Topological obstructions to totally skew embeddings

 Đorđ̉e BaralićMathematical Institute SANU, Belgrade, Serbia
Configuration Spaces: Geometry, Combinatorics and Topology
13th of May 2010., Pisa, Italy

Introduction

Introduction

- M. Ghomi, S. Tabachnikov, 2007

Introduction

- M. Ghomi, S. Tabachnikov, 2007

Given a manifold M^{n}, what is the smallest dimension $N\left(M^{n}\right)$ such that M^{n} admits a totally skew embedding in \mathbb{R}^{N} ?

Introduction

Definition 1. Two lines in an affine space are called skew if their affine span has dimension 3. More generally a collection of affine subspaces U_{1}, \ldots, U_{l} of \mathbf{R}^{N} are called skew if their affine span has dimension $\operatorname{dim}\left(U_{1}\right)+\ldots+\operatorname{dim}\left(U_{l}\right)+l-1$.

Introduction

Introduction

Definition 2. For a given smooth n-dimensional manifold M^{n}, an embedding $f: M^{n} \rightarrow \mathbb{R}^{N}$ is called totaly skew if for each two distinct points $x, y \in M^{n}$ the affine subspaces $d f\left(T_{x} M\right)$ and $d f\left(T_{y} M\right)$ of \mathbf{R}^{N} are skew. Let $N\left(M^{n}\right)$ be the minimum N such that there exists a skew embedding of M^{n} into \mathbf{R}^{N}.

Introduction

Definition 2. For a given smooth n-dimensional manifold M^{n}, an embedding $f: M^{n} \rightarrow \mathbb{R}^{N}$ is called totaly skew if for each two distinct points $x, y \in M^{n}$ the affine subspaces $d f\left(T_{x} M\right)$ and $d f\left(T_{y} M\right)$ of \mathbf{R}^{N} are skew. Let $N\left(M^{n}\right)$ be the minimum N such that there exists a skew embedding of M^{n} into \mathbf{R}^{N}.

Introduction

Introduction

Example 1. $S^{1} \hookrightarrow \mathbf{R}^{4} \quad z \rightarrow\left(z, z^{2}\right)$

Introduction

$$
\begin{aligned}
& \text { Example 1. } S^{1} \hookrightarrow \mathbf{R}^{4} \\
& \text { Example 2. } \mathbf{R} \hookrightarrow \mathbf{R}^{3}
\end{aligned} \quad z \rightarrow\left(z, z^{2}\right)
$$

Introduction

Introduction

- M. Ghomi, S. Tabachnikov, 2007

Introduction

- M. Ghomi, S. Tabachnikov, 2007

Theorem 1. For any manifold M^{n},

$$
2 n+1 \leq N\left(M^{n}\right) \leq 4 n+1 .
$$

Indeed, generically any submanifold $M^{n} \subset \mathbf{R}^{4 n+1}$ is totally skew. Further, if M^{n} is closed, then $N\left(M^{n}\right) \geq 2 n+2$.

Introduction

- M. Ghomi, S. Tabachnikov, 2007

Theorem 1. For any manifold M^{n},

$$
2 n+1 \leq N\left(M^{n}\right) \leq 4 n+1 .
$$

Indeed, generically any submanifold $M^{n} \subset \mathbf{R}^{4 n+1}$ is totally skew. Further, if M^{n} is closed, then $N\left(M^{n}\right) \geq 2 n+2$.

Theorem 2. $N\left(S^{n}\right) \leq 3 n+2$.

Classical problems

Classical problems

- Generalized vector fields problem

Classical problems

- Generalized vector fields problem
- Existence of symmetric nonsingular bilinear map $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{m}$

Classical problems

- Generalized vector fields problem
- Existence of symmetric nonsingular bilinear map $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{m}$
- An immersion problem for real projective spaces

Classical problems

- Generalized vector fields problem
- Existence of symmetric nonsingular bilinear map $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{m}$
- An immersion problem for real projective spaces
- Neighborly embeddings of manifolds

Classical problems

- Generalized vector fields problem
- Existence of symmetric nonsingular bilinear map $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{m}$
- An immersion problem for real projective spaces
- Neighborly embeddings of manifolds
- k regular embedding of manifolds

Problem comes to CGTA team

Problem comes to CGTA team

- Gordana Stojanović, PhD thesis

Problem comes to CGTA team

- Gordana Stojanović, PhD thesis
- CGTA team: G. Stojanović, S. Vrećica, R. Živaljević, Đ. Baralić

