Homotopy Theoretic Techniques in Arrangements

Priyavrat Deshpande

Department of Mathematics University of Western Ontario

Young Researchers' Seminar Configuration Spaces: Geometry, Combinatorics and Topology CRM, Pisa, May 13, 2010

Outline

Introduction

2 Colimits

3 Homotopy Colimits

4 Examples

• Examples from Arrangements

5 Applications

6 The Toolkit

7 Nutshell

∃ >

Outline

Introduction

2 Colimits

3 Homotopy Colimits

4 Examples

• Examples from Arrangements

5 Applications

6 The Toolkit

7 Nutshell

Definition

Let *V* be a finite dimensional vector space (over \mathbb{R} or \mathbb{C}), an arrangement of hyperplanes is a finite collection $\mathcal{A} = \{H_1 \dots, H_n\}$ of codimension 1 affine subspaces of *V*.

Definition

An arrangement of subspaces is a finite collection $\mathcal{A} = \{H_1, \ldots, H_n\}$ of subspaces in a topological space *V* which is closed under intersection.

Definition

Let *V* be a finite dimensional vector space (over \mathbb{R} or \mathbb{C}), an arrangement of hyperplanes is a finite collection $\mathcal{A} = \{H_1 \dots, H_n\}$ of codimension 1 affine subspaces of *V*.

Definition

An arrangement of subspaces is a finite collection $\mathcal{A} = \{H_1, \ldots, H_n\}$ of subspaces in a topological space *V* which is closed under intersection.

One of the themes in arrangement theory is to understand the interaction between the combinatorics of the intersections and the topology of the complement, $V \setminus \bigcup_{i=1}^{n} H_i$.

Homotopy Colimit is a Machine

What is a Homotopy Colimit ?

- Simplicial Complexes
- Spheres
- Complex Projective Spaces, $\mathbb{C}P^n$
- Orbit Spaces, X/G
- Classifying Spaces of Groups
- Toric Varieties

- Simplicial Complexes
- Spheres
- Complex Projective Spaces, $\mathbb{C}P^n$
- Orbit Spaces, X/G
- Classifying Spaces of Groups
- Toric Varieties
- Arrangement complements

- Simplicial Complexes
- Spheres
- Complex Projective Spaces, $\mathbb{C}P^n$
- Orbit Spaces, X/G
- Classifying Spaces of Groups
- Toric Varieties
- Arrangement complements
- Arrangement links

- Simplicial Complexes
- Spheres
- Complex Projective Spaces, $\mathbb{C}P^n$
- Orbit Spaces, X/G
- Classifying Spaces of Groups
- Toric Varieties
- Arrangement complements
- Arrangement links
- Moment angle complexes

Why do we need homotopy colimits ?

 $S^2 = D^2 \longleftarrow S^1 \longrightarrow D^2$

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

Why do we need homotopy colimits ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Why do we need homotopy colimits ?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 - のへで

Outline

Introduction

2 Colimits

3 Homotopy Colimits

4 Examples

• Examples from Arrangements

5 Applications

6 The Toolkit

7 Nutshell

Definition (Small Category)

A category C is small if both ob(C) and hom(C) are sets. For example,

- A poset (P, \leq) , elements as objects and morphisms given by \leq .
- A group G, with a single object and morphisms indexed by $g \in G$.

•
$$\{\bullet \leftarrow \bullet \rightarrow \bullet\}$$
 and $\{\bullet \rightarrow \bullet \rightarrow \bullet\}$

Definition (Diagram of Spaces)

A diagram of spaces over a small category *C* is a covariant functor $\mathcal{D}: C \to Top$ into the category of topological spaces.

Categorical Language

Definition (Co-cone)

A co-cone of a diagram \mathcal{D} is a topological space *X* with a family of maps $\psi_i \colon \mathcal{D}(i) \to X$ such that for every $f \colon i \to j$ the following triangle commutes.

