Topological obstructions to totally skew embeddings Dorde Baralić

Mathematical Institute SANU, Belgrade, Serbia Configuration Spaces: Geometry, Combinatorics and Topology 13th of May 2010., Pisa, Italy

• M. Ghomi, S. Tabachnikov, 2007

• M. Ghomi, S. Tabachnikov, 2007

Given a manifold M^n , what is the smallest dimension $N(M^n)$ such that M^n admits a totally skew embedding in \mathbb{R}^N ?

Definition 1. Two lines in an affine space are called skew if their affine span has dimension 3. More generally a collection of affine subspaces U_1, \ldots, U_l of \mathbf{R}^N are called skew if their affine span has dimension $\dim(U_1) + \ldots + \dim(U_l) + l - 1$.

Definition 2. For a given smooth n-dimensional manifold M^n , an embedding $f: M^n \to \mathbb{R}^N$ is called totaly skew if for each two distinct points $x, y \in M^n$ the affine subspaces $df(T_xM)$ and $df(T_yM)$ of \mathbb{R}^N are skew. Let $N(M^n)$ be the minimum N such that there exists a skew embedding of M^n into \mathbb{R}^N .

Definition 2. For a given smooth n-dimensional manifold M^n , an embedding $f: M^n \to \mathbb{R}^N$ is called totaly skew if for each two distinct points $x, y \in M^n$ the affine subspaces $df(T_xM)$ and $df(T_yM)$ of \mathbb{R}^N are skew. Let $N(M^n)$ be the minimum N such that there exists a skew embedding of M^n into \mathbb{R}^N .

Example 1.
$$S^1 \hookrightarrow \mathbf{R}^4 \qquad z \to (z, z^2)$$

Example 1. $S^1 \hookrightarrow \mathbf{R}^4$ $z \to (z, z^2)$ **Example 2.** $\mathbf{R} \hookrightarrow \mathbf{R}^3$ $t \to (t, t^2, t^3)$

• M. Ghomi, S. Tabachnikov, 2007

• M. Ghomi, S. Tabachnikov, 2007

Theorem 1. For any manifold M^n ,

 $2n+1 \le N(M^n) \le 4n+1.$

Indeed, generically any submanifold $M^n \subset \mathbb{R}^{4n+1}$ is totally skew. Further, if M^n is closed, then $N(M^n) \geq 2n+2$.

• M. Ghomi, S. Tabachnikov, 2007

Theorem 1. For any manifold M^n ,

 $2n+1 \le N(M^n) \le 4n+1.$

Indeed, generically any submanifold $M^n \subset \mathbb{R}^{4n+1}$ is totally skew. Further, if M^n is closed, then $N(M^n) \ge 2n+2$.

Theorem 2. $N(S^n) \le 3n + 2$.

• Generalized vector fields problem

- Generalized vector fields problem
- Existence of symmetric nonsingular bilinear map $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \to \mathbf{R}^m$

- Generalized vector fields problem
- Existence of symmetric nonsingular bilinear map $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \to \mathbf{R}^m$
- An immersion problem for real projective spaces

- Generalized vector fields problem
- Existence of symmetric nonsingular bilinear map $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \to \mathbf{R}^m$
- An immersion problem for real projective spaces
- Neighborly embeddings of manifolds

- Generalized vector fields problem
- Existence of symmetric nonsingular bilinear map $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \to \mathbf{R}^m$
- An immersion problem for real projective spaces
- Neighborly embeddings of manifolds
- k regular embedding of manifolds

Problem comes to CGTA team

Problem comes to CGTA team

• Gordana Stojanović, PhD thesis

Problem comes to CGTA team

• Gordana Stojanović, PhD thesis

 CGTA team: G. Stojanović, S. Vrećica, R. Živaljević, Đ. Baralić

• $5 < 7 \le N(\mathbb{R}P^2) \le 9$

- $5 < 7 \le N(\mathbb{R}P^2) \le 9$
- $7 < 13 \le N(\mathbb{R}P^2 \times \mathbb{R}P^2) \le 17$

- $5 < 7 \le N(\mathbb{R}P^2) \le 9$
- $7 < 13 \le N(\mathbb{R}P^2 \times \mathbb{R}P^2) \le 17$
- $25 < 43 \le N(G_3(\mathbb{R}^7) \le 49)$

