group $\mathcal{G}_{K/L} = \langle \sigma \rangle, \sigma : \theta \mapsto \overline{\theta} = \frac{1-\sqrt{5}}{2}$

As Λ(O_K) is not a rotated version of Z[*i*]² we have to find an ideal *I* of O_K such that the lattice Λ(*I*) is a rotated version of Z[*i*]²

$$\Rightarrow \mathcal{I} = (\alpha)\mathcal{O}_{\mathcal{K}} = (1 + i - i\theta)\mathcal{O}_{\mathcal{K}}$$

2×2 Perfect Code construction (1)

- Base field : L = Q(i) (q-QAM information symbols)
- Cyclic extension : let $\theta = \frac{1+\sqrt{5}}{2}$. Galois group $\mathcal{G}_{K/L} = \langle \sigma \rangle, \sigma : \theta \mapsto \overline{\theta} = \frac{1-\sqrt{5}}{2}$

As Λ(O_K) is not a rotated version of Z[*i*]² we have to find an ideal *I* of O_K such that the lattice Λ(*I*) is a rotated version of Z[*i*]²

$$\Rightarrow \mathcal{I} = (\alpha)\mathcal{O}_{\mathcal{K}} = (1 + i - i\theta)\mathcal{O}_{\mathcal{K}}$$

Choice of γ:

For non-vanishing determinants
$$\rightarrow \gamma \in \mathcal{O}_L$$

For uniform energy distribution $\rightarrow |\gamma| = 1$ \Rightarrow Solution $\gamma = \mathbf{i}$
 $\mathcal{A} = (\mathcal{K}/\mathcal{L}, \sigma, \gamma)$ cyclic division algebra $\rightarrow \gamma \notin \mathcal{N}(\mathbb{K}^*)$

Algebraic Space-Time Block Codes

2×2 Perfect code

2×2 Perfect Code construction (2)

• 2 × 2 perfect code is a finite subset of the cyclic division algebra of degree 2, $\mathcal{A} = (\mathcal{K}/\mathcal{L}, \sigma, \gamma)$.

$$\mathbf{X} = \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha(\mathbf{s}_1 + \theta \mathbf{s}_2) & \mathbf{0} \\ \mathbf{0} & \bar{\alpha}(\mathbf{s}_1 + \bar{\theta} \mathbf{s}_2) \end{bmatrix} \mathbf{I}_2 + \begin{bmatrix} \alpha(\mathbf{s}_3 + \theta \mathbf{s}_4) & \mathbf{0} \\ \mathbf{0} & \bar{\alpha}(\mathbf{s}_3 + \bar{\theta} \mathbf{s}_4) \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \gamma & \mathbf{0} \end{bmatrix}$$

• The codeword is :

$$\mathbf{X} = \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha(s_1 + \theta s_2) & \alpha(s_3 + \theta s_4) \\ i\bar{\alpha}(s_3 + \bar{\theta}s_4) & \bar{\alpha}(s_1 + \bar{\theta}s_2) \end{bmatrix}$$

2×2 Perfect Code construction (2)

• 2 × 2 perfect code is a finite subset of the cyclic division algebra of degree 2, $\mathcal{A} = (\mathcal{K}/\mathcal{L}, \sigma, \gamma)$.

$$\mathbf{X} = \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha(s_1 + \theta s_2) & 0\\ 0 & \bar{\alpha}(s_1 + \bar{\theta} s_2) \end{bmatrix} \mathbf{I}_2 + \begin{bmatrix} \alpha(s_3 + \theta s_4) & 0\\ 0 & \bar{\alpha}(s_3 + \bar{\theta} s_4) \end{bmatrix} \cdot \begin{bmatrix} 0 & 1\\ \gamma & 0 \end{bmatrix}$$

• The codeword is :

$$\mathbf{X} = \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha(s_1 + \theta s_2) & \alpha(s_3 + \theta s_4) \\ i\bar{\alpha}(s_3 + \bar{\theta}s_4) & \bar{\alpha}(s_1 + \bar{\theta}s_2) \end{bmatrix}$$