The Definition

Definition (Colimit)

The colimit of a diagram \mathcal{D} (*colim* \mathcal{D}) is the *universal co-cone*

The Definition

Definition (Colimit)

The colimit of a diagram $\mathcal{D}(colim\mathcal{D})$ is the universal co-cone

Constructive definition

$$colim \mathcal{D} = \coprod_{i \in Ob(C)} \mathcal{D}(i) / \sim$$

for $x \in \mathcal{D}(i), y \in \mathcal{D}(j), x \sim y$ iff $\mathcal{D}_g(x) = y$ for some $g \in Mor(i, j)$.

colim({} → Top) = Ø (the initial object in Top).
colim({X, Y}) = X ∐ Y (coproduct in Top).
colim(X → Y) = Y.
colim(* ⇒ [0, 1]) = S¹ (coequalizer in Top).
colim(Z ← X → Y) = Z ∪_X Y (pushout in Top).
colim(G → Top) = X/G.

Outline

Introduction

2 Colimits

3 Homotopy Colimits

4 Examples

• Examples from Arrangements

5 Applications

6 The Toolkit

7 Nutshell

-

Definition (Geometric Realization of a Poset - $\Delta(P)$)

Let (P, \leq) be a poset, order complex of *P* is a simplicial complex whose vertex set corresponds to the elements of *P* and *k*-simplices correspond to *k*-chains in *P*. The space $\Delta(P)$ is the geometric realization of the order complex of *P*.

Constructive Definition

The space $hocolim(\mathcal{D})$ can be constructed by taking -

- for each object c_0 of C, a copy of $\mathcal{D}(c_0)$;
- for each chain $c_0 \to \cdots \to c_n$ of composable arrows in *C*, a copy of $\mathcal{D}(c_0) \times \Delta^n$;

and making identifications as follows -

- collapse D(c₀) × Δⁿ to something smaller if it arises from a chain containing an identity arrow;
- identify D(c₀) × ∂Δⁿ ⊂ D(c₀) × Δⁿ with the appropriate subspace of *hocolim*(D) arising from chains of smaller lengths;
- finally identify $\mathcal{D}(c_0) \times \Delta^0$ with $\mathcal{D}(c_1) \times \Delta^0$ via the induced map $\mathcal{D}(c_0 \to c_1)$.

• Homotopy colimit is a functorial construction.

- Homotopy colimit is a functorial construction.
- Homotopy colimits are homotopy invariant.

- Homotopy colimit is a functorial construction.
- Homotopy colimits are homotopy invariant.
- There is a natural map *hocolim*D → *colim*D which is not always a homotopy equivalence.

- Homotopy colimit is a functorial construction.
- Homotopy colimits are homotopy invariant.
- There is a natural map *hocolim*D → *colim*D which is not always a homotopy equivalence.
- There are more than one ways to construct the homotopy colimit (up to homotopy equivalence).

- Homotopy colimit is a functorial construction.
- Homotopy colimits are homotopy invariant.
- There is a natural map *hocolim*D → *colim*D which is not always a homotopy equivalence.
- There are more than one ways to construct the homotopy colimit (up to homotopy equivalence).
- In general it is not the *colimit* in the homotopy category.
- Homotopy colimit is the total left derived functor of *colimit*.

Outline

Introduction

2 Colimits

3 Homotopy Colimits

- Examples from Arrangements
- 5 Applications
- 6 The Toolkit
- 7 Nutshell

э.

Homotopy Pushout

Consider the diagram

 $Z \stackrel{f}{\leftarrow} X \stackrel{g}{\rightarrow} Y$

э.

