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SITES B3z @i
STBC Design Criteria

@ [Tarokh et. al] proposed design criteria to construct good Space-Time Block Codes (STBC)

@ Let X and T be two distinct codewords and A = X — T. We define B = A”A. The pairwise
error probability for quasi-static Rayleigh channel is asymptotically upper bounded by :

R _N N
Prob(X — T) < <H A,) ( ;s )
i=1 W

where )\; the eigenvalues of B.

Rank criterion : in order to achieve maximum diversity MN, the matrix A must be of maximum
rank M.

Coding Advantage : in order to maximize the coding gain, min¢_.r det(A) must be maximized.
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Limitations of SM Scheme and Alamouti Code
Limitations of SM Scheme and Alamouti Code

@ The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and N > M
receive antennas have full rate but not full diversity.
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Limitations of SM Scheme and Alamouti Code
Limitations of SM Scheme and Alamouti Code

@ The Spatial Multiplexing Scheme for MIMO system with M transmit antennas and N > M
receive antennas have full rate but not full diversity.

@ The Alamouti code, for a MIMO system with 2 transmit antennas and 1 receive antenna have
full rate of 1sym/cu and full diversity of 2.

@ Full rate and full diversity Orthogonal Space-Time Block codes doesn'’t exist for a number of
transmit antenna more than 2, and 1 receive antenna.

@ The Alamouti code have the full diversity for a MIMO system with 2 transmit and 2 receive
antennas, but is no more full rate.

How to design full rate and full diversity STBC for MIMO system with M transmit antenna and N
receive antennas ?

For that we use Algebraic Tools.
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RilTelE 2
Principle of DAST Codes

@ DAST codes are Diagonal Algebraic Space Time Code designed for MIMO system with M
transmit antennas and 1 receive antenna, that have :

o full rate of 1sym/cu
o full diversity of M
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RilTelE 2
Principle of DAST Codes

@ DAST codes are Diagonal Algebraic Space Time Code designed for MIMO system with M
transmit antennas and 1 receive antenna, that have :

o full rate of 1sym/cu
o full diversity of M

@ The Construction is based on unitary matrices constructed using number fields.
@ Two steps of the construction:

@ Construction of an optimal unitary matrix of dimension M having the maximal diversity

@ Using Hadamard transformation to multiplex information symbols in space and in time.

@ The construction is available for M = 2 and M multiple of 4.

G. Rekaya-Ben Othman Algebraic Space-Time Block Codes Pisa, 17/11/2008 8/40



21X 2DAST Code
2 x 2 DAST Code : unitary matrix construction

K= Q(e%r) number filed of degree 2 over Q(/).

The minimum polynomial of 6 = e7 is e (x) = X? — i, its conjugate is 6 = —e7.
B = (1, ) is the integral basis of K, each element x of K can be written as x = a+ bf, a, b € Q(i).
Let o : 8 — —6 be the generator of the Galois group of K

Canonical embedding of K in C?is :

o: K +—C?

x — (x,0(x))

@ The lattice A = o(O), where Ok the ring of integers Ox = {a+ b6, a, b € Z[i]}, have as generator

matrix:
11 1 1
R:[ P } { E _oiE ]

@R = %R is a unitary matrix of dimension 2.
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21X 2DAST Code
2 x 2 DAST : Code construction (1)

@ First Step :

o Lets = (ay, az)” be the QAM information symbol vector

@ Vector x obtained by the rotation of vector s by R’ is :

1 1 0 a 1 a; + ba
_R .e—_._ T L 4 2
x=R S_\@[1 79}[32]_\/5[31*932
e This operation alloaws to increase the algebraic dimension of the constellation, as K is a vector
space of dimension 2 over Q(/).
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21X 2DAST Code
2 x 2 DAST : Code construction (1)

@ First Step :

o Lets = (ay, az)” be the QAM information symbol vector

@ Vector x obtained by the rotation of vector s by R’ is :

1 1 0 a 1 a; + ba
_R .e—_._ T L 4 2
x=R S_\@[1 79}[32]_\/5[31*982
e This operation alloaws to increase the algebraic dimension of the constellation, as K is a vector
space of dimension 2 over Q(/).

