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Introduction Transmission Scheme

MIMO Transmission scheme

H
Channel matrix

Transmitted codeword

bits

X Y

Tx

Tx Rx

Rx

Received codeword

Modulation
Space−Time

coding
Decoding DemodulationhijM N

Received signal : YN×T = HN×M .XM×T + WN×T

T (temporal code length) = M

Block fading channel

Perfect channel state information at the receiver (Coherent code)
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Introduction STBC Design Criteria

STBC Design Criteria

[Tarokh et. al.] proposed design criteria to construct good Space-Time Block Codes (STBC)

Let X and T be two distinct codewords and A = X− T. We define B = AHA. The pairwise
error probability for quasi-static Rayleigh channel is asymptotically upper bounded by :

Prob(X → T) ≤
 rY

i=1

λi

!−N
0@ 1

ES
4N0

1ArN

where λi the eigenvalues of B.

Rank criterion : in order to achieve maximum diversity MN, the matrix A must be of maximum
rank M.
Coding Advantage : in order to maximize the coding gain, minc 6=T det(A) must be maximized.
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Introduction Limitations of SM Scheme and Alamouti Code

Limitations of SM Scheme and Alamouti Code

The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and N ≥ M
receive antennas have full rate but not full diversity.

The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have
full rate of 1sym/cu and full diversity of 2.

Full rate and full diversity Orthogonal Space-Time Block codes doesn’t exist for a number of
transmit antenna more than 2, and 1 receive antenna.

The Alamouti code have the full diversity for a MIMO system with 2 transmit and 2 receive
antennas, but is no more full rate.

How to design full rate and full diversity STBC for MIMO system with M transmit antenna and N
receive antennas ?

For that we use Algebraic Tools.
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Diagonal Algebraic STBC Principle

Principle of DAST Codes

DAST codes are Diagonal Algebraic Space Time Code designed for MIMO system with M
transmit antennas and 1 receive antenna, that have :

full rate of 1sym/cu
full diversity of M

The Construction is based on unitary matrices constructed using number fields.

Two steps of the construction:

Construction of an optimal unitary matrix of dimension M having the maximal diversity

Using Hadamard transformation to multiplex information symbols in space and in time.

The construction is available for M = 2 and M multiple of 4.
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Diagonal Algebraic STBC 2 × 2 DAST Code

2× 2 DAST Code : unitary matrix construction

K = Q(e
iπ
4 ) number filed of degree 2 over Q(i).

The minimum polynomial of θ = e
iπ
4 is µθ(x) = X 2 − i , its conjugate is θ = −e

iπ
4 .

B = (1, θ) is the integral basis of K , each element x of K can be written as x = a + bθ, a, b ∈ Q(i).

Let σ : θ 7→ −θ be the generator of the Galois group of K

Canonical embedding of K in C2 is :

σ : K 7−→ C2

x −→ (x, σ(x))

The lattice Λ = σ(OK ), where OK the ring of integers OK = {a + bθ, a, b ∈ Z[i]}, have as generator
matrix:

R =

»
1 1
θ θ̄

–
=

"
1 1

e
iπ
4 −e

iπ
4

#

R′ = 1√
2

R is a unitary matrix of dimension 2.
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Diagonal Algebraic STBC 2 × 2 DAST Code

2× 2 DAST : Code construction (1)

First Step :

Let s = (a1, a2)
T be the QAM information symbol vector

Vector x obtained by the rotation of vector s by R′ is :

x = R′ · s =
1
√

2

»
1 θ
1 −θ

– »
a1
a2

–
=

1
√

2

»
a1 + θa2
a1 − θa2

–
This operation alloaws to increase the algebraic dimension of the constellation, as K is a vector
space of dimension 2 over Q(i).

The DAST codeword can be written in this form :

X =
1
√

2

»
a1 + θa2 0

0 a1 − θa2

–
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Diagonal Algebraic STBC 2 × 2 DAST Code

2× 2 DAST : Code construction (2)

Second step :

Hadamard matrix in dimension 2, verify HT
2 · H2 = 2I2 is :

H2 =

»
1 −1
1 1

–

A better balanced DAST codeword is :
X = H2 · diag(x) =

1
√

2

»
a1 + θa2 −(a1 − θa2)
a1 + θa2 a1 − θa2

–

The coding gain is :

δ(C) =
1
2

min
a1 6=a2 6=0∈S

(NK/Q(a1 + θa2)) 6= 0
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Diagonal Algebraic STBC M × M DAST Code

M ×M DAST : Code construction

For MIMO System with M = T multiple of 4 and N = 1.

Construct an optimal unitary matrix of dimension M.