- $5 < 7 \le N(\mathbb{R}P^2) \le 9$
- $7 < 13 \le N(\mathbb{R}P^2 \times \mathbb{R}P^2) \le 17$
- $25 < 43 \le N(G_3(\mathbb{R}^7) \le 49)$
- $13 < 21 \le N(G_2(\mathbb{R}^5) \le 25)$

- $5 < 7 \le N(\mathbb{R}P^2) \le 9$
- $7 < 13 \le N(\mathbb{R}P^2 \times \mathbb{R}P^2) \le 17$
- $25 < 43 \le N(G_3(\mathbb{R}^7) \le 49)$
- $13 < 21 \le N(G_2(\mathbb{R}^5) \le 25)$
- $21 < 29 \le N(G_2(\mathbb{R}^7) \le 41$

- $5 < 7 \le N(\mathbb{R}P^2) \le 9$
- $7 < 13 \le N(\mathbb{R}P^2 \times \mathbb{R}P^2) \le 17$
- $25 < 43 \le N(G_3(\mathbb{R}^7) \le 49)$
- $13 < 21 \le N(G_2(\mathbb{R}^5) \le 25)$
- $21 < 29 \le N(G_2(\mathbb{R}^7) \le 41$
- $19 < 31 \le N(G_3(\mathbb{R}^6) \le 37)$

- $31 < 43 \le N(G_3(\mathbb{R}^8) \le 61$
- $19 < 31 \le N(G_3(\mathbb{R}^6) \le 37)$
- $21 < 29 \le N(G_2(\mathbb{R}^7) \le 41$
- $13 < 21 \le N(G_2(\mathbb{R}^5) \le 25)$
- $25 < 43 \le N(G_3(\mathbb{R}^7) \le 49)$
- $7 < 13 \le N(\mathbb{R}P^2 \times \mathbb{R}P^2) \le 17$
- $5 < 7 \le N(\mathbb{R}P^2) \le 9$

Let $F_2(M) := M^2 \setminus \Delta_M$ be the configuration space (manifold) of all distinct ordered pairs of points in M. The tangent bundle $T(F_2(M))$ admits a splitting

 $T(F_2(M)) \cong \pi_1^* TM \oplus \pi_2^* TM \tag{1}$

where $\pi_1, \pi_2: F_2(M) \to M$ are natural projections.

Let $F_2(M) := M^2 \setminus \Delta_M$ be the configuration space (manifold) of all distinct ordered pairs of points in M. The tangent bundle $T(F_2(M))$ admits a splitting

 $T(F_2(M)) \cong \pi_1^* TM \oplus \pi_2^* TM \tag{1}$

where $\pi_1, \pi_2: F_2(M) \to M$ are natural projections.

If $f: M^n \to \mathbb{R}^N$ is a totally skew embedding, then there arises a monomorphism of vector bundles

 $\Phi = \Phi^{(1)} \oplus \Phi^{(2)} : T(F_2(M)) \oplus \varepsilon^1 \longrightarrow F_2(M) \times \mathbb{R}^N$ where $\Phi^{(1)}_{(x,y)} : T_x(M) \oplus T_y(M) \longrightarrow \mathbb{R}^N$ is the map defined by $\Phi_{(x,y)}(u,v) = df_x(u) + df_y(v)$ and $\Phi^{(2)}$, defined by $\Phi^{(2)}(\lambda) = \lambda(f(y) - f(x))$, maps the trivial line bundle ε^1 to L.

If $f: M^n \to \mathbb{R}^N$ is a totally skew embedding, then there arises a monomorphism of vector bundles

 $\Phi = \Phi^{(1)} \oplus \Phi^{(2)} : T(F_2(M)) \oplus \varepsilon^1 \longrightarrow F_2(M) \times \mathbb{R}^N$ where $\Phi^{(1)}_{(x,y)} : T_x(M) \oplus T_y(M) \to \mathbb{R}^N$ is the map defined by $\Phi_{(x,y)}(u,v) = df_x(u) + df_y(v)$ and $\Phi^{(2)}$, defined by $\Phi^{(2)}(\lambda) = \lambda(f(y) - f(x))$, maps the trivial line bundle ε^1 to L.