Our results

Our results

- $5<7 \leq N\left(\mathbb{R} P^{2}\right) \leq 9$

Our results

- $5<7 \leq N\left(\mathbb{R} P^{2}\right) \leq 9$
- $7<13 \leq N\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right) \leq 17$

Our results

- $5<7 \leq N\left(\mathbb{R} P^{2}\right) \leq 9$
- $7<13 \leq N\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right) \leq 17$
- $25<43 \leq N\left(G_{3}\left(\mathbb{R}^{7}\right) \leq 49\right.$

Our results

- $5<7 \leq N\left(\mathbb{R} P^{2}\right) \leq 9$
- $7<13 \leq N\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right) \leq 17$
- $25<43 \leq N\left(G_{3}\left(\mathbb{R}^{7}\right) \leq 49\right.$
- $13<21 \leq N\left(G_{2}\left(\mathbb{R}^{5}\right) \leq 25\right.$

Our results

- $5<7 \leq N\left(\mathbb{R} P^{2}\right) \leq 9$
- $7<13 \leq N\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right) \leq 17$
- $25<43 \leq N\left(G_{3}\left(\mathbb{R}^{7}\right) \leq 49\right.$
- $13<21 \leq N\left(G_{2}\left(\mathbb{R}^{5}\right) \leq 25\right.$
- $21<29 \leq N\left(G_{2}\left(\mathbb{R}^{7}\right) \leq 41\right.$

Our results

- $5<7 \leq N\left(\mathbb{R} P^{2}\right) \leq 9$
- $7<13 \leq N\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right) \leq 17$
- $25<43 \leq N\left(G_{3}\left(\mathbb{R}^{7}\right) \leq 49\right.$
- $13<21 \leq N\left(G_{2}\left(\mathbb{R}^{5}\right) \leq 25\right.$
- $21<29 \leq N\left(G_{2}\left(\mathbb{R}^{7}\right) \leq 41\right.$
- $19<31 \leq N\left(G_{3}\left(\mathbb{R}^{6}\right) \leq 37\right.$

Our results

- $5<7 \leq N\left(\mathbb{R} P^{2}\right) \leq 9$
- $7<13 \leq N\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right) \leq 17$
- $25<43 \leq N\left(G_{3}\left(\mathbb{R}^{7}\right) \leq 49\right.$
- $13<21 \leq N\left(G_{2}\left(\mathbb{R}^{5}\right) \leq 25\right.$
- $21<29 \leq N\left(G_{2}\left(\mathbb{R}^{7}\right) \leq 41\right.$
- $19<31 \leq N\left(G_{3}\left(\mathbb{R}^{6}\right) \leq 37\right.$
- $31<43 \leq N\left(G_{3}\left(\mathbb{R}^{8}\right) \leq 61\right.$

Vector bundle reduction

Vector bundle reduction

Let $F_{2}(M):=M^{2} \backslash \Delta_{M}$ be the configuration space (manifold) of all distinct ordered pairs of points in M. The tangent bundle $T\left(F_{2}(M)\right)$ admits a splitting

$$
\begin{equation*}
T\left(F_{2}(M)\right) \cong \pi_{1}^{*} T M \oplus \pi_{2}^{*} T M \tag{1}
\end{equation*}
$$

where $\pi_{1}, \pi_{2}: F_{2}(M) \rightarrow M$ are natural projections.

Vector bundle reduction

Let $F_{2}(M):=M^{2} \backslash \Delta_{M}$ be the configuration space (manifold) of all distinct ordered pairs of points in M. The tangent bundle $T\left(F_{2}(M)\right)$ admits a splitting

$$
\begin{equation*}
T\left(F_{2}(M)\right) \cong \pi_{1}^{*} T M \oplus \pi_{2}^{*} T M \tag{1}
\end{equation*}
$$

where $\pi_{1}, \pi_{2}: F_{2}(M) \rightarrow M$ are natural projections.