Homotopy Pushout

Consider the diagram

$$Z \xleftarrow{f} X \xrightarrow{g} Y$$

The homotopy pushout is formed by taking

 $Z \coprod X \coprod Y \coprod (X \times \Delta^1)_f \coprod (X \times \Delta^1)_g$

Consider the diagram

$$Z \xleftarrow{f} X \xrightarrow{g} Y$$

The homotopy pushout is formed by taking

$$Z \coprod X \coprod Y \coprod (X \times \Delta^1)_f \coprod (X \times \Delta^1)_g$$

then identifying

- $(X \times \{0\})_f \sim X$ via 1_X and $(X \times \{1\})_f \sim Z$ via f
- $(X \times \{0\})_g \sim X$ via 1_X and $(X \times \{1\})_g \sim Y$ via g

• • • • • • •

Consider the diagram

$$Z \xleftarrow{f} X \xrightarrow{g} Y$$

The homotopy pushout is formed by taking

$$Z \coprod X \coprod Y \coprod (X \times \Delta^1)_f \coprod (X \times \Delta^1)_g$$

then identifying

- $(X \times \{0\})_f \sim X$ via 1_X and $(X \times \{1\})_f \sim Z$ via f
- $(X \times \{0\})_g \sim X$ via 1_X and $(X \times \{1\})_g \sim Y$ via g

- $hocolim(* \leftarrow X \rightarrow *) = \Sigma X$ (suspension of X).
- $hocolim(* \leftarrow S^{n-1} \rightarrow *) = S^n$
- $hocolim(Z \xleftarrow{f} X \to *)$ (mapping cone of f).
- $hocolim(Z \leftarrow (Z \times Y) \rightarrow Y) = Y * Z$ (join construction).

Consider the (trivial) diagram

$$\mathcal{D}(i) = *, \ \forall i \in Ob(C)$$

then $hocolim\mathcal{D}$ is called as the *classifying space of C*, denoted *BC*.

Consider the (trivial) diagram

$$\mathcal{D}(i) = *, \ \forall i \in Ob(C)$$

then *hocolim* \mathcal{D} is called as the *classifying space of C*, denoted *BC*.

- If *P* is a poset then classifying space of *P* is $\Delta(P)$.
- If G is a group considered as a small category then classifying space of G is BG.
- If *C* is a groupoid then $BC \simeq \coprod BC(\{x\}, \{x\})$, where $x \in Ob(C)$ and $C(\{x\}, \{x\})$ is the vertex group of the isomorphism class of *x*.
Nerve Diagram

Let $U := \{X_i\}_{i \in I}$ be an open cover of a space *X*. Let P_U be the poset of all non-empty intersections, ordered by reverse inclusion. Define a diagram of spaces \mathcal{D}_U as follows -

- $\mathcal{D}_U(J) = \bigcap_{i \in J} X_i$, for $J \subseteq I$;
- $\mathcal{D}(J \to J')$ is the inclusion map, for $J' \subseteq J \subseteq I$.

Nerve Diagram

Let $U := \{X_i\}_{i \in I}$ be an open cover of a space *X*. Let P_U be the poset of all non-empty intersections, ordered by reverse inclusion. Define a diagram of spaces \mathcal{D}_U as follows -

- $\mathcal{D}_U(J) = \bigcap_{i \in J} X_i$, for $J \subseteq I$;
- $\mathcal{D}(J \to J')$ is the inclusion map, for $J' \subseteq J \subseteq I$.

If each $\mathcal{D}(J)$ is contractible then

 $hocolim_{P_U}\mathcal{D}_U\simeq X$

Nerve Diagram

Let $U := \{X_i\}_{i \in I}$ be an open cover of a space *X*. Let P_U be the poset of all non-empty intersections, ordered by reverse inclusion. Define a diagram of spaces \mathcal{D}_U as follows -

- $\mathcal{D}_U(J) = \bigcap_{i \in J} X_i$, for $J \subseteq I$;
- $\mathcal{D}(J \to J')$ is the inclusion map, for $J' \subseteq J \subseteq I$.

If each $\mathcal{D}(J)$ is contractible then

 $hocolim_{P_U}\mathcal{D}_U \simeq X$

Nerve Lemma

Every topological space is homotopy equivalent to classifying space of some category.