@ The DAST codeword can be written in this form :
1 a; + fa 0

_\/5[ 0 a176a2]
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21X 2DAST Code
2 x 2 DAST : Code construction (2)

@ Second step :

e Hadamard matrix in dimension 2, verify HZT cHy =2 is:

@ A better balanced DAST codeword is .
1
X = Ha - diag(x) = — [

a; + 6ar 7(31 - 932) ]
2

a; + 0ax a; — fap

@ The coding gain is :

]
== i N
3(C) = 3 31#22%68( (@t + 0a)) # 0
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M x M DAST Code
M x M DAST : Code construction

For MIMO System with M = T multiple of 4 and N = 1.
@ Construct an optimal unitary matrix of dimension M.
o Take s = (a1, a,...,an)” QAM information symbol vector

@ Hy, is the Hadamard matrix in dimension M.

The codeword matrix is :
X = Hy, - diag(R - s)
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RilTelE 2
Principle of TAST Codes

@ TAST codes are Threaded Algebraic STBC designed for MIMO system with M transmit
antennas and N > M, which have :

o Full rate of M symbols/c.u
o Full diversity of M - N.
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RilTelE 2
Principle of TAST Codes

@ TAST codes are Threaded Algebraic STBC designed for MIMO system with M transmit
antennas and N > M, which have :

o Full rate of M symbols/c.u
o Full diversity of M - N.

@ The idea is to design layered architecture code and to associate to each layer an algebraic
sub-space (DAST Code), such that the layers are transparent to each others.

@ An example of optimal layered architecture is :

layer 1
layer 2

layer 3

layer 4
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2 x 2TAST Code
2 x 2 TAST : Code construction

@ We consider a MIMO systemwith M =N=T =2
@ a = (ay, a0, as, a4) is the QAM information symbol vector.
@ 0 = exp(i\) with A\ € R, and ¢? = 6.

@ A2 x 2 DAST code is associated to each layer, and the two layers are separated by the
parameter ¢.
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2 x 2TAST Code
2 x 2 TAST : Code construction

We consider a MIMO system with M =N =T =2

@ a = (ay, a0, as, a4) is the QAM information symbol vector.

6 = exp(i\) with A € R, and ¢2 = 6.

A 2 x 2 DAST code is associated to each layer, and the two layers are separated by the
parameter ¢.

The codeword is:

X— L[ a+ba  éas+0a)
V2 | ¢(as—0a;) a —ba

The coding gain is equal to : §(C) = § min(a? — a0 — a0 + a26°).
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2 x 2TAST Code
2 x 2 TAST : Code construction

We consider a MIMO system with M =N =T =2

@ a = (ay, a0, as, a4) is the QAM information symbol vector.

6 = exp(i\) with A € R, and ¢2 = 6.

A 2 x 2 DAST code is associated to each layer, and the two layers are separated by the
parameter ¢.

The codeword is:

X— ar +0ay  #(as +0as)

V2 | ¢(as—0a;) a —ba

The coding gain is equal to : §(C) = § min(a? — a0 — a0 + a26°).

Choice of 6:

o To satisfy the rank criterion and so insure the full diversty, 6 have to be choosing such that 5(C) # 0.
@ Also, 0 have be to be choosing to maximise §(C) for a fixed constellation size.

@ 6 could be an either algebraic or a transcendant number.
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2 x 2TAST Code
2 x 2 TAST Code : Coding Gain

@ If 6 is an algebraic number of degree 2 over Q(/), for example 6§ = e'%. As 6 is not a norm of
an element in O, then :

1
3(C) = 5 min(Nk sqei)(%1) — ON(x2) k /q@i)) # 0

where x; = a; + a»0 and xo = az + a40.
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2 x 2 TAST Code : Coding Gain
@ If 6 is an algebraic number of degree 2 over Q(/), for example 6§ = e'%. As 6 is not a norm of
an element in O, then :

1
3(C) = 5 min(Nk gy (X1) — ON(x2)k /q@)) # 0

where x; = a; + a»0 and xo = az + a40.

@ If o = e is transcendant, it is proved using Diophantine approximation that §(C) # 0. The
values of A maximizing the coding gain for a fixed constellation are obtained by numerical
optimisation.
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2 x 2TAST Code
2 x 2 TAST Code : Coding Gain

@ If 6 is an algebraic number of degree 2 over Q(/), for example 6§ = e'%. As 6 is not a norm of
an element in O, then :

1
3(C) = 5 min(Nk gy (X1) — ON(x2)k /q@)) # 0

where x; = a; + a»0 and xo = az + a40.