Take s = (a1, a2, . . . , aM)T QAM information symbol vector

HM is the Hadamard matrix in dimension M.

The codeword matrix is :

X = HM · diag(R · s)
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Threaded Algebraic STBC Principle

Principle of TAST Codes

TAST codes are Threaded Algebraic STBC designed for MIMO system with M transmit
antennas and N ≥ M, which have :

Full rate of M symbols/c.u
Full diversity of M · N.

The idea is to design layered architecture code and to associate to each layer an algebraic
sub-space (DAST Code), such that the layers are transparent to each others.

An example of optimal layered architecture is :

2 3

3

3

3 4

1

1

1

1

2

2

4

4

4

2

3

4

1

2

layer 1

layer 2

layer 3

layer 4
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Threaded Algebraic STBC 2 × 2 TAST Code

2× 2 TAST : Code construction

We consider a MIMO system with M = N = T = 2

a = (a1, a2, a3, a4) is the QAM information symbol vector.

θ = exp(iλ) with λ ∈ R, and φ2 = θ.

A 2× 2 DAST code is associated to each layer, and the two layers are separated by the
parameter φ.

The codeword is:

X =
1
√

2

»
a1 + θa2 φ(a3 + θa4)

φ(a3 − θa4) a1 − θa2

–

The coding gain is equal to : δ(C) = 1
2 min(a2

1 − a2
3θ − a2

2θ2 + a2
4θ3).

Choice of θ:

To satisfy the rank criterion and so insure the full diversty, θ have to be choosing such that δ(C) 6= 0.

Also, θ have be to be choosing to maximise δ(C) for a fixed constellation size.

θ could be an either algebraic or a transcendant number.
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Threaded Algebraic STBC 2 × 2 TAST Code

2× 2 TAST Code : Coding Gain

If θ is an algebraic number of degree 2 over Q(i), for example θ = ei π
4 . As θ is not a norm of

an element in OK , then :

δ(C) =
1
2

min(NK/Q(i)(x1)− θN(x2)K/Q(i)) 6= 0

where x1 = a1 + a2θ and x2 = a3 + a4θ.

If θ = eiλ is transcendant, it is proved using Diophantine approximation that δ(C) 6= 0. The
values of λ maximizing the coding gain for a fixed constellation are obtained by numerical
optimisation.

For both cases the coding gain takes its values in R.

Numerical optimisations lead to the values of λ giving the best coding gain

ei π
8 e

i
2 ei0.448 ei π

4

4-QAM 0.1304 0.2369 - 0.0858
16-QAM 0.059 0.0367 0.1397 0.0272

The coding gain decreases when constellation size increases : Vanishing Determinant
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Threaded Algebraic STBC M × M TAST Code

M ×M TAST : Code construction

Let K = Q(i, θ) be a cyclic extension of Q(i) of degree M, with θ = exp( iΠ
2M ).

B = (1, θ, . . . , θM−1) is an integral basis of K .

K is a number field, unitary matrix R is obtained by canonical embedding of B in CM :

R =
1
√

M

266664
1 σ(θ) . . . σ(θM−1)

1 σ2(θ) . . . σ2(θM−1)

1
...

. . .
...

1 σM−1(θ) . . . σM−1(θM−1)

377775
Let (a1, . . . , aM2 ) be the QAM information symbol vector, divided in M vectors v1, . . . , vM of
length M, and φ such that φM = θ.

Construction of vectors β1, . . . , βnt , βi = R.vi .

Matrix codeword is :
X = (φ|j−i|βi,|j−i+1|)1≤i,j≤M
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Quaternionic Code Principle

Principle of Quaternionic Codes

Quaternionic codes are STBC designed for MIMO systems with M transmit antenans and N≥ M
receive antennas, that have :

Full rate : M symbols/c.u (q-QAM or q-HEX information symbols)

Full diversity : diversity order M · N

Non-Vanishing Determinants (NVD) when spectral efficiency increases

For that we use Cyclic Division Algebras with center L= Q(i) or L = Q(j)

G. Rekaya-Ben Othman Algebraic Space-Time Block Codes Pisa, 17/11/2008 19 / 40



Quaternionic Code 2 × 2 Quaternionic Code

2× 2 Quaternionic : code construction (1)

2× 2 Quaternionic code construction based on 2× 2 TAST code

a = (a1, a2, a3, a4) QAM information symbol vector

θ = exp( iπ
4 )

γ ∈ K = Q(e
iπ
4 ) the parameter used to separate the two layers

The codeword is:

X =
1
√

2

»
a1 + θa2 (a3 + θa4)