Let *G* be a group and *X* be a *G*-space, which is also the diagram $X: G \to Top$. The *homotopy orbit space* of the action of *G* on *X*, denoted X_{hG} , is the space

$$X_{hG}$$
 := $hocolim_G X$
= $(X \times EG)/G$

Let *G* be a group and *X* be a *G*-space, which is also the diagram $X: G \to Top$. The *homotopy orbit space* of the action of *G* on *X*, denoted X_{hG} , is the space

$$X_{hG} := hocolim_G X$$

 $= (X \times EG)/G$

- X_{hG} is a homotopically correct version of the orbit space, also known as the *Borel construction*.
- If X is a free G-space then $X_{hG} \simeq colim_G X = X/G$.
- If the *G* action is trivial then $X_{hG} \simeq X \times BG$.

Define a diagram over T_n as -

- $\mathcal{D}(A) = \prod_{i \in A} X_i$, for $A \in P_n$;
- $\mathcal{D}(A \to B)$ be canonical projection.

- $\mathcal{D}(A) = \prod_{i \in A} X_i$, for $A \in P_n$;
- $\mathcal{D}(A \to B)$ be canonical projection.

 $hocolim_{P_n}\mathcal{D}\cong X_0*\cdots*X_n$

 $\mathcal{D}(A)$ Π \mathcal{V} f $A \in I$

•
$$\mathcal{D}(A) = \prod_{i \in A} X_i$$
, for $A \in P_n$;

• $\mathcal{D}(A \to B)$ be canonical projection.

 $hocolim_{P_n}\mathcal{D}\cong X_0*\cdots*X_n$

Consider a new diagram over P_n defined as -

 $\mathcal{E}(A) = (\prod_{|A|} S^1) / S^1$

Define a diagram over F_n as -

•
$$\mathcal{D}(A) = \prod_{i \in A} X_i$$
, for $A \in P_n$;

• $\mathcal{D}(A \to B)$ be canonical projection.

$$hocolim_{P_n}\mathcal{D}\cong X_0*\cdots*X_n$$

Consider a new diagram over P_n defined as -

$$\mathcal{E}(A) = (\prod_{|A|} S^1) / S^1$$

then

$$hocolim_{P_n}\mathcal{E}\cong \mathbb{C}P^n$$

For Σ , a complete and rational fan in \mathbb{R}^n , let P_{Σ} be the poset of cones ordered by reverse inclusion. Define a diagram as follows -

Then

 $hocolim \mathcal{D} \cong X_{\Sigma}$

 X_{Σ} is the *toric variety* associated with the given fan.

Subspace Arrangement

Definition (Arrangement of Subspaces)

is a finite collection $\mathcal{A} = \{A_1, \ldots, A_m\}$ of affine subspaces in \mathbb{R}^n s.t.

- \mathcal{A} is closed under intersection, and
- for $A, B \in \mathcal{A}$ and $A \subseteq B$ the inclusion is a cofibration.

Let *P* be the poset of all non-empty intersections of subspaces in \mathcal{A} ordered by reversed inclusion and the link $L := \bigcup_{i=1}^{n} A_i$.

Subspace Arrangement

Definition (Arrangement of Subspaces)

is a finite collection $\mathcal{A} = \{A_1, \ldots, A_m\}$ of affine subspaces in \mathbb{R}^n s.t.

- \mathcal{A} is closed under intersection, and
- for $A, B \in \mathcal{A}$ and $A \subseteq B$ the inclusion is a cofibration.

Let *P* be the poset of all non-empty intersections of subspaces in \mathcal{A} ordered by reversed inclusion and the link $L := \bigcup_{i=1}^{n} A_i$.

Define a *P*-diagram \mathcal{D} as follows -

$$\mathcal{D}(p) = A_p$$

 $\mathcal{D}(p o q) = A_p o A_q$

Subspace Arrangement

Definition (Arrangement of Subspaces)

is a finite collection $\mathcal{A} = \{A_1, \ldots, A_m\}$ of affine subspaces in \mathbb{R}^n s.t.