@ If o = e is transcendant, it is proved using Diophantine approximation that §(C) # 0. The
values of A maximizing the coding gain for a fixed constellation are obtained by numerical

optimisation.

@ For both cases the coding gain takes its values in R.
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2 x 2TAST Code
2 x 2 TAST Code : Coding Gain

@ If 6 is an algebraic number of degree 2 over Q(/), for example 6§ = e'%. As 6 is not a norm of
an element in O, then :

1
3(C) = 5 min(Nk gy (X1) — ON(x2)k /q@)) # 0

where x; = a; + a»0 and xo = az + a40.

@ If o = e is transcendant, it is proved using Diophantine approximation that §(C) # 0. The
values of A maximizing the coding gain for a fixed constellation are obtained by numerical
optimisation.

@ For both cases the coding gain takes its values in R.

@ Numerical optimisations lead to the values of X giving the best coding gain

‘ s ‘ ot ‘ £i0.448 ‘ s ‘
4-QAM | 0.1304 | 0.2369 - 0.0858
16-QAM | 0.059 | 0.0367 | 0.1397 | 0.0272

@ The coding gain decreases when constellation size increases : Vanishing Determinant
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M x MTAST Code
M x M TAST : Code construction

Let K = Q(i, 0) be a cyclic extension of Q(/) of degree M, with 6 = exp(z’ﬂM .

@ B=(1,0,...,0M")is an integral basis of K.

@ K is a number field, unitary matrix R is obtained by canonical embedding of Bin CM :
1 a(0) . (M=)
1 1 020 ... a2(eM=1)
TVMy |
1 oM ) ... oMM
@ Let (ay,...,ayz) be the QAM information symbol vector, divided in M vectors vy, ..., vy of

length M, and ¢ such that oM = 6.

@ Construction of vectors 4, ..., 8n,, Bi = R.v;.

Matrix codeword is : o
X = (18 j—iv1)1<ij<m
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RilTelE 2
Principle of Quaternionic Codes

Quaternionic codes are STBC designed for MIMO systems with M transmit antenans and N> M
receive antennas, that have :

@ Full rate : M symbols/c.u (g-QAM or g-HEX information symbols)
@ Full diversity : diversity order M - N

@ Non-Vanishing Determinants (NVD) when spectral efficiency increases

For that we use Cyclic Division Algebras with center L= Q(/) or L = Q())
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Quaternionic Code 2 X 2 Quaternionic Code

2 x 2 Quaternionic : code construction (1)

@ 2 x 2 Quaternionic code construction based on 2 x 2 TAST code

e a = (ai, az, as, a4) QAM information symbol vector
o 0 =exp(F)
e yEK= Q(e'Tﬂ) the parameter used to separate the two layers

@ The codeword is:
_ 1 [ a+6a (a+6a)
’y(as — 984) ay — fan

V2
o The coding gain is equal to : §(C) = } min(Nk g (X1) — YN(x2)k sqq))
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2 x 2 Quaternionic Gode
2 x 2 Quaternionic : code construction (1)

@ 2 x 2 Quaternionic code construction based on 2 x 2 TAST code

e a = (ai, az, as, a4) QAM information symbol vector
o 0 =exp(F)
e yEK= Q(e'Tﬂ) the parameter used to separate the two layers

@ The codeword is:
_ 1 [ a+6a (a+6a)
’y(as — 984) ay — fan

V2
o The coding gain is equal to : §(C) = } min(Nk g (X1) — YN(x2)k sqq))

@ Choice of ~:

5(C)#0 = ¢ N(K¥)
For non-vanishing determinant = §(C) € Z[i] = ~ € Z[i]
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2 x 2 Quaternionic Gode
2 x 2 Quaternionic : code construction (1)

@ 2 x 2 Quaternionic code construction based on 2 x 2 TAST code

e a = (ai, az, as, a4) QAM information symbol vector

6 = exp()

yeK= Q(e'Tﬂ) the parameter used to separate the two layers

The codeword is:
_ 1 [ a+6a (a+6a)
’y(as — 984) ay — fan

V2
The coding gain is equal to : 5(6) = % min(NK/@(f)(x1) — "/N(XZ)K/Q(V‘))

