Algebraic Space-Time Block Codes

Ghaya Rekaya-Ben Othman

TELECOM ParisTech

Pisa 17 November 2008

Presentation outline

(1) Introduction

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code
(2) Diagonal Algebraic STBC
- Principle
- 2×2 DAST Code
- $M \times M$ DAST Code
(3) Threaded Algebraic STBC
- Principle
- 2×2 TAST Code
- $M \times M$ TAST Code
(4) Quaternionic Code
- Principle
- 2×2 Quaternionic Code
- Cyclic Division Algebras
- $M \times M$ Quaternionic Code
- Examples of Quaternionic Codes
- Capacity of MIMO Scheme with STBC
(5) Perfect Codes
- Principle
- 2×2 Perfect code
- $M \times M$ Perfect Codes
- Examples of Perfect Codes

(1) Introduction

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code
(2) Diagonal Algebraic STBC
- Principle
- 2×2 DAST Code
- $M \times M$ DAST Code
(3) Threaded Algebraic STBC
- Principle
- 2×2 TAST Code
- $M \times M$ TAST Code
(4) Quaternionic Code
- Principle
- 2×2 Quaternionic Code
- Cyclic Division Algebras
- $M \times M$ Quaternionic Code
- Examples of Quaternionic Codes
- Capacity of MIMO Scheme with STBC
(5) Perfect Codes
- Principle
- 2×2 Perfect code
- $M \times M$ Perfect Codes
- Examples of Perfect Codes

MIMO Transmission scheme

- Received signal : $\mathbf{Y}_{N \times T}=\mathbf{H}_{N \times M} \cdot \mathbf{X}_{M \times T}+\mathbf{W}_{N \times T}$
- $T($ temporal code length $)=M$
- Block fading channel
- Perfect channel state information at the receiver (Coherent code)

STBC Design Criteria

- [Tarokh et. al.] proposed design criteria to construct good Space-Time Block Codes (STBC)
- Let \mathbf{X} and \mathbf{T} be two distinct codewords and $\mathbf{A}=\mathbf{X}-\mathbf{T}$. We define $\mathbf{B}=\mathbf{A}^{H} \mathbf{A}$. The pairwise error probability for quasi-static Rayleigh channel is asymptotically upper bounded by :

$$
\operatorname{Prob}(\mathbf{X} \rightarrow \mathbf{T}) \leq\left(\prod_{i=1}^{r} \lambda_{i}\right)^{-N}\left(\frac{1}{\frac{E_{S}}{4 N_{0}}}\right)^{r N}
$$

where λ_{i} the eigenvalues of \mathbf{B}.
Rank criterion : in order to achieve maximum diversity $M N$, the matrix A must be of maximum rank M.
Coding Advantage : in order to maximize the coding gain, $\min _{c \neq T} \operatorname{det}(\mathbf{A})$ must be maximized.

Limitations of SM Scheme and Alamouti Code

- The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and $N \geq M$ receive antennas have full rate but not full diversity.

Limitations of SM Scheme and Alamouti Code

- The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and $N \geq M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1 sym/cu and full diversity of 2 .

Limitations of SM Scheme and Alamouti Code

- The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and $N \geq M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1 sym/cu and full diversity of 2 .
- Full rate and full diversity Orthogonal Space-Time Block codes doesn't exist for a number of transmit antenna more than 2, and 1 receive antenna.

Limitations of SM Scheme and Alamouti Code

- The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and $N \geq M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1 sym/cu and full diversity of 2 .
- Full rate and full diversity Orthogonal Space-Time Block codes doesn't exist for a number of transmit antenna more than 2, and 1 receive antenna.
- The Alamouti code have the full diversity for a MIMO system with 2 transmit and 2 receive antennas, but is no more full rate.

Limitations of SM Scheme and Alamouti Code

- The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and $N \geq M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1 sym/cu and full diversity of 2 .
- Full rate and full diversity Orthogonal Space-Time Block codes doesn't exist for a number of transmit antenna more than 2, and 1 receive antenna.
- The Alamouti code have the full diversity for a MIMO system with 2 transmit and 2 receive antennas, but is no more full rate.

How to design full rate and full diversity STBC for MIMO system with M transmit antenna and N receive antennas?

Limitations of SM Scheme and Alamouti Code

- The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and $N \geq M$ receive antennas have full rate but not full diversity.
- The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have full rate of 1 sym/cu and full diversity of 2 .
- Full rate and full diversity Orthogonal Space-Time Block codes doesn't exist for a number of transmit antenna more than 2, and 1 receive antenna.
- The Alamouti code have the full diversity for a MIMO system with 2 transmit and 2 receive antennas, but is no more full rate.

How to design full rate and full diversity STBC for MIMO system with M transmit antenna and N receive antennas?

For that we use Algebraic Tools.
(1) Introduction

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code

(2) Diagonal Algebraic STBC

- Principle
- 2×2 DAST Code
- $M \times M$ DAST Code
(3) Threaded Algebraic STBC
- Principle
- 2×2 TAST Code
- $M \times M$ TAST Code
(4) Quaternionic Code
- Principle
- 2×2 Quaternionic Code
- Cyclic Division Algebras
- $M \times M$ Quaternionic Code
- Examples of Quaternionic Codes
- Capacity of MIMO Scheme with STBC
(5) Perfect Codes
- Principle
- 2×2 Perfect code
- $M \times M$ Perfect Codes
- Examples of Perfect Codes

Principle of DAST Codes

- DAST codes are Diagonal Algebraic Space Time Code designed for MIMO system with M transmit antennas and 1 receive antenna, that have :
- full rate of 1 sym/cu
- full diversity of M

Principle of DAST Codes

- DAST codes are Diagonal Algebraic Space Time Code designed for MIMO system with M transmit antennas and 1 receive antenna, that have :
- full rate of 1 sym/cu
- full diversity of M
- The Construction is based on unitary matrices constructed using number fields.
- Two steps of the construction:
- Construction of an optimal unitary matrix of dimension M having the maximal diversity
- Using Hadamard transformation to multiplex information symbols in space and in time.
- The construction is available for $M=2$ and M multiple of 4 .

