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Free abelian covers

Free abelian covers
Let X be a connected CW-complex with finite 1-skeleton,
G = π1(X , x0).
Consider the connected, regular covering spaces of X , with group
of deck transformations a free abelian group of fixed rank r .
Model situation: the r -dimensional torus T r = K (Zr ,1) and its
universal cover, Rr → T r , with group of deck transformations Zr .
Any epimorphism ν : G � Zr gives rise to a Zr -cover, by pull back:

X ν //

��

Rr

��
X

f // T r ,

where f realizes ν at the level of fundamental groups.
Note: (homotopy fiber of f ) ' X ν .
All connected, regular Zr -covers of X arise in this manner.
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Free abelian covers

The map ν factors as

G ab−−→ Gab
ν∗−−→ Zr ,

where ν∗ may be identified with the induced homomorphism

f∗ : H1(X ,Z)→ H1(T r ,Z).

Passing to the homomorphism in Q-homology, we see that the
cover X ν → X is determined by the kernel of

ν∗ : H1(X ,Q)→ Qr .

Conversely, every codimension-r linear subspace of H1(X ,Q) can
be realized as

ker(ν∗ : H1(X ,Q)→ Qr ).

for some ν : G � Zr , and thus gives rise to a cover X ν → X .
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Free abelian covers

Let Grr (H1(X ,Q)) be the Grassmanian of r -planes in the
finite-dimensional, rational vector space H1(X ,Q).

Using the dual map ν∗ : Qr → H1(X ,Q) instead, we obtain:

Proposition (Dwyer–Fried 1987)
The connected, regular covers of X whose group of deck
transformations is free abelian of rank r are parametrized by the
rational Grassmannian Grr (H1(X ,Q)), via the correspondence{

Zr -covers X ν → X
}
←→

{
r -planes Pν := im(ν∗) in H1(X ,Q)

}
.
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The Dwyer–Fried sets

The Dwyer–Fried sets
Moving about the rational Grassmannian, and recording how the Betti
numbers of the corresponding covers vary leads to:

Definition
The Dwyer–Fried invariants of X are the subsets

Ωi
r (X ) =

{
Pν ∈ Grr (H1(X ,Q))

∣∣ bj(X ν) <∞ for j ≤ i
}
,

defined for all i ≥ 0 and all r > 0, with the convention that Ωi
r (X ) = ∅ if

r > b1(X ).

In particular, if b1(X ) = 0, then all the Ω-invariants of X are empty.
For a fixed r > 0, the Dwyer–Fried invariants form a descending
filtration of the Grassmanian of r -planes,

Grr (H1(X ,Q)) = Ω0
r (X ) ⊇ Ω1

r (X ) ⊇ Ω2
r (X ) ⊇ · · · .
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The Dwyer–Fried sets

The Ω-sets are homotopy-type invariants of X :

Lemma
Suppose X ' Y. For each r > 0, there is then an isomorphism
Grr (H1(Y ,Q)) ∼= Grr (H1(X ,Q)) sending each subset Ωi

r (Y ) bijectively
onto Ωi

r (X ).

Proof.
Let f : X → Y be a (cellular) homotopy equivalence.
f ∗ : H1(Y ,Q)→ H1(X ,Q), defines isomorphisms
f ∗r : Grr (H1(Y ,Q))→ Grr (H1(X ,Q)).
It remains to show that f ∗r (Ωi

r (Y )) ⊆ Ωi
r (X ).

For that, let P ∈ Ωi
r (Y ), and write P = Pν , for some

ν : π1(Y ) � Zr . The map f lifts to a map f̄ : X ν◦f] → Y ν .
Clearly, f̄ is a homotopy equivalence. Thus, bi(X ν◦f]) = bi(Y ν),
and so f ∗r (Pν) = Pν◦f] belongs to Ωi

r (X ).
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The Dwyer–Fried sets

In view of this lemma, we may extend the definition of the Ω-sets from
spaces to groups.

Let G be a finitely-generated group. Pick a classifying space K (G,1)
with finite k -skeleton, for some k ≥ 1.

Definition

The Dwyer–Fried invariants of G are the subsets

Ωi
r (G) = Ωi

r (K (G,1))

of Grr (H1(G,Q)), defined for all i ≥ 0 and r ≥ 1.