@ Choice of ~:

For non-vanishing determinant = §(C) € Z[i] = ~ € Z[i]

{6(0);&0 =7 ¢ N(K*)

@ We use ideal factorization :
5Z[ = (2+i)(2—1)
The Ideal (2 + i) is a prime principal ideal, then taking v = 2 + i is a solution.
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2 x 2 Quaternionic Gode
2 x 2 Quaternionic : Code construction (2)

@ Codeword of the 2 x 2 Quaternionic Code is :

ai + a»f az + as6

X= (2 + i)(a3 — 340) a; — agt

@ Coding gain:

5(0) = min (NK/Q(i)(a1 + 820) - (2 + i)NK/Q(,-)(a3 + 249)) € Z[I] =1
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2 x 2 Quaternionic Gode
2 x 2 Quaternionic : Code construction (2)

@ Codeword of the 2 x 2 Quaternionic Code is :

a; + a0 az + as6

X= (2 + i)(a3 — 340) a; — agt

@ Coding gain:

5(0) = min (NK/Q(i)(a1 + 820) - (2 + i)NK/Q(,)(aS + 349)) € Z[I] =1

@ Let A= (K/L,o,~) be the Quaternion algebra D; ., (L), where L = Q(/) is the base field
(g-QAM information symbols), K = Q(e%) cyclotomic extension, with 6 = e,
ando : 6 — —6 the generator of the Galois group of K.

@ The Quaternionic code C is a finite subset of D; ., (L)
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2 x 2 Quaternionic Gode
2 x 2 Quaternionic Code : performance

0

10

* O---O Quaternionic, 4-QAM
~ 61 Quatemionic, 16 QAM
-~ Quaternionic, 64-QAM

o

*— Damen STBC, 64-QAM

S,

Codeword error rates
S,

G. Rekaya-Ben Oth

12 15 18 21 24 27 30 33
Eb/NO (dB)

Algebraic Space-Time Block Codes
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£ BB A1 D
Cyclic Division Algebras (1)

@ Let K be a cyclic extension of L (Q(f) or Q(j)) of degree M, with Galois group Gk, = (o)
e A= (K/L,o,v)is acyclic algebra of degree M iff

A=1KoeKa - --ae" 1K

ec AsuchthateM =y c Land x- e = e- o(x).
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£ BB A1 D
Cyclic Division Algebras (1)

@ Let K be a cyclic extension of L (Q(/) or Q(j)) of degree M, with Galois group Gk, = (o)
e A= (K/L,o,v)is acyclic algebra of degree M iff

A=1KoeKa - --ae" 1K

ec AsuchthateM =y c Land x- e = e- o(x).

@ Ais a cyclic division algebra iff v, 42,- - -, v~ are not norms in K*
@ Elements of A have matrix representation

@ Non null elements of A have an inverse

= A Space-Time code can be defined as a finite subset of .A
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£ BB A1 D
Cyclic Division Algebras (2)

@ To obtain the matrix representation of Algebra elements, we define linear applications
Ag 1 X € A——d.x, d element of A.

@ Example of cyclic division algebra of dimension 2:

o Let d = ki + eky, where ky and k; are element of K.

o X(1) =d = ki + ekp and Ag(e) = (k, + eks).e = vo (ko) + eo(ki) :

M= sty atiy | =10 ot JLo T1H[E st [ 0]
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£ BB A1 D
Cyclic Division Algebras (2)

@ To obtain the matrix representation of Algebra elements, we define linear applications
Ag 1 X € A——d.x, d element of A.

@ Example of cyclic division algebra of dimension 2:

o Let d = ki + eky, where ky and k; are element of K.

o N\y(1) =d = ki + eky and Aq(€) = (k, + ekz).e = yo(kz) + eo(ki) :
A A e A A | R RN | Y

@ In dimension M :
Mg = My, | + Mi,Me + - - + My, MY~

0o 1 0 o [ 0 0
: kj 0
withme=| ¢ © and w, = o (k)
: . B 0 . :
y - 0 0 0 0 e oMk
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M %M Quaternionic Code
M x M Quaternionic : Code construction

@ Choice of base field : L = Q(i) (g-QAM constellations ) or L = Q(j) (g-HEX constellations)
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M %M Quaternionic Code
M x M Quaternionic : Code construction