2×2 DAST Code : unitary matrix construction

$$
K=\mathbb{Q}\left(e^{\frac{i \pi}{4}}\right) \text { number filed of degree } 2 \text { over } \mathbb{Q}(i)
$$

- The minimum polynomial of $\theta=e^{\frac{i \pi}{4}}$ is $\mu_{\theta}(x)=X^{2}-i$, its conjugate is $\bar{\theta}=-e^{\frac{i \pi}{4}}$.
- $B=(1, \theta)$ is the integral basis of K, each element x of K can be written as $x=a+b \theta, a, b \in \mathbb{Q}(i)$.
- Let $\sigma: \theta \mapsto-\theta$ be the generator of the Galois group of K
- Canonical embedding of K in \mathbb{C}^{2} is :

$$
\begin{aligned}
\sigma: \quad K & \longmapsto \mathbb{C}^{2} \\
x & \longrightarrow(x, \sigma(x))
\end{aligned}
$$

- The lattice $\Lambda=\sigma\left(\mathcal{O}_{K}\right)$, where \mathcal{O}_{K} the ring of integers $\mathcal{O}_{K}=\{a+b \theta, a, b \in \mathbb{Z}[i]\}$, have as generator matrix:

$$
\mathbf{R}=\left[\begin{array}{ll}
1 & 1 \\
\theta & \bar{\theta}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
e^{\frac{i \pi}{4}} & -e^{\frac{i \pi}{4}}
\end{array}\right]
$$

- $\mathbf{R}^{\prime}=\frac{1}{\sqrt{2}} \mathbf{R}$ is a unitary matrix of dimension 2 .

2×2 DAST : Code construction (1)

- First Step :
- Let $\mathbf{s}=\left(a_{1}, a_{2}\right)^{T}$ be the QAM information symbol vector
- Vector \mathbf{x} obtained by the rotation of vector \mathbf{s} by \mathbf{R}^{\prime} is :

$$
\mathbf{x}=\mathbf{R}^{\prime} \cdot \mathbf{s}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & \theta \\
1 & -\theta
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
a_{1}+\theta a_{2} \\
a_{1}-\theta a_{2}
\end{array}\right]
$$

- This operation alloaws to increase the algebraic dimension of the constellation, as K is a vector space of dimension 2 over $\mathbb{Q}(i)$.

2×2 DAST : Code construction (1)

- First Step :
- Let $\mathbf{s}=\left(a_{1}, a_{2}\right)^{T}$ be the QAM information symbol vector
- Vector \mathbf{x} obtained by the rotation of vector \mathbf{s} by \mathbf{R}^{\prime} is :

$$
\mathbf{x}=\mathbf{R}^{\prime} \cdot \mathbf{s}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & \theta \\
1 & -\theta
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
a_{1}+\theta a_{2} \\
a_{1}-\theta a_{2}
\end{array}\right]
$$

- This operation alloaws to increase the algebraic dimension of the constellation, as K is a vector space of dimension 2 over $\mathbb{Q}(i)$.
- The DAST codeword can be written in this form :

$$
\mathbf{X}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
a_{1}+\theta a_{2} & 0 \\
0 & a_{1}-\theta a_{2}
\end{array}\right]
$$

2×2 DAST : Code construction (2)

- Second step :
- Hadamard matrix in dimension 2, verify $H_{2}^{T} \cdot H_{2}=2 \mathbf{l}_{2}$ is :

$$
\mathbf{H}_{2}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

- A better balanced DAST codeword is :

$$
\mathbf{X}=\mathbf{H}_{2} \cdot \operatorname{diag}(\mathbf{x})=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
a_{1}+\theta a_{2} & -\left(a_{1}-\theta a_{2}\right) \\
a_{1}+\theta a_{2} & a_{1}-\theta a_{2}
\end{array}\right]
$$

- The coding gain is :

$$
\delta(C)=\frac{1}{2} \min _{a_{1} \neq a_{2} \neq 0 \in S}\left(N_{K / \mathbb{Q}}\left(a_{1}+\theta a_{2}\right)\right) \neq 0
$$

$M \times M$ DAST : Code construction

- For MIMO System with $M=T$ multiple of 4 and $N=1$.
- Construct an optimal unitary matrix of dimension M.
- Take $\mathbf{s}=\left(a_{1}, a_{2}, \ldots, a_{M}\right)^{T}$ QAM information symbol vector
- \mathbf{H}_{M} is the Hadamard matrix in dimension M.
- The codeword matrix is :

$$
\mathbf{X}=\mathbf{H}_{M} \cdot \operatorname{diag}(\mathbf{R} \cdot \mathbf{s})
$$

(1) Introduction

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code

2 Diagonal Algebraic STBC

- Principle
- 2×2 DAST Code
- $M \times M$ DAST Code

(3) Threaded Algebraic STBC

- Principle
- 2×2 TAST Code
- $M \times M$ TAST Code
(4) Quaternionic Code
- Principle
- 2×2 Quaternionic Code
- Cyclic Division Algebras
- $M \times M$ Quaternionic Code
- Examples of Quaternionic Codes
- Capacity of MIMO Scheme with STBC
(5) Perfect Codes
- Principle
- 2×2 Perfect code
- $M \times M$ Perfect Codes
- Examples of Perfect Codes

Principle of TAST Codes

- TAST codes are Threaded Algebraic STBC designed for MIMO system with M transmit antennas and $N \geq M$, which have :
- Full rate of M symbols/c.u
- Full diversity of $M \cdot N$.

Principle of TAST Codes

- TAST codes are Threaded Algebraic STBC designed for MIMO system with M transmit antennas and $N \geq M$, which have :
- Full rate of M symbols/c.u
- Full diversity of $M \cdot N$.
- The idea is to design layered architecture code and to associate to each layer an algebraic sub-space (DAST Code), such that the layers are transparent to each others.
- An example of optimal layered architecture is :

2×2 TAST : Code construction

- We consider a MIMO system with $M=N=T=2$
- $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ is the QAM information symbol vector.
- $\theta=\exp (i \lambda)$ with $\lambda \in \mathbb{R}$, and $\phi^{2}=\theta$.
- A 2×2 DAST code is associated to each layer, and the two layers are separated by the parameter ϕ.