Since the homotopy type of K (G,1) depends only G, the sets Ωi
r (G)

are well-defined group invariants.
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The Dwyer–Fried sets

Especially manageable situation: r = n, where n = b1(X ) > 0.
In this case, Grn(H1(X ,Q)) = {pt}.
This single point corresponds to the maximal free abelian cover,
Xα → X , where α : G � Gab/Tors(Gab) = Zn.
The sets Ωi

n(X ) are then given by

Ωi
n(X ) =

{
{pt} if bj(Xα) <∞ for j ≤ i ,

∅ otherwise.

Both situations may occur:

Example

Let X = S1 ∨ Sk , for some k > 1. Then Xα = X ab is homotopic to a
countable wedge of k -spheres. Thus, Ωi

1(X ) = {pt} for i < k , yet
Ωi

1(X ) = ∅, for i ≥ k .
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The Dwyer–Fried sets

Remark
Finiteness of the Betti numbers of a free abelian cover X ν does not
imply finite-generation of the integral homology groups of X ν . Thus, we
cannot replace the condition “bi(X ν) <∞, for i ≤ q" by the (stronger)
condition “Hi(X ν ,Z) is a finitely-generated group, for i ≤ q."

E.g., let K be a knot in S3, with complement X = S3 \ K , infinite cyclic
cover X ab, and Alexander polynomial ∆K ∈ Z[t±1]. Then

H1(X ab,Z) = Z[t±1]/(∆K ).

Hence, H1(X ab,Q) = Qd , where d = deg ∆K . Thus,

Ω1
1(X ) = {pt}.

But, if ∆K is not monic, H1(X ab,Z) need not be a f.g. Z-module.

Example (Milnor 1968)

Let K be the 52 knot, with Alex polynomial ∆K = 2t2 − 3t + 2. Then
H1(X ab,Z) = Z[1/2]⊕ Z[1/2] is not f.g., though H1(X ab,Q) = Q⊕Q.
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Ω-invariants and characteristic varieties

Ω-invariants and characteristic varieties
Given an epimorphism ν : G � Zr , let ν̂ : Ẑr → Ĝ be the induced
morphism between character groups, given by ν̂(ρ)(g) = ν(ρ(g)).
Its image, Tν = ν̂

(
Ẑr
)
, is a complex algebraic subtorus of Ĝ,

isomorphic to (C×)r .
The following theorem was proved by Dwyer and Fried for a finite
CW-complex X , using the support loci for the Alexander invariants
of X . It was recast in a slightly more general context in (PS 2010),
using the degree-1 characteristic varieties.

Theorem

Let X be a connected CW-complex with finite k-skeleton, G = π1(X ).
For an epimorphism ν : G � Zr , the following are equivalent:

1 The vector space
⊕k

i=0 Hi(X ν ,C) is finite-dimensional.
2 The algebraic torus Tν intersects the varietyWk (X ) in only finitely

many points.
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Ω-invariants and characteristic varieties

Corollary

SupposeW i(X ) is finite. Then Ωi
r (X ) = Grr (H1(X ,Q)), ∀r ≤ b1(X ).

Example

Let M be a nilmanifold. Then Ωi
r (M) = Grr (Qn), for all i ≥ 0 and

r ≤ n = b1(M).

Example
Suppose X is the complement of a knot in Sm, m ≥ 3. Then
Ωi

1(X ) = {pt}, for all i ≥ 0.

Corollary

Let n = b1(X ). SupposeW i(X ) is infinite, for some i > 0. Then
Ωq

n(X ) = ∅, for all q ≥ i . In particular, bj(Xα) =∞, for some j ≤ i .
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Ω-invariants and characteristic varieties

Example
Let Sg be a Riemann surface of genus g > 1. Then

Ωi
r (Sg) = ∅, for all i , r ≥ 1

Ωn
r (Sg1 × · · · × Sgn ) = ∅, for all r ≥ 1

Example

Let Ym =
∨m S1 be a wedge of m circles, m > 1. Then

Ωi
r (Ym) = ∅, for all i , r ≥ 1

Ωn
r (Ym1 × · · · × Ymn ) = ∅, for all r ≥ 1
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The openess question

The openess question

Question
For which spaces X , and for which indices i and r are the sets Ωi

r (X )
Zariski open subsets of Grr (H1(X ,Q))?