@ Choice of base field : L = Q(i) (g-QAM constellations ) or L = Q(j) (g-HEX constellations)

@ Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois
group Gk /L = (o)
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M %M Quaternionic Code
M x M Quaternionic : Code construction

@ Choice of base field : L = Q(i) (g-QAM constellations ) or L = Q(j) (g-HEX constellations)

@ Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois
group Gk /L = (o)

@ Definition of the cyclic algebra : A = (K/L, o, ~) is a cyclic algebra of degree M
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M %M Quaternionic Code
M x M Quaternionic : Code construction

@ Choice of base field : L = Q(i) (g-QAM constellations ) or L = Q(j) (g-HEX constellations)

@ Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois
group Gk /L = (o)

@ Definition of the cyclic algebra : A = (K/L, o, ~) is a cyclic algebra of degree M

@ Choice of v :
For non-vanishing determinants — v € O
A be cyclic division algebra — , - - - YM~1 ¢ N(K*)
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M %M Quaternionic Code
M x M Quaternionic : Code construction

@ Choice of base field : L = Q(i) (g-QAM constellations ) or L = Q(j) (g-HEX constellations)

@ Choice of the extension field : K must be a cyclic extension of L of degree M, with Galois

group G = (o)

@ Definition of the cyclic algebra : A = (K/L, o, ~) is a cyclic algebra of degree M

@ Choice of v :
For non-vanishing determinants — v € O
A be cyclic division algebra — , - - - YM~1 ¢ N(K*)

@ Construction of the ST code : the Quaternionic code is a finite subset of A

M M M
ity a1,V Z"ﬁ a ivi B Z,O',:1 am,ivi
Yo (i1 am,ivi) o(Xi2 a1,iv) EE o(30i21 am—1,ivi)
X = . . .
M—1 <M M—1 /M ] M—1 <M
~yo (21 @,ivi) o (XiZ1as,vi) -+ o (21 a1,ivi)
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M %M Quaternionic Code
M x M Quaternionic : code construction Validation

@ Full rate : M symbols/c.u.
o Full diversity : M- N
@ Non Vanishing Determinant :

o We have v € O, and a;; € Oy then o/(s; ;) € O = det(X) € Ok

o A= (K/L,o,~)is acyclic division algebra, the reduced norm of an element of A (which is the
determinant of X) belongs to L.

det(X) € OxNL= 0,

o To obtain a discrete determinant : O, = Z[i] or Z[j].
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Examples of Quaternionic Codes
3 x 3 Quaternionic Code

2
9

° L=Q().K=Q(e

i2r

),0=€e9 ,0:0—j0andy =3+

@ Quaternionic code 3 x 3 is a subset of the cyclic division algebra of degree 3,

A= (K/L, o,7).
10°6—
el 0~ Quaternionic, 4-HEX
L -0 Quaternionic, $-HEX
B N e A—A TAST, 4-QAM L
10 =% == — TAST, 8-QAM
o N 3 ﬂ\
g . N
c10? <~ —
5 “e, 3
£ 3 b N
= 10° = S
o > S
S S <
o <
10" -
4
-5
1073 6 9 2 15
Eb/NO (dB)
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Quaternionic Code Examples of Quaternionic Codes

4 x 4 Quaternionic Code

o L=0Q(i)K=0Q(e®),0=e%,0:0—igandy=2+i

@ Quaternionic code 4 x 4 is a subset of the cyclic division algebra of degree 4 A = (K/L, 0,~)

10 —
-1
10 —— — -
Q S
10° .
" =
£ N
g N
= -3 N,
glo <
i N
4 .
210
2
Sl
10° ©--0 Quaternionic, 4-QAM .
-8 Quaternionic, 16-QAM
10°
w—= TAST, 16-QAM
»— TAST, 64-QAM
7
s K 18

G. Rekaya-Ben Othman

2 15
Eb/NO (dB)
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Capacily of MIMO Scheme with STBC
Quaternionic Code : Achieved capacity

@ The instantaneous MIMO channel capacity is :

C(H) = log, det (IN + S:\\'A—RHHT)
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gzl af Y10 SEiEie il STEE
Quaternionic Code : Achieved capacity