2×2 TAST : Code construction

- We consider a MIMO system with $M=N=T=2$
- $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ is the QAM information symbol vector.
- $\theta=\exp (i \lambda)$ with $\lambda \in \mathbb{R}$, and $\phi^{2}=\theta$.
- A 2×2 DAST code is associated to each layer, and the two layers are separated by the parameter ϕ.
- The codeword is:

$$
\mathbf{X}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
a_{1}+\theta a_{2} & \phi\left(a_{3}+\theta a_{4}\right) \\
\phi\left(a_{3}-\theta a_{4}\right) & a_{1}-\theta a_{2}
\end{array}\right]
$$

- The coding gain is equal to : $\delta(C)=\frac{1}{2} \min \left(a_{1}^{2}-a_{3}^{2} \theta-a_{2}^{2} \theta^{2}+a_{4}^{2} \theta^{3}\right)$.

2×2 TAST : Code construction

- We consider a MIMO system with $M=N=T=2$
- $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ is the QAM information symbol vector.
- $\theta=\exp (i \lambda)$ with $\lambda \in \mathbb{R}$, and $\phi^{2}=\theta$.
- A 2×2 DAST code is associated to each layer, and the two layers are separated by the parameter ϕ.
- The codeword is:

$$
\mathbf{X}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
a_{1}+\theta a_{2} & \phi\left(a_{3}+\theta a_{4}\right) \\
\phi\left(a_{3}-\theta a_{4}\right) & a_{1}-\theta a_{2}
\end{array}\right]
$$

- The coding gain is equal to : $\delta(C)=\frac{1}{2} \min \left(a_{1}^{2}-a_{3}^{2} \theta-a_{2}^{2} \theta^{2}+a_{4}^{2} \theta^{3}\right)$.
- Choice of θ :
- To satisfy the rank criterion and so insure the full diversty, θ have to be choosing such that $\delta(C) \neq 0$.
- Also, θ have be to be choosing to maximise $\delta(C)$ for a fixed constellation size.
- θ could be an either algebraic or a transcendant number.

2×2 TAST Code : Coding Gain

- If θ is an algebraic number of degree 2 over $\mathbb{Q}(i)$, for example $\theta=e^{i \frac{\pi}{4}}$. As θ is not a norm of an element in \mathcal{O}_{K}, then :

$$
\delta(C)=\frac{1}{2} \min \left(N_{K / \mathbb{Q}(i)}\left(x_{1}\right)-\theta N\left(x_{2}\right)_{K / \mathbb{Q}(i)}\right) \neq 0
$$

where $x_{1}=a_{1}+a_{2} \theta$ and $x_{2}=a_{3}+a_{4} \theta$.

2×2 TAST Code : Coding Gain

- If θ is an algebraic number of degree 2 over $\mathbb{Q}(i)$, for example $\theta=e^{i \frac{\pi}{4}}$. As θ is not a norm of an element in \mathcal{O}_{K}, then :

$$
\delta(C)=\frac{1}{2} \min \left(N_{K / \mathbb{Q}(i)}\left(x_{1}\right)-\theta N\left(x_{2}\right)_{K / \mathbb{Q}(i)}\right) \neq 0
$$

where $x_{1}=a_{1}+a_{2} \theta$ and $x_{2}=a_{3}+a_{4} \theta$.

- If $\theta=e^{i \lambda}$ is transcendant, it is proved using Diophantine approximation that $\delta(C) \neq 0$. The values of λ maximizing the coding gain for a fixed constellation are obtained by numerical optimisation.

2×2 TAST Code : Coding Gain

- If θ is an algebraic number of degree 2 over $\mathbb{Q}(i)$, for example $\theta=e^{i \frac{\pi}{4}}$. As θ is not a norm of an element in \mathcal{O}_{K}, then :

$$
\delta(C)=\frac{1}{2} \min \left(N_{K / \mathbb{Q}(i)}\left(x_{1}\right)-\theta N\left(x_{2}\right)_{K / \mathbb{Q}(i)}\right) \neq 0
$$

where $x_{1}=a_{1}+a_{2} \theta$ and $x_{2}=a_{3}+a_{4} \theta$.

- If $\theta=e^{i \lambda}$ is transcendant, it is proved using Diophantine approximation that $\delta(C) \neq 0$. The values of λ maximizing the coding gain for a fixed constellation are obtained by numerical optimisation.
- For both cases the coding gain takes its values in \mathbb{R}.

2×2 TAST Code : Coding Gain

- If θ is an algebraic number of degree 2 over $\mathbb{Q}(i)$, for example $\theta=e^{i \frac{\pi}{4}}$. As θ is not a norm of an element in \mathcal{O}_{K}, then :

$$
\delta(C)=\frac{1}{2} \min \left(N_{K / \mathbb{Q}(i)}\left(x_{1}\right)-\theta N\left(x_{2}\right)_{K / \mathbb{Q}(i)}\right) \neq 0
$$

where $x_{1}=a_{1}+a_{2} \theta$ and $x_{2}=a_{3}+a_{4} \theta$.

- If $\theta=e^{i \lambda}$ is transcendant, it is proved using Diophantine approximation that $\delta(C) \neq 0$. The values of λ maximizing the coding gain for a fixed constellation are obtained by numerical optimisation.
- For both cases the coding gain takes its values in \mathbb{R}.
- Numerical optimisations lead to the values of λ giving the best coding gain

	$e^{i \frac{\pi}{8}}$	$e^{\frac{1}{2}}$	$e^{i 0.448}$	$e^{i \frac{\pi}{4}}$
4-QAM	0.1304	0.2369	-	0.0858
16-QAM	0.059	0.0367	0.1397	0.0272

- The coding gain decreases when constellation size increases : Vanishing Determinant

$M \times M$ TAST : Code construction

- Let $K=\mathbb{Q}(i, \theta)$ be a cyclic extension of $\mathbb{Q}(i)$ of degree M, with $\theta=\exp \left(\frac{i \Pi}{2 M}\right)$.
- $B=\left(1, \theta, \ldots, \theta^{M-1}\right)$ is an integral basis of K.
- K is a number field, unitary matrix \mathbf{R} is obtained by canonical embedding of B in \mathbb{C}^{M} :

$$
\mathbf{R}=\frac{1}{\sqrt{M}}\left[\begin{array}{cccc}
1 & \sigma(\theta) & \cdots & \sigma\left(\theta^{M-1}\right) \\
1 & \sigma^{2}(\theta) & \cdots & \sigma^{2}\left(\theta^{M-1}\right) \\
1 & \vdots & \ddots & \vdots \\
1 & \sigma^{M-1}(\theta) & \cdots & \sigma^{M-1}\left(\theta^{M-1}\right)
\end{array}\right]
$$