Vector bundle reduction

Vector bundle reduction

If $f: M^{n} \rightarrow \mathbb{R}^{N}$ is a totally skew embedding, then there arises a monomorphism of vector bundles

$$
\Phi=\Phi^{(1)} \oplus \Phi^{(2)}: T\left(F_{2}(M)\right) \oplus \varepsilon^{1} \longrightarrow F_{2}(M) \times \mathbb{R}^{N}
$$

where $\Phi_{(x, y)}^{(1)}: T_{x}(M) \oplus T_{y}(M) \rightarrow \mathbb{R}^{N}$ is the map defined by $\Phi_{(x, y)}(u, v)=d f_{x}(u)+d f_{y}(v)$ and $\Phi^{(2)}$, defined by $\Phi^{(2)}(\lambda)=\lambda(f(y)-f(x))$, maps the trivial line bundle ε^{1} to L.

Vector bundle reduction

If $f: M^{n} \rightarrow \mathbb{R}^{N}$ is a totally skew embedding, then there arises a monomorphism of vector bundles

$$
\Phi=\Phi^{(1)} \oplus \Phi^{(2)}: T\left(F_{2}(M)\right) \oplus \varepsilon^{1} \longrightarrow F_{2}(M) \times \mathbb{R}^{N}
$$

where $\Phi_{(x, y)}^{(1)}: T_{x}(M) \oplus T_{y}(M) \rightarrow \mathbb{R}^{N}$ is the map defined by $\Phi_{(x, y)}(u, v)=d f_{x}(u)+d f_{y}(v)$ and $\Phi^{(2)}$, defined by $\Phi^{(2)}(\lambda)=\lambda(f(y)-f(x))$, maps the trivial line bundle ε^{1} to L.
In this case the trivial N-dimensional bundle ε^{N} over $F_{2}(M)$ splits

Vector bundle reduction

Vector bundle reduction

Proposition 1. If the dual Stiefel-Whitney class

$$
\bar{w}_{k}\left(T\left(F_{2}(M)\right)\right):=w_{k}(\nu) \in H^{k}\left(F_{2}(M)\right)
$$

is non-zero, then $2 n+k+1 \leq N$. In particular, $N(M) \geq 2 n+k+1$.

Characteristic classes of $T\left(F_{2}(M)\right)$

Characteristic classes of $T\left(F_{2}(M)\right)$

$\therefore \longrightarrow H^{*}\left(M^{2}, M^{2} \backslash \Delta_{M}\right) \xrightarrow{\alpha} H^{*}\left(M^{2}\right) \xrightarrow{\beta} H^{*}\left(F_{2}(M)\right) \longrightarrow$.

Characteristic classes of $T\left(F_{2}(M)\right)$

$\therefore \longrightarrow H^{*}\left(M^{2}, M^{2} \backslash \Delta_{M}\right) \xrightarrow{\alpha} H^{*}\left(M^{2}\right) \xrightarrow{\beta} H^{*}\left(F_{2}(M)\right) \longrightarrow$.

We are interested in the (dual) Stiefel-Whitney classes so by naturality, in order to check non-triviality of $\bar{w}_{k}\left(T\left(F_{2}(M)\right)\right)$, it is sufficient to check if the class $\bar{w}_{k}\left(T\left(M^{2}\right)\right)$ is in the image of the map α.

Characteristic classes of $T\left(F_{2}(M)\right)$

Characteristic classes of $T\left(F_{2}(M)\right)$

The image $A:=$ Image (α) of α is generated, as a $H^{*}(M)$-module, by the "diagonal cohomology class"

$$
u^{\prime \prime}=\sum_{i=1}^{r} b_{i} \times b_{i}^{\sharp}
$$

where $\left\{b_{i}\right\}_{i=1}^{r}$ is an additive basis of $H^{*}(M)$ and b_{i}^{\sharp} the class dual to b_{i}.

Characteristic classes of $T\left(F_{2}(M)\right)$

Characteristic classes of $T\left(F_{2}(M)\right)$

Proposition 2.

$$
\begin{aligned}
& A=\operatorname{Image}(\alpha)=H^{*}(M) \cdot u^{\prime \prime} \\
= & \left\{(1 \times a) \cup u^{\prime \prime} \mid a \in H^{*}(M)\right\} \\
= & \left\{(a \times 1) \cup u^{\prime \prime} \mid a \in H^{*}(M)\right\}
\end{aligned}
$$

Characteristic classes of $T\left(F_{2}(M)\right)$

Proposition 2.

$$
\begin{aligned}
& A=\operatorname{Image}(\alpha)=H^{*}(M) \cdot u^{\prime \prime} \\
= & \left\{(1 \times a) \cup u^{\prime \prime} \mid a \in H^{*}(M)\right\} \\
= & \left\{(a \times 1) \cup u^{\prime \prime} \mid a \in H^{*}(M)\right\}
\end{aligned}
$$

Proposition 3. Let M be an n-dimensional manifold, let $w_{k} \in H^{k}(M ; \mathbb{Z} / 2)$ be its highest non-trivial Stiefel-Whitney class, and let $k \leq n-1$. Then $w_{k} w_{k}^{\prime} \notin \operatorname{Im}(\alpha)$.

