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Given a manifoldMn, what is the smallest dimension
N(Mn) such thatMn admits a totally skew
embedding inRN?
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Introduction

Definition 1. Two lines in an affine space are called
skewif their affine span has dimension3. More
generally a collection of affine subspacesU1, . . . , Ul

of RN are calledskewif their affine span has
dimensiondim(U1) + . . . + dim(Ul) + l − 1.
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Definition 2. For a given smoothn-dimensional
manifoldMn, an embeddingf : Mn → R

N is called
totaly skewif for each two distinct pointsx, y ∈ Mn

the affine subspacesdf(TxM) anddf(TyM) of R
N

are skew. LetN(Mn) be the minimumN such that
there exists a skew embedding ofMn into R

N .
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Example 1.S1 →֒ R
4 z → (z, z2)
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Example 1.S1 →֒ R
4 z → (z, z2)

Example 2.R →֒ R
3 t → (t, t2, t3)
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Theorem 1.For any manifoldMn,

2n + 1 ≤ N(Mn) ≤ 4n + 1.

Indeed, generically any submanifoldMn ⊂ R
4n+1 is

totally skew. Further, ifMn is closed, then
N(Mn) ≥ 2n + 2.
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Theorem 1.For any manifoldMn,

2n + 1 ≤ N(Mn) ≤ 4n + 1.

Indeed, generically any submanifoldMn ⊂ R
4n+1 is

totally skew. Further, ifMn is closed, then
N(Mn) ≥ 2n + 2.

Theorem 2.N(Sn) ≤ 3n + 2.
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R
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n+1 → R
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• Generalized vector fields problem

• Existence of symmetric nonsingular bilinear map
R

n+1 × R
n+1 → R

m

• An immersion problem for real projective spaces

• Neighborly embeddings of manifolds

• k regular embedding of manifolds
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Problem comes to CGTA team
• Gordana Stojanović, PhD thesis

• CGTA team: G. Stojanović, S. Vrécica, R.
Živaljević, –D. Baralíc
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Our results
• 5 < 7 ≤ N(RP 2) ≤ 9

• 7 < 13 ≤ N(RP 2 × RP 2) ≤ 17

• 25 < 43 ≤ N(G3(R
7) ≤ 49

• 13 < 21 ≤ N(G2(R
5) ≤ 25

• 21 < 29 ≤ N(G2(R
7) ≤ 41

• 19 < 31 ≤ N(G3(R
6) ≤ 37

• 31 < 43 ≤ N(G3(R
8) ≤ 61
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Vector bundle reduction

Let F2(M) := M 2 \ ∆M be the configuration space
(manifold) of all distinct ordered pairs of points inM .
The tangent bundleT (F2(M)) admits a splitting

T (F2(M)) ∼= π∗
1TM ⊕ π∗

2TM (1)

whereπ1, π2 : F2(M) → M are natural projections.
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Vector bundle reduction

Let F2(M) := M 2 \ ∆M be the configuration space
(manifold) of all distinct ordered pairs of points inM .
The tangent bundleT (F2(M)) admits a splitting

T (F2(M)) ∼= π∗
1TM ⊕ π∗

2TM (1)

whereπ1, π2 : F2(M) → M are natural projections.

f x( )

L( , )x y

df(T (M))x df(T (M))y

f y( )
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Vector bundle reduction

If f : Mn → R
N is a totally skew embedding, then

there arises a monomorphism of vector bundles

Φ = Φ(1) ⊕ Φ(2) : T (F2(M)) ⊕ ε1 −→ F2(M) × R
N

whereΦ
(1)
(x,y) : Tx(M) ⊕ Ty(M) → R

N is the map

defined byΦ(x,y)(u, v) = dfx(u) + dfy(v) andΦ(2),

defined byΦ(2)(λ) = λ(f(y) − f(x)), maps the trivial
line bundleε1 to L.
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Φ = Φ(1) ⊕ Φ(2) : T (F2(M)) ⊕ ε1 −→ F2(M) × R
N

whereΦ
(1)
(x,y) : Tx(M) ⊕ Ty(M) → R

N is the map

defined byΦ(x,y)(u, v) = dfx(u) + dfy(v) andΦ(2),

defined byΦ(2)(λ) = λ(f(y) − f(x)), maps the trivial
line bundleε1 to L.