γ(a3 − θa4) a1 − θa2

–
The coding gain is equal to : δ(C) = 1

2 min(NK/Q(i)(x1)− γN(x2)K/Q(i))

Choice of γ: (
δ(C) 6= 0 ⇒ γ /∈ N(K∗)

For non-vanishing determinant ⇒ δ(C) ∈ Z[i] ⇒ γ ∈ Z[i]

We use ideal factorization :
5Z[i] = (2 + i)(2− i)

The Ideal (2 + i) is a prime principal ideal, then taking γ = 2 + i is a solution.
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4 ) the parameter used to separate the two layers

The codeword is:

X =
1
√

2

»
a1 + θa2 (a3 + θa4)

γ(a3 − θa4) a1 − θa2

–
The coding gain is equal to : δ(C) = 1

2 min(NK/Q(i)(x1)− γN(x2)K/Q(i))

Choice of γ: (
δ(C) 6= 0 ⇒ γ /∈ N(K∗)

For non-vanishing determinant ⇒ δ(C) ∈ Z[i] ⇒ γ ∈ Z[i]

We use ideal factorization :
5Z[i] = (2 + i)(2− i)

The Ideal (2 + i) is a prime principal ideal, then taking γ = 2 + i is a solution.

G. Rekaya-Ben Othman Algebraic Space-Time Block Codes Pisa, 17/11/2008 20 / 40



Quaternionic Code 2 × 2 Quaternionic Code

2× 2 Quaternionic : Code construction (2)

Codeword of the 2× 2 Quaternionic Code is :

X =

»
a1 + a2θ a3 + a4θ

(2 + i)(a3 − a4θ) a1 − a2θ

–

Coding gain:

δ(C) = min
`
NK/Q(i)(a1 + a2θ)− (2 + i)NK/Q(i)(a3 + a4θ)

´
∈ Z[i] = 1

Let A = (K/L, σ, γ) be the Quaternion algebra Di,γ(L), where L = Q(i) is the base field

(q-QAM information symbols), K = Q(e
iπ
4 ) cyclotomic extension, with θ = e

iπ
4 ,

andσ : θ 7→ −θ the generator of the Galois group of K .

The Quaternionic code C is a finite subset of Di,γ(L)
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Quaternionic Code 2 × 2 Quaternionic Code

2× 2 Quaternionic Code : performance
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Quaternionic Code Cyclic Division Algebras

Cyclic Division Algebras (1)

Let K be a cyclic extension of L (Q(i) or Q(j)) of degree M, with Galois group GK/L = 〈σ〉

A = (K/L, σ, γ) is a cyclic algebra of degree M iff

A = 1.K ⊕ e.K ⊕ · · · ⊕ eM−1.K

e ∈ A such that eM = γ ∈ L and x · e = e · σ(x).

A is a cyclic division algebra iff γ, γ2,· · · , γM−1are not norms in K∗

Elements of A have matrix representation

Non null elements of A have an inverse

⇒ A Space-Time code can be defined as a finite subset of A
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Quaternionic Code Cyclic Division Algebras

Cyclic Division Algebras (2)

To obtain the matrix representation of Algebra elements, we define linear applications
λd : x ∈ A 7−→d .x , d element of A.

Example of cyclic division algebra of dimension 2:

Let d = k1 + ek2, where k1 and k2 are element of K .

λd (1) = d = k1 + ek2 and λd (e) = (k1 + ek2).e = γσ(k2) + eσ(k1) :

Md =

»
k1 k2

γσ(k2) σ(k1)

–
=

»
k1 0
0 σ(k1)

– »
1 0
0 1

–
+

»
k2 0
0 σ(k2)

– »
0 1
γ 0

–

In dimension M :
Md = Mk1 I + Mk2 Me + · · ·+ MkM MM−1

e

with Me =

2666666664

0 1 0 0

0 0
. . .

.

.

.

.

.

.

.

.

.
. . . 1

γ · · · 0 0

3777777775
and Mki

=

2666666664

ki · · · 0 0

.

.

. σ(ki ) 0

0
. . .

.

.

.
0 0 · · · σM−1(ki )

3777777775
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Quaternionic Code M × M Quaternionic Code

M ×M Quaternionic : Code construction

1 Choice of base field : L = Q(i) (q-QAM constellations ) or L = Q(j) (q-HEX constellations)

1 Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois
group GK/L = 〈σ〉

1 Definition of the cyclic algebra : A = (K/L, σ, γ) is a cyclic algebra of degree M

1 Choice of γ : (
For non-vanishing determinants → γ ∈ OL

A be cyclic division algebra → γ, · · · γM−1 /∈ N(K∗)

1 Construction of the ST code : the Quaternionic code is a finite subset of A

X =

2666664

PM
i=1 a1,i vi

PM
i=1 a2,i vi · · ·

PM
i=1 aM,i vi

γσ(
PM

i=1 aM,i vi ) σ(
PM

i=1 a1,i vi ) · · · σ(
PM

i=1 aM−1,i vi )

.