@ The instantaneous MIMO channel capacity is :
NR
C(H) = log, det (IN + STHHT)
@ The instantaneous Channel capacity using STBC is :
1 NR
Ceode(H) = 7 10g det (lN,T + SWHNNDTHI)

o Example of 2 x 2 Quaternionic Code : the vectorisation of received signal, and isolation of
information symbols lead to :

1 ¢ 0 0 st
o H o 0 0 1 o 2 | w
Y = B0 H 0 0 ~ -0 S
1 -6 0 0 S
|
= — H-d.-s+w
V5
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gzl af Y10 SEiEie il STEE
Quaternionic Code : Achieved capacity

@ The instantaneous MIMO channel capacity is :
NR
C(H) = log, det (IN + STHHT)

@ The instantaneous Channel capacity using STBC is :

SNR

1
Ccode(H) = M |°92 det (IN.T + H, ¢¢THI)

o Example of 2 x 2 Quaternionic Code : the vectorisation of received signal, and isolation of
information symbols lead to :

1 ¢ 0 0 st
_ 1 [H o] 0o 0o 1 @ 2 | w
Y = B0 H 0 0 ~ -0 S
1 -6 0 0 S
|
= — H-d.-s+w
V5

@ The code is information lossless if Ccoge(H) = C(H), which is achieved if matrix ¢ is unitary.
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gzl af Y10 SEiEie il STEE
Quaternionic Code : Achieved capacity

@ The instantaneous MIMO channel capacity is :
NR
C(H) = log, det (IN + STHHT)

@ The instantaneous Channel capacity using STBC is :

SNR

1
Ccode(H) = M |°92 det (IN.T + H, ¢¢THI)

o Example of 2 x 2 Quaternionic Code : the vectorisation of received signal, and isolation of
information symbols lead to :

1 6 0 0 st
1 H o] [0 0 1 0 2 | w
y = V5 |0 H 0 0 ~v -9 S3
1 -6 0 0 54
1
= — H-d.-s+w
V5

@ The code is information lossless if Ccoge(H) = C(H), which is achieved if matrix ¢ is unitary.

@ Unfortunately, Quaternionic codes are not information lossless, which explain their bad
performances.
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RilTelE 2
Principle of Perfect code

Perfect codes are STBC designed for MIMO systems with M transmit antenans and N> M receive
antennas, that have :

@ Full rate (M symbols/c.u )

o Full diversity (M - N)

@ Non-Vanishing Determinants when the spectral efficiency increases
@ Energy efficiency

e Uniform energy distribution : the same average energy is transmitted by each antenna at each instant
time
o No shaping loss : the transmitted constellations have no shaping loss compared to signal

constellation — Exploit the layered structure of the code constructed from division algebras: transmit
on each layer a rotated version of Z[i]" or AY
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2 x 2 Perfect code
2 x 2 Perfect Code construction (1)

@ Base field : L = Q(/) (g-QAM information symbols)

@ Cyclic extension : let § = 1£)/5. Galois group GrjL=1(0),0:0—0= 1_2\/5
K =Q(i.0)
2 2
Lot g

N4
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2 x 2 Perfect code
2 x 2 Perfect Code construction (1)

@ Base field : L = Q(/) (g-QAM information symbols)

@ Cyclic extension : let § = 1£)/5. Galois group GrjL=1(0),0:0—0= 1_2“%
K =Q(i.0)
2 2
Lot g

N4

@ As A(Ok) is not a rotated version of Z[i]? we have to find an ideal Z of O such that the
lattice A(Z) is a rotated version of Z[i]?

=7= (Q)O;C = (1 +i— i@)OK
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2 x 2 Perfect code
2 x 2 Perfect Code construction (1)

@ Base field : L = Q(/) (g-QAM information symbols)

@ Cyclic extension : let § = 1£)/5. Galois group GrjL=1(0),0:0—0= 1_2“%

K =Q(i,0)

@ As A(Ok) is not a rotated version of Z[i]? we have to find an ideal Z of O such that the
lattice A(Z) is a rotated version of Z[i]?

=7= (Q)O;C = (1 +i— i@)OK
@ Choice of ~:

For non-vanishing determinants — v € O
For uniform energy distribution — |y| = 1 = Solutiony =i
A = (K/L,o,v) cyclic division algebra — v ¢ N(K*)
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2 x 2 Perfect code
2 x 2 Perfect Code construction (2)

@ 2 x 2 perfect code is a finite subset of the cyclic division algebra of degree 2, A =(K/L, 0, 7).