- \mathcal{A} is closed under intersection, and
- for $A, B \in \mathcal{A}$ and $A \subseteq B$ the inclusion is a cofibration.

Let *P* be the poset of all non-empty intersections of subspaces in \mathcal{A} ordered by reversed inclusion and the link $L := \bigcup_{i=1}^{n} A_i$.

Define a *P*-diagram \mathcal{D} as follows -

$$\mathcal{D}(p) = A_p$$

 $\mathcal{D}(p o q) = A_p o A_q$

Theorem (Ziegler & Živaljević - 91)

 $L \simeq hocolim_P \mathcal{D}$

Priyavrat Deshpande (UWO)

Y.R.S., Pisa 25 / 49

Consider a subspace arrangement \mathcal{A} in \mathbb{R}^n , let $\hat{\mathcal{A}}$ denote arrangement of one point compactification of A_i 's in S^n . Let \hat{L} denote the corresponding link and P denote the corresponding intersection poset.

Define a diagram over P,

$$\hat{\mathcal{D}}(p) = S^{d(p)} (d(p) := dim(\mathcal{D}(p)))$$

 $\hat{D}(p \to q) = \text{constant}$

Consider a subspace arrangement \mathcal{A} in \mathbb{R}^n , let $\hat{\mathcal{A}}$ denote arrangement of one point compactification of A_i 's in S^n . Let \hat{L} denote the corresponding link and P denote the corresponding intersection poset.

Define a diagram over P,

$$\hat{\mathcal{D}}(p) = S^{d(p)} (d(p) := \dim(\mathcal{D}(p)))$$
$$\hat{D}(p \to q) = \text{constant}$$

Theorem (Ziegler & Živaljević - 91)

 $\hat{L} \simeq hocolim_P \hat{D}$

Let \mathcal{A} be a central arrangements of subspaces in \mathbb{R}^n . The spherical arrangement is a finite collection $\mathcal{A}_S = \{S_1 \dots, S_m\}$ of spheres $S_i = A_i \cap S^{n-1}$ in S^{n-1} . Let P denote the intersection poset and L_S denote the link.

Define a P-diagram of spaces as -

$$\mathcal{D}_{S}(p) = S^{d(p)-1}$$

 $\mathcal{D}_{S}(p o q) = ext{constant}$

Let \mathcal{A} be a central arrangements of subspaces in \mathbb{R}^n . The spherical arrangement is a finite collection $\mathcal{A}_S = \{S_1 \dots, S_m\}$ of spheres $S_i = A_i \cap S^{n-1}$ in S^{n-1} . Let P denote the intersection poset and L_S denote the link.

Define a P-diagram of spaces as -

$$\mathcal{D}_{S}(p) = S^{d(p)-1}$$

 $\mathcal{D}_{S}(p o q) = ext{constant}$

Theorem (Ziegler & Živaljević - 91)

 $L_S \simeq hocolim_P \mathcal{D}_S$

- A real arrangement of hyperplanes is a finite collection
 A = {H₁,..., H_m} of affine hyperplanes in ℝⁿ.
- Set of codimension 0 cells is called *chambers*, denoted by C(A).
- The face poset \mathcal{F} is the poset of cells ordered by reverse containment.
- The complexified complement $M(\mathcal{A})$ is the complement of the union of complexified hyperplanes in \mathbb{C}^n .
- For a face *F* and a chamber *C*, let *F C* denote the unique chamber containing *F* that lies on the same side as *C* with respect to *F*.

Example of an Arrangement

Face Action on Chambers

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^n and consider the set

$$\mathcal{S} := \{ [F, C] \in \mathcal{F} imes \mathcal{C}(\mathcal{A}) \mid C < F \}$$

with the partial order given by

$$[F_1, C_1] \prec [F_2, C_2] \Longleftrightarrow F_1 < F_2 \& C_1 = F_1 \circ C_2.$$

The Salvetti complex $(Sal(\mathcal{A}))$ of the arrangement is defined as the geometric realization of \mathcal{S} .