Write n = b1(X ). Identify H1(X ,Q) = Qn and Gr1(Qn) = QPn−1.

Theorem (DF 1987)

Each Ωi
1(X ) is the complement of a finite union of projective subspaces

in QPn−1. In particular, Ωi
1(X ) is a Zariski open set in QPn−1.

This subspace arrangement can be understood in terms of a more
general construction, introduced in (DPS 2009).

Alex Suciu (Northeastern University) Jump loci and homological finiteness Pisa, May 2010 14 / 24



The openess question

Proposition (PS 2010)

Let X ν → X be a regular Z-cover, classified by ν : π1(X ) � Z. Let
ν∗ : H1(Z,Z) = Z→ H1(X ,Z), and ν̄ = ν∗(1). Then,

k∑
i=1

bi(X ν) <∞ ⇐⇒ ν̄ 6∈ τ1(Wk (X )).

Here, if W ⊂ (C×)n is a Zariski closed set, then

τ1(W ) := {z ∈ Cn | exp(λz) ∈W , for all λ ∈ C}.

For r > 1, though, Ωk
r (X ) is not necessarily an open subset of Grr (Qn):

Dwyer and Fried gave an example of a finite, 3-dimensional
CW-complex for which Ω2

2(X ) is not open.
In (S 2010), I give examples of finitely presented (Kähler) groups
G for which Ω1

2(G) is not open.
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The openess question

Example (DF 1987)

Let Y = T 3 ∨ S2. Then π1(Y ) = H ∼= Z3, with generators x1, x2, x3.

Let f : S2 → Y represent the element x1 − x2 + 1 of π2(Y ) = ZH.
Form the CW-complex X = Y ∪f D3, with π1(X ) = H and
π2(X ) = ZH/(x1 − x2 + 1).

Identifying Hom(H,C) = (C×)3, we have V1
1 (X ) = {1} and

V2
1 (X ) =

{
z ∈ (C×)3 | z1 − z2 + 1 = 0

}
.

Consider an algebraic 2-torus T = {za1
1 za2

2 za3
3 = 1} in (C×)3.

Then: T ∩ V2
1 (X ) is either empty (this happens precisely when

T = {z1z−1
2 = 1} or T = {z2 = 1}), or is 1-dimensional.

Thus, the locus in Gr2(Q3) = QP2 giving rise to algebraic 2-tori in
(C×)3 having finite intersection with V2

1 (X ) consists of 2 points.

In particular, Ω2
2(X ) is not open in QP2, even in the usual topology.
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Finiteness properties

Finiteness properties
Let G be a group, and k a positive integer.

G has property Fk if it admits a classifying space K (G,1) with
finite k -skeleton.

I F1: G is finitely generated
I F2: G is finitely presentable.

G has property FPk if the trivial ZG-module Z admits a projective
ZG-resolution which is finitely generated in all dimensions up to k .

The following implications (none of which can be reversed) hold:

G is of type Fk ⇒ G is of type FPk

⇒ Hi(G,Z) is finitely generated, for all i ≤ k
⇒ bi(G) <∞, for all i ≤ k .

Moreover, FPk & F2 ⇒ Fk .
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Finiteness properties

Theorem
Let G be a finitely generated group, and ν : G � Zr an epimorphism,
with kernel Γ. Suppose Ωk

r (G) = ∅, and Γ is of type Fk−1. Then
bk (Γ) =∞.

Hence, Hk (Γ,Z) is not finitely generated, and Γ is not of type FPk .

Proof.
Set X = K (G,1); then X ν = K (Γ,1).

Since Γ is of type Fk−1, we have bi(X ν) <∞ for i ≤ k − 1.

Since Ωk
r (X ) = ∅, we must have bk (X ν) =∞.

Corollary

Let G be a finitely generated group, and suppose Ω3
1(G) = ∅. Let

ν : G � Z be an epimorphism. If the group Γ = ker(ν) is finitely
presented, then H3(Γ,Z) is not finitely generated.
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Finiteness properties

Example

Let Y2 = S1 ∨ S1 and X = Y2 × Y2 × Y2. Clearly, X is a classifying
space for G = F2 × F2 × F2.
Let ν : G→ Z be the homomorphism taking each standard
generator to 1. Set Γ = ker(ν).