- Let $\left(a_{1}, \ldots, a_{M^{2}}\right)$ be the QAM information symbol vector, divided in M vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{M}}$ of length M, and ϕ such that $\phi^{M}=\theta$.
- Construction of vectors $\beta_{1}, \ldots, \beta_{n_{t}}, \beta_{i}=$ R.vi .
- Matrix codeword is :

$$
\mathbf{X}=\left(\phi^{|j-i|} \beta_{i,|j-i+1|}\right)_{1 \leq i, j \leq M}
$$

(1) Introduction

- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code
(2) Diagonal Algebraic STBC
- Principle
- 2×2 DAST Code
- $M \times M$ DAST Code
(.) Threaded Algebraic STBC
- Principle
- 2×2 TAST Code
- $M \times M$ TAST Code

4) Quaternionic Code

- Principle
- 2×2 Quaternionic Code
- Cyclic Division Algebras
- $M \times M$ Quaternionic Code
- Examples of Quaternionic Codes
- Capacity of MIMO Scheme with STEC
(5) Perfect Codes
- Principle
- 2×2 Perfect code
- $M \times M$ Perfect Codes
- Examples of Perfect Codes

Principle of Quaternionic Codes

Quaternionic codes are STBC designed for MIMO systems with M transmit antenans and $N \geq M$ receive antennas, that have :

- Full rate : M symbols/c.u (q-QAM or q-HEX information symbols)
- Full diversity : diversity order $M \cdot N$
- Non-Vanishing Determinants (NVD) when spectral efficiency increases

For that we use Cyclic Division Algebras with center $L=\mathbb{Q}(i)$ or $L=\mathbb{Q}(j)$

2×2 Quaternionic : code construction (1)

- 2×2 Quaternionic code construction based on 2×2 TAST code
- $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ QAM information symbol vector
- $\theta=\exp \left(\frac{i \pi}{4}\right)$
- $\gamma \in K=\mathbb{Q}\left(e^{\frac{i \pi}{4}}\right)$ the parameter used to separate the two layers
- The codeword is:

$$
\mathbf{X}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
a_{1}+\theta a_{2} & \left(a_{3}+\theta a_{4}\right) \\
\gamma\left(a_{3}-\theta a_{4}\right) & a_{1}-\theta a_{2}
\end{array}\right]
$$

- The coding gain is equal to : $\delta(C)=\frac{1}{2} \min \left(N_{K / \mathbb{Q}(i)}\left(x_{1}\right)-\gamma N\left(x_{2}\right)_{K / \mathbb{Q}(i)}\right)$

2×2 Quaternionic : code construction (1)

- 2×2 Quaternionic code construction based on 2×2 TAST code
- $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ QAM information symbol vector
- $\theta=\exp \left(\frac{i \pi}{4}\right)$
- $\gamma \in K=\mathbb{Q}\left(e^{\frac{i \pi}{4}}\right)$ the parameter used to separate the two layers
- The codeword is:

$$
\mathbf{X}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
a_{1}+\theta a_{2} & \left(a_{3}+\theta a_{4}\right) \\
\gamma\left(a_{3}-\theta a_{4}\right) & a_{1}-\theta a_{2}
\end{array}\right]
$$

- The coding gain is equal to : $\delta(C)=\frac{1}{2} \min \left(N_{K / \mathbb{Q}(i)}\left(x_{1}\right)-\gamma N\left(x_{2}\right)_{K / \mathbb{Q}(i)}\right)$
- Choice of γ :

$$
\begin{cases}\delta(C) \neq 0 & \Rightarrow \gamma \notin N\left(K^{*}\right) \\ \text { For non-vanishing determinant } & \Rightarrow \delta(C) \in \mathbb{Z}[i] \Rightarrow \gamma \in \mathbb{Z}[i]\end{cases}
$$

2×2 Quaternionic : code construction (1)

- 2×2 Quaternionic code construction based on 2×2 TAST code
- $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ QAM information symbol vector
- $\theta=\exp \left(\frac{i \pi}{4}\right)$
- $\gamma \in K=\mathbb{Q}\left(e^{\frac{i \pi}{4}}\right)$ the parameter used to separate the two layers
- The codeword is:

$$
\mathbf{X}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
a_{1}+\theta a_{2} & \left(a_{3}+\theta a_{4}\right) \\
\gamma\left(a_{3}-\theta a_{4}\right) & a_{1}-\theta a_{2}
\end{array}\right]
$$

- The coding gain is equal to : $\delta(C)=\frac{1}{2} \min \left(N_{K / \mathbb{Q}(i)}\left(x_{1}\right)-\gamma N\left(x_{2}\right)_{K / \mathbb{Q}(i)}\right)$
- Choice of γ :

$$
\begin{cases}\delta(C) \neq 0 & \Rightarrow \gamma \notin N\left(K^{*}\right) \\ \text { For non-vanishing determinant } & \Rightarrow \delta(C) \in \mathbb{Z}[i] \Rightarrow \gamma \in \mathbb{Z}[i]\end{cases}
$$

- We use ideal factorization :

$$
5 \mathbb{Z}[i]=(2+i)(2-i)
$$

The Ideal $(2+i)$ is a prime principal ideal, then taking $\gamma=2+i$ is a solution.

2×2 Quaternionic : Code construction (2)

- Codeword of the 2×2 Quaternionic Code is :

$$
\mathbf{X}=\left[\begin{array}{cc}
a_{1}+a_{2} \theta & a_{3}+a_{4} \theta \\
(2+i)\left(a_{3}-a_{4} \theta\right) & a_{1}-a_{2} \theta
\end{array}\right]
$$

- Coding gain:

$$
\delta(C)=\boldsymbol{\operatorname { m i n }}\left(N_{K / \mathbb{Q}(i)}\left(a_{1}+a_{2} \theta\right)-(2+i) N_{K / \mathbb{Q}(i)}\left(a_{3}+a_{4} \theta\right)\right) \in \mathbb{Z}[i]=1
$$

2×2 Quaternionic: Code construction (2)

- Codeword of the 2×2 Quaternionic Code is :

$$
\mathbf{X}=\left[\begin{array}{cc}
a_{1}+a_{2} \theta & a_{3}+a_{4} \theta \\
(2+i)\left(a_{3}-a_{4} \theta\right) & a_{1}-a_{2} \theta
\end{array}\right]
$$