X:%[ a(513632) a(s, 3’9_32) ]I2+[ 0‘(333’034) 54(333534) ][ 2 8 ]

@ The codeword is :

X o ! { a(st +0sz2)  afss+ 0ss) ]

T /5 | ia(ss+0ss)  a(sy +sp)
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2 x 2 Perfect code
2 x 2 Perfect Code construction (2)

@ 2 x 2 perfect code is a finite subset of the cyclic division algebra of degree 2, A =(K/L, o,7).

X:%[ a(513632) a(s, 3’9_32) ]I2+[ 0‘(333’034) 54(333534) ][ 2 8 ]

@ The codeword is :

X o ! { a(st +0sz2)  afss+ 0ss) ]

T /5 | ia(ss+0ss)  a(sy +sp)

@ 2 x 2 Perfect Code is called the Golden Code

@ The Coding gain :
1 2 1 1
5(C) = 5 [Nk/L(a@)]” = ENK/Q(O‘) =z
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Perfect Codes 2 X 2 Perfect code

Golden code performance

x—x Golden code, 4QAM
\ \ \ #— Golden code, 16-QAM
! v—% Golden code, 64-QAM
G—0 Damen code, 4-QAM
G—& Damen code, 16-QAM
2 A—A Damen code, 64-QAM |
10 \ \
. X \&
. \\i\ \
5

10 \

103776 o 12 15 18 21 24 27 30 33 36 39
Eb/NO (dB)

Codeword error rates
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M M Perfect Codes
M x M Perfect Code construction

@ Choice of base field : L = Q(i) or L = Q(j)

@ Choice of field extension : K cyclic extension of L of degree M, o the generator of the Galois
group of K

© Definition of the cyclic algebra : A = (K/L, o, ) is a cyclic algebra of degree M
© Choice of v :
For non-vanishing determinants — v € Oy

For uniform energy distribution — |y| = 1
A be cyclic division algebra — 7, - - - yM~1 ¢ N(K*)

© Choice of the ideal : we must find an ideal Z of O, such that the lattice A(Z) is a rotated
version of Z[i1M or AY.

@ Construction of the ST code : the ST code is a finite subset of A.
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M M Perfect Codes
M x M Perfect Code construction validation

@ Energy Efficiency : Using the prime factorization of the discriminant dk /o = ]'[p,'f, we can
find an ideal Z such that the volume of the real lattice A"(Z) is

M

3

VIN@) =c¥ o V(N(D)) = ({) cM

@ Non Vanishing Determinant : The necessary assumptions needed to establish the proof of
NVD for Quaternionic codes are still valid

o if Z is principal :

3(C) = Nxg(a) = a
Q(6)
e if Z is not principal :
1

doge)

Q

N(I) = <8(C) <

S Sl (A (D)) T Niya(x)
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Examples of Perfect Codes
Some Perfect Codes

@ 3 x 3 Perfect code
o L=Q(i), K=Q(i,8) with 6 = 2cos (2%)
o y=
o I =(a)=((1-3i)+it?)
® Imin(Coc) = 111725

@ 4 x 4 Perfect code
o L=Q(), K =Q(j, 8) with § = 2cos (2%)
o y=j
o I=(a)=(1+))+90)
° 5min(cao) = 4179

@ 6 x 6 Perfect code
o L=Q(), K=Q(j,0)with 6 = 2cos (%)

]
@ Z not principal
° S 6min(Coo) S ﬁ

26.75
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Hexagonal constellations

4 o o
100 110|010, 5 >
P S . o
Mg 101 | 000 101 A 1011 |oor1 o161
10 i1 .

e tor” s fod oo

3 uroou| ool P

1 ; 5 oo o
(a) 4-HEX (b) 8-HEX (c) 16-HEX
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Examples of Perfect Codes
3 x 3 Perfect Code Performance

G --O Perfect code, 4-HEX
3 --B Perfect code, 8-HEX
A --A Perfect code, 16-HEX
»—x TAST, 4-QAM
*—% TAST, 8-QAM —
~+—+ TAST, 16-QAM
@
8
s 2
g 2
= 10
=}
e
£
L)
2
z
-3
210
=}
@]
-4
10
-5
10
3 6 9 12 15
Eb/NO (dB)
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