Stallings (1963):

Γ = 〈a,b, c, x , y | [x ,a], [y ,a], [x ,b], [y ,b], [a−1x , c], [a−1y , c], [b−1a, c]〉

Stallings showed, via a Mayer-Vietoris argument, that H3(Γ,Z) is
not finitely generated.

Alternate explanation: We have Ω3
1(X ) = ∅. Thus, the desired

conclusion follows from above Corollary.
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Kollár’s question

Kollár’s question
Two groups, G1 and G2, are said to be commensurable up to finite
kernels if there is a zig-zag of groups and homomorphisms,

G1 H2 · · · G2

H1

aaCCC =={{{
· · ·

bbEEEE
Hq

bbFFFF ==zz
,

with all arrows of finite kernel and cofinite image.

Question (J. Kollár 1995)
Given a smooth, projective variety M, is the fundamental group
Γ = π1(M) commensurable, up to finite kernels, with another group, π,
admitting a K (π,1) which is a quasi-projective variety?

Theorem (DPS 2009)
For each k ≥ 3, there is a smooth, irreducible, complex projective
variety M of complex dimension k − 1, such that the group Γ = π1(M)
is of type Fk−1, but not of type FPk .
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Kollár’s question

Lemma (Bieri 1981)
Let π be a finite-index subgroup of G. Then G is of type FPn if and only
if π is.

Lemma (Bieri 1981)
Let 1→ N → G→ Q → 1 be an exact sequence of groups, and
assume N is of type FP∞. Then G is of type FPn if and only if Q is.

Corollary
Suppose G1 and G2 are commensurable up to finite kernels. Then G1
is of type FPn if and only G2 is of type FPn.

Fact: every quasi-projective variety has the homotopy type of a finite
CW-complex.
Hence, Γ = π1(M) is not commensurable (up to finite kernels) to any
group π admitting a K (π,1) which is a quasi-projective variety.
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Kollár’s question

Construction of M

Let E be a complex elliptic curve, and fix an integer g ≥ 2.
Pick a subset B ⊂ E of cardinality |B| = 2g − 2.
Fix a basepoint x0 ∈ E \ B, and for each point b ∈ B, choose a
loop αb in E \ B, circling in a positive direction around b.
Finally, choose a homomorphism ϕ : π1(E \ B, x0)→ Z2 such that
ϕ(αb) = 1, for all b ∈ B.
With these choices, there is a smooth projective curve C of genus
g, and a branched 2-fold cover, f : C → E , which induces a
bijection between the ramification locus R ⊂ C and the branch
locus B ⊂ E .
The restriction f : C \ R → E \ B is the regular cover
corresponding to ϕ.
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Kollár’s question

Now fix an integer k ≥ 3, and set X = C×k .
Let s2 : E×2 → E be the group law of the elliptic curve, and extend
it by associativity to a map sk : E×k → E .
Composing this map with the product map f×k : C×k → E×k , we
obtain a surjective holomorphic map,

h = sk ◦ f : X → E .

Lemma (DPS 2009)
Let M be the generic fiber of h. Then M is a smooth, complex
projective variety of dimension k − 1. Moreover,

1 M is connected.
2 π1(M) = ker

(
h] : π1(X ) � π1(E)

)
.

3 π2(M) = · · · = πk−2(M) = 0.
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Kollár’s question

Proof of Theorem.
Set G = π1(X ) and Γ = π1(M). Identify π1(E) = Z2, and write
ν = h].
From lemma, parts (1) and (2), we have a short exact sequence,

1 // Γ // G
ν // Z2 // 1 .

Since X is a k -fold product of surfaces of genus g ≥ 2, we have
that X is a K (G,1).
We also know: Ωk

2(G) = ∅.
By lemma, part (3), a classifying space K (Γ,1) can be obtained
from M by attaching cells of dimension k and higher.
Consequently, Γ is of type Fk−1.
Finally, a previous theorem shows that Γ is not of type FPk .
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