- Coding gain:

$$
\delta(C)=\min \left(N_{K / \mathbb{Q}(i)}\left(a_{1}+a_{2} \theta\right)-(2+i) N_{K / \mathbb{Q}(i)}\left(a_{3}+a_{4} \theta\right)\right) \in \mathbb{Z}[i]=1
$$

- Let $\mathcal{A}=(K / L, \sigma, \gamma)$ be the Quaternion algebra $D_{i, \gamma}(L)$, where $L=\mathbb{Q}(i)$ is the base field (q-QAM information symbols), $K=\mathbb{Q}\left(e^{\frac{i \pi}{4}}\right)$ cyclotomic extension, with $\theta=e^{\frac{i \pi}{4}}$, and $\sigma: \theta \mapsto-\theta$ the generator of the Galois group of K.
- The Quaternionic code C is a finite subset of $D_{i, \gamma}(L)$

2×2 Quaternionic Code : performance

Cyclic Division Algebras (1)

- Let K be a cyclic extension of $L(\mathbb{Q}(i)$ or $\mathbb{Q}(j))$ of degree M, with Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle$
- $\mathcal{A}=(K / L, \sigma, \gamma)$ is a cyclic algebra of degree M iff

$$
\mathcal{A}=1 . K \oplus e . K \oplus \cdots \oplus e^{M-1} . K
$$

$e \in \mathcal{A}$ such that $e^{M}=\gamma \in L$ and $x \cdot e=e \cdot \sigma(x)$.

Cyclic Division Algebras (1)

- Let K be a cyclic extension of $L(\mathbb{Q}(i)$ or $\mathbb{Q}(j))$ of degree M, with Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle$
- $\mathcal{A}=(K / L, \sigma, \gamma)$ is a cyclic algebra of degree M iff

$$
\mathcal{A}=1 . K \oplus e . K \oplus \cdots \oplus e^{M-1} . K
$$

$e \in \mathcal{A}$ such that $e^{M}=\gamma \in L$ and $x \cdot e=e \cdot \sigma(x)$.

- \mathcal{A} is a cyclic division algebra iff $\gamma, \gamma^{2}, \cdots, \gamma^{M-1}$ are not norms in K^{*}
- Elements of \mathcal{A} have matrix representation
- Non null elements of \mathcal{A} have an inverse
\Rightarrow A Space-Time code can be defined as a finite subset of \mathcal{A}

Cyclic Division Algebras (2)

- To obtain the matrix representation of Algebra elements, we define linear applications $\lambda_{d}: x \in \mathcal{A} \longmapsto d . x, d$ element of \mathcal{A}.
- Example of cyclic division algebra of dimension 2:
- Let $d=k_{1}+e k_{2}$, where k_{1} and k_{2} are element of K.
- $\lambda_{d}(1)=d=k_{1}+e k_{2}$ and $\lambda_{d}(e)=\left(k_{1}+e k_{2}\right) \cdot e=\gamma \sigma\left(k_{2}\right)+e \sigma\left(k_{1}\right)$:
$M_{d}=\left[\begin{array}{cc}k_{1} & k_{2} \\ \gamma \sigma\left(k_{2}\right) & \sigma\left(k_{1}\right)\end{array}\right]=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & \sigma\left(k_{1}\right)\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}k_{2} & 0 \\ 0 & \sigma\left(k_{2}\right)\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ \gamma & 0\end{array}\right]$

Cyclic Division Algebras (2)

- To obtain the matrix representation of Algebra elements, we define linear applications $\lambda_{d}: x \in \mathcal{A} \longmapsto d . x, d$ element of \mathcal{A}.
- Example of cyclic division algebra of dimension 2:
- Let $d=k_{1}+e k_{2}$, where k_{1} and k_{2} are element of K.
- $\lambda_{d}(1)=d=k_{1}+e k_{2}$ and $\lambda_{d}(e)=\left(k_{1}+e k_{2}\right) \cdot e=\gamma \sigma\left(k_{2}\right)+e \sigma\left(k_{1}\right)$:

$$
M_{d}=\left[\begin{array}{cc}
k_{1} & k_{2} \\
\gamma \sigma\left(k_{2}\right) & \sigma\left(k_{1}\right)
\end{array}\right]=\left[\begin{array}{cc}
k_{1} & 0 \\
0 & \sigma\left(k_{1}\right)
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
k_{2} & 0 \\
0 & \sigma\left(k_{2}\right)
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
\gamma & 0
\end{array}\right]
$$

- In dimension M :

$$
M_{d}=M_{k_{1}} I+M_{k_{2}} M_{e}+\cdots+M_{k_{M}} M_{e}^{M-1}
$$

with $M_{e}=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 \\ \gamma & \cdots & 0 & 0\end{array}\right]$ and $M_{k_{i}}=\left[\begin{array}{cccc}k_{i} & \cdots & 0 & 0 \\ \vdots & \sigma\left(k_{i}\right) & & 0 \\ 0 & & \ddots & \vdots \\ 0 & 0 & \cdots & { }^{M-1}\left(k_{i}\right)\end{array}\right]$

$M \times M$ Quaternionic : Code construction

(1) Choice of base field : $L=\mathbb{Q}(i)$ (q-QAM constellations) or $L=\mathbb{Q}(j)$ (q-HEX constellations)

$M \times M$ Quaternionic : Code construction

(1) Choice of base field : $L=\mathbb{Q}(i)$ (q-QAM constellations) or $L=\mathbb{Q}(j)$ (q-HEX constellations)
(1) Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle$

$M \times M$ Quaternionic: Code construction

(1) Choice of base field : $L=\mathbb{Q}(i)$ (q-QAM constellations) or $L=\mathbb{Q}(j)$ (q-HEX constellations)
(1) Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle$
(1) Definition of the cyclic algebra : $\mathcal{A}=(K / L, \sigma, \gamma)$ is a cyclic algebra of degree M