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^n and consider the set

$$\mathcal{S} := \{ [F, C] \in \mathcal{F} imes \mathcal{C}(\mathcal{A}) \mid C < F \}$$

with the partial order given by

$$[F_1, C_1] \prec [F_2, C_2] \Longleftrightarrow F_1 < F_2 \& C_1 = F_1 \circ C_2.$$

The Salvetti complex (Sal(A)) of the arrangement is defined as the geometric realization of S.

Theorem (Salvetti - 87)

If \mathcal{A} is a hyperplane arrangement in \mathbb{R}^n and $Sal(\mathcal{A})$ then the associated Salvetti complex $Sal(\mathcal{A})$ embeds into the complexified complement and is also a strong deformation retract of $M(\mathcal{A})$.

The Salvetti Complex

A<u>A</u>
<u>p</u>
<u>B</u>
<u>B</u>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Salvetti Complex

The Salvetti Complex

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

$M(\mathcal{A})$ as a Homotopy Colimit

Given a real arrangement of hyperplanes \mathcal{A} , define a diagram of spaces \mathcal{D} over the face poset \mathcal{F} by

$$\mathcal{D}(F) := \{ C \in \mathcal{C}(\mathcal{A}) \mid C < F \}$$

and the maps

$$\mathcal{D}(F_1 \to F_2): \quad \mathcal{D}(F_1) \to \mathcal{D}(F_2)$$
$$C \mapsto F_2 \circ C$$

$M(\mathcal{A})$ as a Homotopy Colimit

Given a real arrangement of hyperplanes \mathcal{A} , define a diagram of spaces \mathcal{D} over the face poset \mathcal{F} by

$$\mathcal{D}(F) := \{ C \in \mathcal{C}(\mathcal{A}) \mid C < F \}$$

and the maps

$$\mathcal{D}(F_1 \to F_2): \quad \mathcal{D}(F_1) \to \mathcal{D}(F_2) \\ C \mapsto F_2 \circ C$$

Then,

Theorem (Delucchi - 06)

 $\mathit{hocolim}_{\mathcal{F}}\mathcal{D} \cong \mathit{Sal}(\mathcal{A})$

Priyavrat Deshpande (UWO)

Y.R.S., Pisa 33 / 49

$M(\mathcal{A})$ as a Homotopy Colimit, continued

Given a real arrangement of hyperplanes A, define a diagram of spaces \mathcal{E} over the face poset \mathcal{F}^{op} by

$$\mathcal{E}(F) := Sal(\mathcal{A}_{|F|})$$

and the maps being natural inclusion of subcomplexes

$$\mathcal{E}(F_1 \to F_2) \colon Sal(\mathcal{A}_{|F_1|}) \hookrightarrow Sal(\mathcal{A}_{|F_2|})$$

$M(\mathcal{A})$ as a Homotopy Colimit, continued

Given a real arrangement of hyperplanes \mathcal{A} , define a diagram of spaces \mathcal{E} over the face poset \mathcal{F}^{op} by

$$\mathcal{E}(F) := Sal(\mathcal{A}_{|F|})$$

and the maps being natural inclusion of subcomplexes

$$\mathcal{E}(F_1 \to F_2) \colon Sal(\mathcal{A}_{|F_1|}) \hookrightarrow Sal(\mathcal{A}_{|F_2|})$$

Then,

Theorem (Delucchi - 06)

 $\mathit{hocolim}_{\mathcal{F}^{\mathit{op}}}\mathcal{E}\simeq \mathit{Sal}(\mathcal{A})$

Priyavrat Deshpande (UWO)

Outline

Introduction

2 Colimits

3 Homotopy Colimits

4 Examples

• Examples from Arrangements

5 Applications

6 The Toolkit

7 Nutshell

- Homotopy colimits come equipped with lot of fancy tools from category theory.
- The Bousfield-Kan spectral sequence can be used to understand (co)homology of *hocolim* in terms of the spaces involved.
- The fundamental group(oid) can also be expressed in terms of the fundamental group(oid)s of the input spaces (Seifert-van Kampen-Brown theorem).
- They provide input spaces for important theorems in homotopy theory.