.

.
.
.
.

. . .
.
.
.

γσM−1(
PM

i=1 a2,i vi ) γσM−1(
PM

i=1 a3,i vi ) · · · σM−1(
PM

i=1 a1,i vi )

3777775
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Quaternionic Code M × M Quaternionic Code

M ×M Quaternionic : code construction Validation

Full rate : M symbols/c.u.

Full diversity : M · N

Non Vanishing Determinant :

We have γ ∈ OL, and ai,j ∈ OL then σl (si,j ) ∈ OK ⇒ det(X) ∈ OK

A = (K/L, σ, γ) is a cyclic division algebra, the reduced norm of an element of A (which is the
determinant of X ) belongs to L.

det(X) ∈ OK ∩ L = OL

To obtain a discrete determinant : OL = Z[i] or Z[j].
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Quaternionic Code Examples of Quaternionic Codes

3× 3 Quaternionic Code

L = Q(j), K = Q(e
i2π

9 ) , θ = e
i2π

9 , σ : θ 7→ jθ and γ = 3 + j

Quaternionic code 3× 3 is a subset of the cyclic division algebra of degree 3,
A = (K/L, σ, γ).

3 6 9 12 15 18
Eb/N0 (dB)

10
-5

10
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10
-3
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-1

10
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Quaternionic, 8-HEX

TAST , 4-QAM

TAST, 8-QAM
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Quaternionic Code Examples of Quaternionic Codes

4× 4 Quaternionic Code

L = Q(i), K = Q(e
iπ
16 ) , θ = e

iπ
16 , σ : θ 7→ iθ and γ = 2 + i

Quaternionic code 4× 4 is a subset of the cyclic division algebra of degree 4 A = (K/L, σ, γ)
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Quaternionic Code Capacity of MIMO Scheme with STBC

Quaternionic Code : Achieved capacity

The instantaneous MIMO channel capacity is :

C(H) = log2 det
„

IN +
SNR

M
HH†

«

The instantaneous Channel capacity using STBC is :

Ccode(H) =
1
M

log2 det
„

IN.T +
SNR

M
H1ΦΦ†H†1

«
Example of 2× 2 Quaternionic Code : the vectorisation of received signal, and isolation of
information symbols lead to :

y =
1
√

5
·

»
H 0
0 H

–
·

264 1 θ 0 0
0 0 1 θ
0 0 γ −γθ
1 −θ 0 0

375
264 s1

s2
s3
s4

375 + w

=
1
√

5
· H1 · Φ · s + w

The code is information lossless if Ccode(H) = C(H), which is achieved if matrix Φ is unitary.

Unfortunately, Quaternionic codes are not information lossless, which explain their bad
performances.
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Perfect Codes Principle

Principle of Perfect code

Perfect codes are STBC designed for MIMO systems with M transmit antenans and N≥ M receive
antennas, that have :

Full rate (M symbols/c.u )

Full diversity (M · N)

Non-Vanishing Determinants when the spectral efficiency increases

Energy efficiency

Uniform energy distribution : the same average energy is transmitted by each antenna at each instant
time

No shaping loss : the transmitted constellations have no shaping loss compared to signal
constellation → Exploit the layered structure of the code constructed from division algebras: transmit
on each layer a rotated version of Z[i]M or AM

2
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Perfect Codes 2 × 2 Perfect code

2× 2 Perfect Code construction (1)

Base field : L = Q(i) (q-QAM information symbols)

Cyclic extension : let θ = 1+
√

5
2 . Galois group GK/L = 〈σ〉, σ : θ 7→ θ̄ = 1−

√
5

2

L

2

2

Q

2

4

2

Q(θ)

K = Q(i, θ)

As Λ(OK ) is not a rotated version of Z[i]2 we have to find an ideal I of OK such that the
lattice Λ(I) is a rotated version of Z[i]2

⇒ I = (α)OK = (1 + i − iθ)OK

Choice of γ:8><>:
For non-vanishing determinants → γ ∈ OL

For uniform energy distribution → |γ| = 1 ⇒ Solution γ = i
A = (K/L, σ, γ) cyclic division algebra → γ /∈ N(K∗)
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Perfect Codes 2 × 2 Perfect code

2× 2 Perfect Code construction (2)

2× 2 perfect code is a finite subset of the cyclic division algebra of degree 2, A =(K/L, σ, γ).