$M \times M$ Quaternionic : Code construction

(1) Choice of base field : $L=\mathbb{Q}(i)$ (q-QAM constellations) or $L=\mathbb{Q}(j)$ (q-HEX constellations)
(1) Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle$
(1) Definition of the cyclic algebra : $\mathcal{A}=(K / L, \sigma, \gamma)$ is a cyclic algebra of degree M
(1) Choice of γ :

$$
\left\{\begin{array}{l}
\text { For non-vanishing determinants } \rightarrow \gamma \in \mathcal{O}_{L} \\
\mathcal{A} \text { be cyclic division algebra } \rightarrow \gamma, \cdots \gamma^{M-1} \notin N\left(K^{*}\right)
\end{array}\right.
$$

$M \times M$ Quaternionic: Code construction

(1) Choice of base field : $L=\mathbb{Q}(i)$ (q-QAM constellations) or $L=\mathbb{Q}(j)$ (q-HEX constellations)
(1) Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle$
(1) Definition of the cyclic algebra : $\mathcal{A}=(K / L, \sigma, \gamma)$ is a cyclic algebra of degree M
(1) Choice of γ :

$$
\left\{\begin{array}{l}
\text { For non-vanishing determinants } \rightarrow \gamma \in \mathcal{O}_{L} \\
\mathcal{A} \text { be cyclic division algebra } \rightarrow \gamma, \cdots \gamma^{M-1} \notin N\left(K^{*}\right)
\end{array}\right.
$$

(1) Construction of the ST code : the Quaternionic code is a finite subset of \mathcal{A}

$$
\mathbf{X}=\left[\begin{array}{cccc}
\sum_{i=1}^{M} a_{1, i} v_{i} & \sum_{i=1}^{M} a_{2, i} v_{i} & \cdots & \sum_{i=1}^{M} a_{M, i} v_{i} \\
\gamma \sigma\left(\sum_{i=1}^{M} a_{M, i} v_{i}\right) & \sigma\left(\sum_{i=1}^{M} a_{1, i} v_{i}\right) & \cdots & \sigma\left(\sum_{i=1}^{M} a_{M-1, i} v_{i}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\gamma \sigma^{M-1}\left(\sum_{i=1}^{M} a_{2, i} v_{i}\right) & \gamma \sigma^{M-1}\left(\sum_{i=1}^{M} a_{3, i} v_{i}\right) & \cdots & \sigma^{M-1}\left(\sum_{i=1}^{M} a_{1, i} v_{i}\right)
\end{array}\right]
$$

$M \times M$ Quaternionic : code construction Validation

- Full rate : M symbols/c.u.
- Full diversity : $M \cdot N$
- Non Vanishing Determinant :
- We have $\gamma \in \mathcal{O}_{L}$, and $a_{i, j} \in \mathcal{O}_{L}$ then $\sigma^{\prime}\left(s_{i, j}\right) \in \mathcal{O}_{K} \Rightarrow \operatorname{det}(\mathbf{X}) \in \mathcal{O}_{K}$
- $\mathcal{A}=(K / L, \sigma, \gamma)$ is a cyclic division algebra, the reduced norm of an element of A (which is the determinant of X) belongs to L.

$$
\operatorname{det}(\mathbf{X}) \in \mathcal{O}_{K} \cap L=\mathcal{O}_{L}
$$

- To obtain a discrete determinant : $\mathcal{O}_{L}=\mathbb{Z}[i]$ or $\mathbb{Z}[j]$.

3×3 Quaternionic Code

- $L=\mathbb{Q}(j), K=\mathbb{Q}\left(e^{\frac{i 2 \pi}{9}}\right), \theta=e^{\frac{i 2 \pi}{9}}, \sigma: \theta \mapsto j \theta$ and $\gamma=3+j$
- Quaternionic code 3×3 is a subset of the cyclic division algebra of degree 3 , $\mathcal{A}=(K / L, \sigma, \gamma)$.

4×4 Quaternionic Code

- $L=\mathbb{Q}(i), K=\mathbb{Q}\left(e^{\frac{i \pi}{16}}\right), \theta=e^{\frac{i \pi}{16}}, \sigma: \theta \mapsto i \theta$ and $\gamma=2+i$
- Quaternionic code 4×4 is a subset of the cyclic division algebra of degree $4 \mathcal{A}=(K / L, \sigma, \gamma)$

Quaternionic Code : Achieved capacity

- The instantaneous MIMO channel capacity is :

$$
C(\mathbf{H})=\log _{2} \operatorname{det}\left(\mathbf{I}_{N}+\frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H H}^{\dagger}\right)
$$

Quaternionic Code : Achieved capacity

- The instantaneous MIMO channel capacity is :

$$
C(\mathbf{H})=\log _{2} \operatorname{det}\left(\mathbf{I}_{N}+\frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H} \mathbf{H}^{\dagger}\right)
$$

- The instantaneous Channel capacity using STBC is :

$$
C_{\text {code }}(\mathbf{H})=\frac{1}{M} \log _{2} \operatorname{det}\left(\mathbf{I}_{N . T}+\frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H}_{1} \Phi \Phi^{\dagger} \mathbf{H}_{1}^{\dagger}\right)
$$

- Example of 2×2 Quaternionic Code : the vectorisation of received signal, and isolation of information symbols lead to :

$$
\begin{aligned}
\mathbf{y} & =\frac{1}{\sqrt{5}} \cdot\left[\begin{array}{cc}
\mathbf{H} & 0 \\
0 & \mathbf{H}
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & \theta & 0 & 0 \\
0 & 0 & 1 & \theta \\
0 & 0 & \gamma & -\gamma \theta \\
1 & -\theta & 0 & 0
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]+\mathbf{w} \\
& =\frac{1}{\sqrt{5}} \cdot \mathbf{H}_{\mathbf{1}} \cdot \mathbf{\Phi} \cdot \mathbf{s}+\mathbf{w}
\end{aligned}
$$

Quaternionic Code : Achieved capacity

- The instantaneous MIMO channel capacity is :

$$
C(\mathbf{H})=\log _{2} \operatorname{det}\left(\mathbf{I}_{N}+\frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H} \mathbf{H}^{\dagger}\right)
$$

- The instantaneous Channel capacity using STBC is :

$$
C_{\text {code }}(\mathbf{H})=\frac{1}{M} \log _{2} \operatorname{det}\left(\mathbf{I}_{N . T}+\frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H}_{1} \Phi \Phi^{\dagger} \mathbf{H}_{1}^{\dagger}\right)
$$

- Example of 2×2 Quaternionic Code : the vectorisation of received signal, and isolation of information symbols lead to :

$$
\begin{aligned}
\mathbf{y} & =\frac{1}{\sqrt{5}} \cdot\left[\begin{array}{cc}
\mathbf{H} & 0 \\
0 & \mathbf{H}
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & \theta & 0 & 0 \\
0 & 0 & 1 & \theta \\
0 & 0 & \gamma & -\gamma \theta \\
1 & -\theta & 0 & 0
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]+\mathbf{w} \\
& =\frac{1}{\sqrt{5}} \cdot \mathbf{H}_{\mathbf{1}} \cdot \mathbf{\Phi} \cdot \mathbf{s}+\mathbf{w}
\end{aligned}
$$

- The code is information lossless if $C_{\text {code }}(\mathbf{H})=C(\mathbf{H})$, which is achieved if matrix Φ is unitary.