Outline

Introduction

2 Colimits

3 Homotopy Colimits

4 Examples

• Examples from Arrangements

5 Applications

7 Nutshell

- Projection lemma
- Homotopy lemma
- Wedge lemma
- Quillen's theorem A
- Simplicial model lemma

Lemma

Let P be a finite poset and let $\mathcal{D}: P \to \text{Top}$ be a diagram of spaces such that for each $p \in P$ the induced map $\text{colim}_{P < p}\mathcal{D} \to \mathcal{D}(p)$ is a closed cofibration. Then the natural projection map

 $hocolim_P \mathcal{D} \to colim_P \mathcal{D}$

is a homotopy equivalence.

Lemma

Let \mathcal{D} and \mathcal{E} be two P-diagrams s.t. there is a map $\alpha_p \colon \mathcal{D}(p) \to \mathcal{E}(p)$ for every $p \in P$. If α_p is a (weak) homotopy equivalence for every p then the induced map

 $\hat{\alpha}$: $hocolim_P \mathcal{D} \to hocolim_P \mathcal{E}$

is also a (weak) homotopy equivalence.

Lemma (Ziegler & Živaljević - 91)

Let \mathcal{D} be a P-diagram so that there exists points $c_p \in \mathcal{D}(p) \ \forall p \in P$ such that Image $\{(\mathcal{D}(q \to p))\} = \{c_p\}$ for all $q \to p$, then -

$$hocolim_P \mathcal{D} \simeq \Delta(P) \lor \bigvee_{p \in P} (\mathcal{D}(p) * \Delta(P_{< p})).$$
Homotopy Types of Links

Theorem (Ziegler & Živaljević - 91)

Let \mathcal{A} be an arrangement of subspaces with L as its link, then -

 $L(\mathcal{A}) \simeq \Delta(P)$

《曰》 《聞》 《臣》 《臣》 三臣 …

Homotopy Types of Links

Theorem (Ziegler & Živaljević - 91)

Let \mathcal{A} be an arrangement of subspaces with L as its link, then -

 $L(\mathcal{A}) \simeq \Delta(P)$

Let \hat{A} be the compactified affine arrangement with \hat{L} as its link, then -

$$\hat{L} \simeq \bigvee_{p \in P} (\Delta(P_{< p}) * S^{d(p)})$$

Theorem (Ziegler & Živaljević - 91)

Let \mathcal{A} be an arrangement of subspaces with L as its link, then -

 $L(\mathcal{A}) \simeq \Delta(P)$

Let $\hat{\mathcal{A}}$ be the compactified affine arrangement with \hat{L} as its link, then -

$$\hat{L} \simeq \bigvee_{p \in P} (\Delta(P_{< p}) * S^{d(p)})$$

If A is a spherical arrangement then the homotopy type of the link is

$$L \simeq \bigvee_{p \in P} (\Delta(P_{< p}) * S^{d(p) - 1})$$

Quillen's Theorem A

Theorem

If $f: P \to Q$ *is a poset map s.t.* $\Delta(f^{-1}(Q_{\geq q}))$ *is contractible* $\forall q$ *then,*

$$\Delta f \colon \Delta(P) \xrightarrow{\simeq} \Delta(Q)$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - の々で

Quillen's Theorem A

Theorem

If $f: P \to Q$ *is a poset map s.t.* $\Delta(f^{-1}(Q_{\geq q}))$ *is contractible* $\forall q$ *then,*

$$\Delta f \colon \Delta(P) \xrightarrow{\simeq} \Delta(Q)$$

Corollary (Order Homotopy Theorem)