In this case the trivial N-dimensional bundle ε^N over $F_2(M)$ splits

 $arepsilon^N\cong T(F_2(M))\oplusarepsilon^1_{ ext{Topological}}\mathcal{U}_{ ext{Structions to totally skew embeddings-p.}}$

Proposition 1. If the dual Stiefel-Whitney class

 $\overline{w}_k(T(F_2(M))) := w_k(\nu) \in H^k(F_2(M))$

is non-zero, then $2n + k + 1 \le N$. In particular, $N(M) \ge 2n + k + 1$.

$\dots \to H^*(M^2, M^2 \setminus \Delta_M) \xrightarrow{\alpha} H^*(M^2) \xrightarrow{\beta} H^*(F_2(M)) \longrightarrow .$

$\dots \to H^*(M^2, M^2 \setminus \Delta_M) \xrightarrow{\alpha} H^*(M^2) \xrightarrow{\beta} H^*(F_2(M)) \longrightarrow .$

We are interested in the (dual) Stiefel-Whitney classes so by naturality, in order to check non-triviality of $\overline{w}_k(T(F_2(M)))$, it is sufficient to check if the class $\overline{w}_k(T(M^2))$ is in the image of the map α .

The image $A := \text{Image}(\alpha)$ of α is generated, as a $H^*(M)$ -module, by the "diagonal cohomology class"

$$u'' = \sum_{i=1}^{r} b_i \times b_i^{\sharp}$$

where $\{b_i\}_{i=1}^r$ is an additive basis of $H^*(M)$ and b_i^{\sharp} the class dual to b_i .

Proposition 2.

 $A = \text{Image}(\alpha) = H^*(M) \cdot u''$ $= \{(1 \times a) \cup u'' \mid a \in H^*(M)\}$ $= \{(a \times 1) \cup u'' \mid a \in H^*(M)\}$

Proposition 2.

 $A = \text{Image}(\alpha) = \overline{H^*(M) \cdot u''}$ $= \{(1 \times a) \cup u'' \mid a \in H^*(M)\}$ $= \{(a \times 1) \cup u'' \mid a \in H^*(M)\}$

Proposition 3. Let M be an n-dimensional manifold, let $w_k \in H^k(M; \mathbb{Z}/2)$ be its highest non-trivial Stiefel-Whitney class, and let $k \leq n - 1$. Then $w_k w'_k \notin Im(\alpha)$.

$H^*((P^n)^2) \cong \mathbb{F}_2[t_1, t_2]/(t_1^{n+1} = t_2^{n+1} = 0)$

$$H^*((P^n)^2) \cong \mathbb{F}_2[t_1, t_2]/(t_1^{n+1} = t_2^{n+1} = 0)$$

$$u'' = t_1^n + t_1^{n-1}t_2 + \ldots + t_1t_2^{n-1} + t_2^n = \sum_{j=0}^n t_1^{n-j}t_2^j.$$

$$H^*((P^n)^2) \cong \mathbb{F}_2[t_1, t_2]/(t_1^{n+1} = t_2^{n+1} = 0)$$

$$u'' = t_1^n + t_1^{n-1}t_2 + \ldots + t_1t_2^{n-1} + t_2^n = \sum_{j=0}^n t_1^{n-j}t_2^j.$$

$$u_j'' := t_1^j u'' = t_2^j u'' = \sum_{i=0}^{n-j} t_1^{n-i} t_2^{j+i}$$

$$w((P^n)^2) = (1+t_1)^{n+1}(1+t_2)^{n+1}$$

$$w((P^n)^2) = (1+t_1)^{n+1}(1+t_2)^{n+1}$$

$$\overline{w}((P^n)^2) = w((P^n)^2)^{-1}.$$

$$w((P^n)^2) = (1+t_1)^{n+1}(1+t_2)^{n+1}$$

$$\overline{w}((P^n)^2) = w((P^n)^2)^{-1}.$$

$$\overline{\omega}_{2k}((P^n)^2) = t_1^k t_2^k$$

Topological obstructions to totally skew embeddings – p. 1

$$w((P^n)^2) = (1+t_1)^{n+1}(1+t_2)^{n+1}$$

$$\overline{w}((P^n)^2) = w((P^n)^2)^{-1}.$$

$$\overline{\omega}_{2k}((P^n)^2) = t_1^k t_2^k$$

Theorem.

 $N(P^n) \ge 4 \cdot 2^{[\log_2 n]} - 1$ (2) Topological obstructions to totally skew embeddings - p.

Other results

Other results

• Product of real projective spaces

Other results

- Product of real projective spaces
- Grassmannians

Thank you for attention!