Quaternionic Code : Achieved capacity

- The instantaneous MIMO channel capacity is :

$$
C(\mathbf{H})=\log _{2} \operatorname{det}\left(\mathbf{I}_{N}+\frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H} \mathbf{H}^{\dagger}\right)
$$

- The instantaneous Channel capacity using STBC is :

$$
C_{\text {code }}(\mathbf{H})=\frac{1}{M} \log _{2} \operatorname{det}\left(\mathbf{I}_{N . T}+\frac{\mathrm{SNR}}{\mathrm{M}} \mathbf{H}_{1} \Phi \Phi^{\dagger} \mathbf{H}_{1}^{\dagger}\right)
$$

- Example of 2×2 Quaternionic Code : the vectorisation of received signal, and isolation of information symbols lead to :

$$
\begin{aligned}
\mathbf{y} & =\frac{1}{\sqrt{5}} \cdot\left[\begin{array}{cc}
\mathbf{H} & 0 \\
0 & \mathbf{H}
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & \theta & 0 & 0 \\
0 & 0 & 1 & \theta \\
0 & 0 & \gamma & -\gamma \theta \\
1 & -\theta & 0 & 0
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]+\mathbf{w} \\
& =\frac{1}{\sqrt{5}} \cdot \mathbf{H}_{\mathbf{1}} \cdot \mathbf{\Phi} \cdot \mathbf{s}+\mathbf{w}
\end{aligned}
$$

- The code is information lossless if $C_{\text {code }}(\mathbf{H})=C(\mathbf{H})$, which is achieved if matrix Φ is unitary.
- Unfortunately, Quaternionic codes are not information lossless, which explain their bad performances.
(7) Introduction
- Transmission Scheme
- STBC Design Criteria
- Limitations of SM Scheme and Alamouti Code
(2) Diagonal Algebraic STBC
- Principle
- 2×2 DAST Code
- $M \times M$ DAST Code
(3) Threaded Algebraic STBC
- Principle
- 2×2 TAST Code
- $M \times M$ TAST Code
(4) Quaternionic Code
- Principle
- 2×2 Quaternionic Code
- Cyclic Division Algebras
- $M \times M$ Quaternionic Code
- Examples of Quaternionic Codes
- Capacity of MIMO Scheme with STBC
(5) Perfect Codes
- Principle
- 2×2 Perfect code
- $M \times M$ Perfect Codes
- Examples of Perfect Codes

Principle of Perfect code

Perfect codes are STBC designed for MIMO systems with M transmit antenans and $N \geq M$ receive antennas, that have :

- Full rate (M symbols/c.u)
- Full diversity $(M \cdot N)$
- Non-Vanishing Determinants when the spectral efficiency increases
- Energy efficiency
- Uniform energy distribution : the same average energy is transmitted by each antenna at each instant time
- No shaping loss : the transmitted constellations have no shaping loss compared to signal constellation \rightarrow Exploit the layered structure of the code constructed from division algebras: transmit on each layer a rotated version of $\mathbb{Z}[i]^{M}$ or A_{2}^{M}

2×2 Perfect Code construction (1)

- Base field : $L=\mathbb{Q}(i)$ (q-QAM information symbols)
- Cyclic extension : let $\theta=\frac{1+\sqrt{5}}{2}$. Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle, \sigma: \theta \mapsto \bar{\theta}=\frac{1-\sqrt{5}}{2}$

2×2 Perfect Code construction (1)

- Base field : $L=\mathbb{Q}(i)$ (q-QAM information symbols)
- Cyclic extension : let $\theta=\frac{1+\sqrt{5}}{2}$. Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle, \sigma: \theta \mapsto \bar{\theta}=\frac{1-\sqrt{5}}{2}$

- As $\Lambda\left(\mathcal{O}_{K}\right)$ is not a rotated version of $\mathbb{Z}[i]^{2}$ we have to find an ideal \mathcal{I} of \mathcal{O}_{K} such that the lattice $\Lambda(\mathcal{I})$ is a rotated version of $\mathbb{Z}[i]^{2}$

$$
\Rightarrow \mathcal{I}=(\alpha) \mathcal{O}_{\mathcal{K}}=(1+i-i \theta) \mathcal{O}_{K}
$$

2×2 Perfect Code construction (1)

- Base field : $L=\mathbb{Q}(i)$ (q-QAM information symbols)
- Cyclic extension : let $\theta=\frac{1+\sqrt{5}}{2}$. Galois group $\mathcal{G}_{K / L}=\langle\sigma\rangle, \sigma: \theta \mapsto \bar{\theta}=\frac{1-\sqrt{5}}{2}$

- As $\Lambda\left(\mathcal{O}_{K}\right)$ is not a rotated version of $\mathbb{Z}[i]^{2}$ we have to find an ideal \mathcal{I} of \mathcal{O}_{K} such that the lattice $\Lambda(\mathcal{I})$ is a rotated version of $\mathbb{Z}[i]^{2}$

$$
\Rightarrow \mathcal{I}=(\alpha) \mathcal{O}_{\mathcal{K}}=(1+i-i \theta) \mathcal{O}_{K}
$$

- Choice of γ :

$$
\left\{\begin{array}{l}
\text { For non-vanishing determinants } \rightarrow \gamma \in \mathcal{O}_{L} \\
\text { For uniform energy distribution } \rightarrow|\gamma|=1 \\
\mathcal{A}=(K / L, \sigma, \gamma) \text { cyclic division algebra } \rightarrow \gamma \notin N\left(\mathbb{K}^{*}\right)
\end{array} \Rightarrow \text { Solution } \gamma=\mathbf{i}\right.
$$