If $f: P \to P$ *is a poset map such that* $f(p) \leq p \ \forall p$ *, then*

 $\Delta(P) \simeq \Delta(f(P))$

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - のへの

Quillen's Theorem A

Theorem

If $f: P \to Q$ is a poset map s.t. $\Delta(f^{-1}(Q_{\geq q}))$ is contractible $\forall q$ then,

$$\Delta f \colon \Delta(P) \xrightarrow{\simeq} \Delta(Q)$$

Corollary (Order Homotopy Theorem)

If $f: P \to P$ *is a poset map such that* $f(p) \leq p \ \forall p$ *, then*

 $\Delta(P)\simeq \Delta(f(P))$

Corollary

Let $f: P \to Q$ be a map satisfying the hypothesis of theorem A. If \mathcal{D} is any Q-diagram and $f^*\mathcal{D}$ the corresponding (pull back) P-diagram then,

 $hocolim_P(f^*\mathcal{D}) \xrightarrow{\simeq} hocolim_Q\mathcal{D}$

Theorem (Björner, Wachs, Welker - 04)

Let $f: P \to Q$ be a poset map such that $\Delta(Q)$ is connected and for all $q \in Q$ the fiber $\Delta(f^{-1}(Q_{\leq q}))$ is $l(f^{-1}(Q_{< q}))$ -connected. Then

$$\Delta(P) \simeq \Delta(Q) \lor \bigvee_{q \in Q} \Delta(f^{-1}(Q_{\leq q})) * \Delta(Q_{>q})$$

Definition (Poset Limit of a Diagram ($Plim\mathcal{D}$))

Let $\mathcal{D}: P \to pos$ be a diagram of posets. Then $Plim\mathcal{D}$ is again a poset whose objects are

$$\coprod_{p \in P} \{p\} \times \mathcal{D}(p)$$

and the order relations are

$$(p_1, q_1) \le (p_2, q_2) \iff \begin{cases} p_1 \le p_2 \text{ and} \\ q_1 \le \mathcal{D}_{p_2 \to p_1}(q_2) \end{cases}$$

《曰》 《聞》 《臣》 《臣》 三臣 …

Definition (Poset Limit of a Diagram ($Plim\mathcal{D}$))

Let $\mathcal{D}: P \to pos$ be a diagram of posets. Then $Plim\mathcal{D}$ is again a poset whose objects are

$$\coprod_{p \in P} \{p\} \times \mathcal{D}(p)$$

and the order relations are

$$(p_1, q_1) \le (p_2, q_2) \iff \begin{cases} p_1 \le p_2 \text{ and} \\ q_1 \le \mathcal{D}_{p_2 \to p_1}(q_2) \end{cases}$$

Lemma

Let \mathcal{D} be a P-diagram of posets, define a new diagram $\Delta(\mathcal{D}): P \to Top$ by assigning $\Delta(\mathcal{D}(p))$ to each p. Then we have;

 $hocolim_P\Delta(\mathcal{D})\simeq\Delta(Plim\mathcal{D})$

Outline

Introduction

2 Colimits

3 Homotopy Colimits

4 Examples

• Examples from Arrangements

5 Applications

6 The Toolkit

7 Nutshell

-

• Complement of a c.r. arrangement is a gluing construction,

- Complement of a c.r. arrangement is a gluing construction,
- this gluing is combinatorial; but

- Complement of a c.r. arrangement is a gluing construction,
- this gluing is combinatorial; but
- need a better result explaining the nature of the gluing, and

- Complement of a c.r. arrangement is a gluing construction,
- this gluing is combinatorial; but
- need a better result explaining the nature of the gluing, and
- how about complex arrangements ?

Next episode

Next episode

- (Co)homology of the homotopy colimits.
- Fundamental group(oid) of the homotopy colimits.

Thank You !