In this case the trivialN -dimensional bundleεN over
F2(M) splits

εN ∼= T (F2(M)) ⊕ ε1 ⊕ ν

where is a -dimensional “normal”
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Vector bundle reduction

Proposition 1. If the dual Stiefel-Whitney class

wk(T (F2(M))) := wk(ν) ∈ Hk(F2(M))

is non-zero, then2n + k + 1 ≤ N . In particular,
N(M) ≥ 2n + k + 1.
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. . . −→ H∗(M 2, M 2\∆M)
α

−→ H∗(M 2)
β

−→ H∗(F2(M)) −→ . .
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Characteristic classes ofT (F2(M))

. . . −→ H∗(M 2, M 2\∆M)
α

−→ H∗(M 2)
β

−→ H∗(F2(M)) −→ . .

We are interested in the (dual) Stiefel-Whitney classes
so by naturality, in order to check non-triviality of
wk(T (F2(M))), it is sufficient to check if the class
wk(T (M 2)) is in the image of the mapα.
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Characteristic classes ofT (F2(M))

The imageA := Image(α) of α is generated, as a
H∗(M)-module, by the “diagonal cohomology class”

u′′ =
r∑

i=1

bi × b♯
i

where{bi}
r
i=1 is an additive basis ofH∗(M) andb♯

i

the class dual tobi.
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Characteristic classes ofT (F2(M))

Proposition 2.

A = Image(α) = H∗(M) · u′′

= {(1 × a) ∪ u′′ | a ∈ H∗(M)}

= {(a × 1) ∪ u′′ | a ∈ H∗(M)}
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Characteristic classes ofT (F2(M))

Proposition 2.

A = Image(α) = H∗(M) · u′′

= {(1 × a) ∪ u′′ | a ∈ H∗(M)}

= {(a × 1) ∪ u′′ | a ∈ H∗(M)}

Proposition 3. Let M be ann-dimensional manifold,
let wk ∈ Hk(M ; Z/2) be its highest non-trivial
Stiefel-Whitney class, and letk ≤ n − 1. Then
wkw

′
k /∈ Im(α).
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Calculations for RP n

H∗((P n)2) ∼= F2[t1, t2]/(t
n+1
1 = tn+1

2 = 0)
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H∗((P n)2) ∼= F2[t1, t2]/(t
n+1
1 = tn+1

2 = 0)

u′′ = tn1 + tn−1
1 t2 + . . . + t1t

n−1
2 + tn2 =

n∑

j=0

tn−j
1 tj2.
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Calculations for RP n

H∗((P n)2) ∼= F2[t1, t2]/(t
n+1
1 = tn+1

2 = 0)

u′′ = tn1 + tn−1
1 t2 + . . . + t1t

n−1
2 + tn2 =

n∑

j=0

tn−j
1 tj2.

u′′
j := tj1u

′′ = tj2u
′′ =

n−j∑

i=0

tn−i
1 tj+i

2
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n+1(1 + t2)

n+1
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n+1
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w((P n)2) = w((P n)2)−1.

ω2k((P
n)2) = tk1t

k
2

Topological obstructions to totally skew embeddings – p. 17



Calculations for RP n

w((P n)2) = (1 + t1)
n+1(1 + t2)

n+1

w((P n)2) = w((P n)2)−1.

ω2k((P
n)2) = tk1t

k
2

Theorem.

N(P n) ≥ 4 · 2[log
2
n] − 1 (2)
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Other results
• Product of real projective spaces
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Other results
• Product of real projective spaces

• Grassmannians
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Thank you for attention!
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