Calculations for $\mathbb{R} P^{n}$

Calculations for $\mathbb{R} P^{n}$

$$
H^{*}\left(\left(P^{n}\right)^{2}\right) \cong \mathbb{F}_{2}\left[t_{1}, t_{2}\right] /\left(t_{1}^{n+1}=t_{2}^{n+1}=0\right)
$$

Calculations for $\mathbb{R} P^{n}$

$$
\begin{gathered}
H^{*}\left(\left(P^{n}\right)^{2}\right) \cong \mathbb{F}_{2}\left[t_{1}, t_{2}\right] /\left(t_{1}^{n+1}=t_{2}^{n+1}=0\right) \\
u^{\prime \prime}=t_{1}^{n}+t_{1}^{n-1} t_{2}+\ldots+t_{1} t_{2}^{n-1}+t_{2}^{n}=\sum_{j=0}^{n} t_{1}^{n-j} t_{2}^{j} .
\end{gathered}
$$

Calculations for $\mathbb{R} P^{n}$

$$
\begin{gathered}
H^{*}\left(\left(P^{n}\right)^{2}\right) \cong \mathbb{F}_{2}\left[t_{1}, t_{2}\right] /\left(t_{1}^{n+1}=t_{2}^{n+1}=0\right) \\
u^{\prime \prime}=t_{1}^{n}+t_{1}^{n-1} t_{2}+\ldots+t_{1} t_{2}^{n-1}+t_{2}^{n}=\sum_{j=0}^{n} t_{1}^{n-j} t_{2}^{j} \\
u_{j}^{\prime \prime}:=t_{1}^{j} u^{\prime \prime}=t_{2}^{j} u^{\prime \prime}=\sum_{i=0}^{n-j} t_{1}^{n-i} t_{2}^{j+i}
\end{gathered}
$$

Calculations for $\mathbb{R} P^{n}$

Calculations for $\mathbb{R} P^{n}$

$$
w\left(\left(P^{n}\right)^{2}\right)=\left(1+t_{1}\right)^{n+1}\left(1+t_{2}\right)^{n+1}
$$

Calculations for $\mathbb{R} P^{n}$

$$
\begin{gathered}
w\left(\left(P^{n}\right)^{2}\right)=\left(1+t_{1}\right)^{n+1}\left(1+t_{2}\right)^{n+1} \\
\bar{w}\left(\left(P^{n}\right)^{2}\right)=w\left(\left(P^{n}\right)^{2}\right)^{-1} .
\end{gathered}
$$

Calculations for $\mathbb{R} P^{n}$

$$
\begin{gathered}
w\left(\left(P^{n}\right)^{2}\right)=\left(1+t_{1}\right)^{n+1}\left(1+t_{2}\right)^{n+1} \\
\bar{w}\left(\left(P^{n}\right)^{2}\right)=w\left(\left(P^{n}\right)^{2}\right)^{-1} . \\
\bar{\omega}_{2 k}\left(\left(P^{n}\right)^{2}\right)=t_{1}^{k} t_{2}^{k}
\end{gathered}
$$

Calculations for $\mathbb{R} P^{n}$

$$
\begin{gathered}
w\left(\left(P^{n}\right)^{2}\right)=\left(1+t_{1}\right)^{n+1}\left(1+t_{2}\right)^{n+1} \\
\bar{w}\left(\left(P^{n}\right)^{2}\right)=w\left(\left(P^{n}\right)^{2}\right)^{-1} \\
\bar{\omega}_{2 k}\left(\left(P^{n}\right)^{2}\right)=t_{1}^{k} t_{2}^{k}
\end{gathered}
$$

Theorem.

$$
\begin{equation*}
N\left(P^{n}\right) \geq 4 \cdot 2^{\left[\log _{2} n\right]}-1 \tag{2}
\end{equation*}
$$

Other results

Other results

- Product of real projective spaces

Other results

- Product of real projective spaces
- Grassmannians

Thank you for attention!