- 2×2 Perfect Code is called the Golden Code
- The Coding gain :

$$\delta(C) = \frac{1}{5^2} \left| N_{K/L}(\alpha) \right|^2 = \frac{1}{5} N_{K/\mathbb{Q}}(\alpha) = \frac{1}{5}$$

Determinant distributions

Golden code performance

$M \times M$ Perfect Code construction

- Choice of base field : $L = \mathbb{Q}(i)$ or $L = \mathbb{Q}(j)$
- 3 Choice of field extension : K cyclic extension of L of degree M, σ the generator of the Galois group of K
- Solution of the cyclic algebra : $\mathcal{A} = (K/L, \sigma, \gamma)$ is a cyclic algebra of degree M
- Schoice of γ :

 $\begin{cases} \text{For non-vanishing determinants} \to \gamma \in \mathcal{O}_L \\ \text{For uniform energy distribution} \to |\gamma| = 1 \\ \mathcal{A} \text{ be cyclic division algebra} \to \gamma, \cdots \gamma^{M-1} \notin N(\mathbb{K}^*) \end{cases}$

- Ohoice of the ideal : we must find an ideal *I* of *O_K*, such that the lattice Λ(*I*) is a rotated version of Z[*i*]^M or A₂^M.
- Onstruction of the ST code : the ST code is a finite subset of A.

$M \times M$ Perfect Code construction validation

• Energy Efficiency : Using the prime factorization of the discriminant $d_{K/\mathbb{Q}} = \prod p_k^{r_k}$, we can find an ideal \mathcal{I} such that the volume of the real lattice $\Lambda^r(\mathcal{I})$ is

$$V(\Lambda^{r}(\mathcal{I})) = c^{M}$$
 or $V(\Lambda^{r}(\mathcal{I})) = \left(\frac{\sqrt{3}}{2}\right)^{M} c^{M}$

- Non Vanishing Determinant : The necessary assumptions needed to establish the proof of NVD for Quaternionic codes are still valid
 - if \mathcal{I} is principal :

$$\delta(C) = N_{K/\mathbb{Q}}(\alpha) = \frac{1}{d_{\mathbb{Q}(\theta)}}$$

 $\bullet~$ if ${\cal I}$ is not principal :

$$N(I) = \frac{1}{d_{\mathbb{Q}(\theta)}} \leq \delta(C) \leq \frac{1}{\operatorname{vol}\left(\Lambda^{r}(\mathcal{I})\right)} \min_{x \in \mathcal{I}} N_{K/\mathbb{Q}}(x)$$

Some Perfect Codes

3 × 3 Perfect code • $L = \mathbb{Q}(i), K = \mathbb{Q}(i, \theta)$ with $\theta = 2\cos\left(\frac{2\pi}{15}\right)$ • $\gamma = i$ • $\mathcal{I} = (\alpha) = ((1 - 3i) + i\theta^2))$ • $\delta_{\min}(C_{\infty}) = \frac{1}{1125}$

4 × 4 Perfect code • $L = \mathbb{Q}(j), K = \mathbb{Q}(j, \theta)$ with $\theta = 2\cos\left(\frac{2\pi}{7}\right)$ • $\gamma = i$ • $\mathcal{I} = (\alpha) = ((1 + i) + \theta)$

• $\delta_{\min}(C_{\infty}) = \frac{1}{49}$

6 × 6 Perfect code

• $L = \mathbb{Q}(j), K = \mathbb{Q}(j, \theta)$ with $\theta = 2\cos\left(\frac{\pi}{14}\right)$

•
$$\gamma = -j$$

- I not principal
- $\frac{1}{26.75} \leq \delta_{\min}(C_{\infty}) \leq \frac{1}{26.74}$

Hexagonal constellations

3×3 Perfect Code Performance