X =
1
√

5

»
α(s1 + θs2) 0

0 ᾱ(s1 + θ̄s2)

–
I2 +

»
α(s3 + θs4) 0

0 ᾱ(s3 + θ̄s4)

–
·

»
0 1
γ 0

–

The codeword is :

X =
1
√

5

»
α(s1 + θs2) α(s3 + θs4)
iᾱ(s3 + θ̄s4) ᾱ(s1 + θ̄s2)

–

2× 2 Perfect Code is called the Golden Code

The Coding gain :

δ(C) =
1
52

˛̨
NK/L(α)

˛̨2
=

1
5

NK/Q(α) =
1
5
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√

5

»
α(s1 + θs2) 0

0 ᾱ(s1 + θ̄s2)

–
I2 +

»
α(s3 + θs4) 0

0 ᾱ(s3 + θ̄s4)

–
·

»
0 1
γ 0

–

The codeword is :

X =
1
√

5

»
α(s1 + θs2) α(s3 + θs4)
iᾱ(s3 + θ̄s4) ᾱ(s1 + θ̄s2)

–

2× 2 Perfect Code is called the Golden Code

The Coding gain :

δ(C) =
1
52

˛̨
NK/L(α)

˛̨2
=

1
5

NK/Q(α) =
1
5
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Perfect Codes 2 × 2 Perfect code

Determinant distributions

Golden code TAST code 2× 2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4
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Perfect Codes 2 × 2 Perfect code

Golden code performance

3 6 9 12 15 18 21 24 27 30 33 36 39
Eb/N0  (dB)
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Golden code, 4QAM

Golden code, 16-QAM

Golden code, 64-QAM

Damen code, 4-QAM

Damen code, 16-QAM

Damen code, 64-QAM
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Perfect Codes M × M Perfect Codes

M ×M Perfect Code construction

1 Choice of base field : L = Q(i) or L = Q(j)

2 Choice of field extension : K cyclic extension of L of degree M, σ the generator of the Galois
group of K

3 Definition of the cyclic algebra : A = (K/L, σ, γ) is a cyclic algebra of degree M

4 Choice of γ : 8><>:
For non-vanishing determinants → γ ∈ OL

For uniform energy distribution → |γ| = 1
A be cyclic division algebra → γ, · · · γM−1 /∈ N(K∗)

5 Choice of the ideal : we must find an ideal I of OK , such that the lattice Λ(I) is a rotated
version of Z[i]M or AM

2 .

6 Construction of the ST code : the ST code is a finite subset of A.
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Perfect Codes M × M Perfect Codes

M ×M Perfect Code construction validation

Energy Efficiency : Using the prime factorization of the discriminant dK/Q =
Q

prk
k , we can

find an ideal I such that the volume of the real lattice Λr (I) is

V
`
Λr (I)

´
= cM or V

`
Λr (I)

´
=

 √
3

2

!M

cM

Non Vanishing Determinant : The necessary assumptions needed to establish the proof of
NVD for Quaternionic codes are still valid

if I is principal :

δ(C) = NK/Q(α) =
1

dQ(θ)

if I is not principal :

N(I) =
1

dQ(θ)

≤ δ(C) ≤
1

vol (Λr (I))
min
x∈I

NK/Q(x)
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Perfect Codes Examples of Perfect Codes

Some Perfect Codes

3× 3 Perfect code
L = Q(i), K = Q (i, θ) with θ = 2cos

` 2π
15

´
γ = i
I = (α) = ((1− 3i) + iθ2))

δmin(C∞) = 1
1125

4× 4 Perfect code
L = Q(j), K = Q (j, θ) with θ = 2cos

` 2π
7

´
γ = j
I = (α) = ((1 + j) + θ)

δmin(C∞) = 1
49

6× 6 Perfect code
L = Q(j), K = Q (j, θ) with θ = 2cos

`
π
14

´
γ = −j
I not principal

1
26·75 ≤ δmin(C∞) ≤ 1

26·74
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Perfect Codes Examples of Perfect Codes

Hexagonal constellations

10 01

11

00

(a) 4-HEX

000101

011111 001

010110100

(b) 8-HEX

11101100

1101 1111 0111 0100

00100110

0000000110101000

1001 1011 01010011

(c) 16-HEX
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Perfect Codes Examples of Perfect Codes

3× 3 Perfect Code Performance

3 6 9 12 15 18 21
Eb/N0 (dB)
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Perfect code, 4-HEX

Perfect code, 8-HEX

Perfect code, 16-HEX

TAST, 4-QAM

TAST, 8-QAM

TAST, 16-QAM
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