2×2 Perfect Code construction (2)

- 2×2 perfect code is a finite subset of the cyclic division algebra of degree $2, \mathcal{A}=(K / L, \sigma, \gamma)$.

$$
\mathbf{X}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
\alpha\left(s_{1}+\theta s_{2}\right) & 0 \\
0 & \bar{\alpha}\left(s_{1}+\bar{\theta} s_{2}\right)
\end{array}\right] \mathbf{I}_{2}+\left[\begin{array}{cc}
\alpha\left(s_{3}+\theta s_{4}\right) & 0 \\
0 & \bar{\alpha}\left(s_{3}+\bar{\theta} s_{4}\right)
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
\gamma & 0
\end{array}\right]
$$

- The codeword is :

$$
\mathbf{X}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
\alpha\left(s_{1}+\theta s_{2}\right) & \alpha\left(s_{3}+\theta s_{4}\right) \\
i \bar{\alpha}\left(s_{3}+\bar{\theta} s_{4}\right) & \bar{\alpha}\left(s_{1}+\bar{\theta} s_{2}\right)
\end{array}\right]
$$

2×2 Perfect Code construction (2)

- 2×2 perfect code is a finite subset of the cyclic division algebra of degree $2, \mathcal{A}=(K / L, \sigma, \gamma)$.

$$
\mathbf{X}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
\alpha\left(s_{1}+\theta s_{2}\right) & 0 \\
0 & \bar{\alpha}\left(s_{1}+\bar{\theta} s_{2}\right)
\end{array}\right] \mathbf{I}_{2}+\left[\begin{array}{cc}
\alpha\left(s_{3}+\theta s_{4}\right) & 0 \\
0 & \bar{\alpha}\left(s_{3}+\bar{\theta} s_{4}\right)
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
\gamma & 0
\end{array}\right]
$$

- The codeword is :

$$
\mathbf{X}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
\alpha\left(s_{1}+\theta s_{2}\right) & \alpha\left(s_{3}+\theta s_{4}\right) \\
i \bar{\alpha}\left(s_{3}+\bar{\theta} s_{4}\right) & \bar{\alpha}\left(s_{1}+\bar{\theta} s_{2}\right)
\end{array}\right]
$$

- 2×2 Perfect Code is called the Golden Code
- The Coding gain :

$$
\delta(C)=\frac{1}{5^{2}}\left|N_{K / L}(\alpha)\right|^{2}=\frac{1}{5} N_{K / \mathbb{Q}}(\alpha)=\frac{1}{5}
$$

Determinant distributions

Golden code

TAST code 2×2

Golden code performance

$M \times M$ Perfect Code construction

(1) Choice of base field : $L=\mathbb{Q}(i)$ or $L=\mathbb{Q}(j)$
(2) Choice of field extension: K cyclic extension of L of degree M, σ the generator of the Galois group of K
(3) Definition of the cyclic algebra : $\mathcal{A}=(K / L, \sigma, \gamma)$ is a cyclic algebra of degree M
(4) Choice of γ :

$$
\left\{\begin{array}{l}
\text { For non-vanishing determinants } \rightarrow \gamma \in \mathcal{O}_{L} \\
\text { For uniform energy distribution } \rightarrow|\gamma|=1 \\
\mathcal{A} \text { be cyclic division algebra } \rightarrow \gamma, \cdots \gamma^{M-1} \notin N\left(\mathbb{K}^{*}\right)
\end{array}\right.
$$

(6) Choice of the ideal : we must find an ideal \mathcal{I} of \mathcal{O}_{K}, such that the lattice $\Lambda(\mathcal{I})$ is a rotated version of $\mathbb{Z}[i]^{M}$ or A_{2}^{M}.
(6) Construction of the ST code : the ST code is a finite subset of \mathcal{A}.

$M \times M$ Perfect Code construction validation

- Energy Efficiency : Using the prime factorization of the discriminant $d_{K / \mathbb{Q}}=\prod p_{k}^{r_{k}}$, we can find an ideal \mathcal{I} such that the volume of the real lattice $\Lambda^{r}(\mathcal{I})$ is

$$
V\left(\Lambda^{r}(\mathcal{I})\right)=c^{M} \quad \text { or } \quad V\left(\Lambda^{r}(\mathcal{I})\right)=\left(\frac{\sqrt{3}}{2}\right)^{M} c^{M}
$$

- Non Vanishing Determinant : The necessary assumptions needed to establish the proof of NVD for Quaternionic codes are still valid
- if \mathcal{I} is principal :

$$
\delta(C)=N_{K / \mathbb{Q}}(\alpha)=\frac{1}{d_{\mathbb{Q}(\theta)}}
$$

- if \mathcal{I} is not principal :

$$
N(I)=\frac{1}{d_{\mathbb{Q}(\theta)}} \leq \delta(C) \leq \frac{1}{\operatorname{vol}\left(\Lambda^{r}(\mathcal{I})\right)} \min _{x \in \mathcal{I}} N_{K / \mathbb{Q}}(x)
$$

Some Perfect Codes

- 3×3 Perfect code
- $L=\mathbb{Q}(i), K=\mathbb{Q}(i, \theta)$ with $\theta=2 \cos \left(\frac{2 \pi}{15}\right)$
- $\gamma=i$
- $\left.\mathcal{I}=(\alpha)=\left((1-3 i)+i \theta^{2}\right)\right)$
- $\delta_{\text {min }}\left(C_{\infty}\right)=\frac{1}{1125}$
- 4×4 Perfect code
- $L=\mathbb{Q}(j), K=\mathbb{Q}(j, \theta)$ with $\theta=2 \cos \left(\frac{2 \pi}{7}\right)$
- $\gamma=j$
- $\mathcal{I}=(\alpha)=((1+j)+\theta)$
- $\delta_{\min }\left(C_{\infty}\right)=\frac{1}{49}$
- 6×6 Perfect code
- $L=\mathbb{Q}(j), K=\mathbb{Q}(j, \theta)$ with $\theta=2 \cos \left(\frac{\pi}{14}\right)$
- $\gamma=-j$
- I not principal
- $\frac{1}{2^{6} .7^{5}} \leq \delta_{\min }\left(C_{\infty}\right) \leq \frac{1}{2^{6} .7^{4}}$

Hexagonal constellations

3×3 Perfect Code Performance

