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Setup and notation

By a hyperplane arrangement we understand the set A of
several hyperplanes of an ` - dimensional affine space V over a
field K . If all the hyperplanes are linear, i.e., passing through a
common point (called 0) , then A is central. If 0 is the only
common point then A is essential. Often we will order A and
then write A = {H1, . . . , Hn}.

Any time when it is convenient, we fix a linear basis (x1, . . . , x`)
of V ∗ and identify V with K ` using the dual basis in V . Then for
each hyperplane H of K ` we fix a degree 1 polynomial
αH ∈ S = K [x1, . . . , x`] such that H is the zero locus of αH . This
polynomial is uniquely defined up to multiplication by a nonzero
element from K . If A is central all αH are homogeneous. We
will abbreviate αHi as αi .
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Combinatorics of arrangements

For many invariants of arrangements hyperplanes themselves
are not needed; these invariants are determined by the
combinatorics of arrangements. There are two essentially
equivalent combinatorial objects that A determines: a
geometric lattice and a simple matroid. We will briefly discuss
the former.

For an arrangement A its intersection lattice L = L(A) consists
of intersections of all subsets of hyperplanes from A (including
V itself as the intersection of the empty set of hyperplanes).
The partial order on L is the reverse inclusion of subspaces. In
particular the unique minimal element of L is V and the unique
maximal element is

⋂n
i=1 Hi (even if it is ∅). A itself becomes

the set of all elements of L following the minimal element,
called atoms.
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Geometric lattices

The poset L is far from arbitrary. Let us collect the following
three properties of L. We are assuming for simplicity that A is
central.

(i) it is atomic, i.e., its every element is the join (the least upper
bound) of some atoms;
(ii) it is ranked, i.e., every nonrefinable flag (chain)
(V < X1 < · · · < Xr = X ) from V to a fixed X ∈ L has the same
number of elements, namely the codimension of X ; (in lattice
theory, this number is called the rank of X and denoted by
rk X );
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Geometric lattices

(iii) for every X , Y ∈ L the following semimodular inequality
holds

rk X + rk Y ≥ rk(X ∨ Y ) + rk(X ∧ Y )

where the symbols ∨ and ∧ denote respectively the join and
meet (i.e., the greatest lower bound).
Lattices satisfying the above properties are called geometric.
The rank rk L of a geometric lattice L is the maximal rank of its
elements. Clearly rk L ≤ ` and rk L = ` if and only if the
arrangement is essential.
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Möbius function

An important invariant of L (as of every poset) is its Möbius
function. It is the function µ : L× L → Z satisfying the
conditions µ(X , X ) = 1, µ(X , Z ) = 0 unless X ≤ Z , and∑

Y∈L,X≤Y≤Z

µ(X , Y ) = 0

for every X , Z ∈ L, X < Z . We put µ(X ) = µ(V , X ) for every
X ∈ L.

Example

If H is an atom of L then µ(H) = 1. If X ∈ L is of rank 2 with
precisely k atoms below it then µ(X ) = −(k − 1).

For L the following generating function
πL(t) =

∑
X∈L µ(X )(−t)rk X is called the characteristic or

Poincarè polynomial of L.
6
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Example of L
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Remark

The figure on the previous slide has many typos. A problem
recommended to the beginners is to find all of them. Hint: look
at the value of the M obius functions.
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Homology of a of a poset

For an arbitrary poset, all its flags (i.e., the linearly ordered
subsets) form an (abstract) simplicial complex called the order
complex on the set of all its elements. The homotopy invariants
of this complex are attributed to the poset itself. If the poset is a
lattice then by its homotopy invariants one usually means those
of its subposet with the largest and smallest elements deleted.
If again the poset is a lattice than the order complex can be
substituted by another (usually much smaller) simplicial
complex Ξ. It is defined on the set of all atoms A and a subset
σ ⊂ A is a simplex (of dimension |σ| − 1) if

∨
(σ) is not the

greatest element. This complex is called atomic and it is
homotopy equivalent to the order complex. Below we will need
the pair (∆,Ξ) of complexes where ∆ is the simplex on all the
atoms.
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Complexes of a poset
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Exterior algebra

The lattice L determines the most important algebra associated
with an arrangement. Let A = (H1, . . . , Hn) be an arrangement
and k an arbitrary field (not necessarily equal to K ). Let E be
the exterior algebra over k with generators e1, . . . , en in degree
1. Notice that the indices define a bijection from A to the
generating set. Sometimes we will denote the generator
corresponding to H ∈ A by eH .
The algebra E is graded via E = ⊕n

p=1Ep where E1 = ⊕n
j=1kej

and Ep =
∧pE1. The linear space Ej has the distinguished

basis consisting of monomials eS = ei1 · · ·eip where
S = {i1, . . . , ip} is running through all the subsets of
[n] = {1, 2, . . . , n} of cardinality p and i1 < i2 < · · · < ip.
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DGA

The graded algebra E is a (commutative) DGA with respect to
the differential ∂ of degree -1 uniquely defined by the
conditions: linearity, ∂ei = 1 for every i = 1, . . . , n, and the
graded Leibniz formula. Then for every S ⊂ [n] of cardinality p

∂eS =

p∑
j=1

(−1)j−1eSj

where Sj is the complement in S to its j th element.

For every S ⊂ [n], put
⋂

S =
⋂

i∈S Hi and call S dependent if⋂
S 6= ∅ and the set of linear polynomials {αi |i ∈ S} is linearly

dependent. Notice that being dependent is a combinatorial
property - a set of atoms S is such if and only if rk

∨
S < |S|.
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OS algebra

Definition

Consider the ideal I = I(A) of E generated by all eS with⋂
S = ∅ and all ∂eS with S dependent. The algebra

A = A(A) = E/I(A) is called the Orlik-Solomon (abbreviated as
OS) algebra of A. This algebra has been called also Brieskorn,
BOS, and Arnold-Brieskorn.

Clearly the ideal I is homogeneous whence A is a graded
algebra; we write A = ⊕pAp where Ap is the component of
degree p. In particular the linear spaces E1 and A1 are
isomorphic and we will identify them.

Notice that for any nonempty S ⊂ [n] and i ∈ S one has
ei∂eS = ±eS whence I contains eS for every dependent set S.
This implies that A is generated as a linear space by the
emages of eS such that

⋂
S 6= ∅ and S is independent.
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Homological interpretation

The Orlik - Solomon algebra is not only determined by L but
also it has an interpretation in terms of the homology of L.
Let us first define the relative atomic complex ∇ = ∇(L). It is
the chain complex over k with a linear basis consisting of all
σ ⊂ A; deg σ = |σ|. The differential is defined by

d(σ) =
∑

i|
W

(σ\{Hi})=
W

(σ)

(−1)iσ \ {Hi}.

14



The chain complex ∇ has grading by elements of L, i.e.,
∇ = ⊕X∈L∇X where ∇X is the subcomplex generated by all σ
with

∨
σ = X .

Notice that ∇X is the relative chain complex for the pair (∆,Ξ)X
for the lattice LX = {Y ∈ L|Y ≤ X}. In particular the
cohomology of ∇ is the direct sum of the shifted by 1 local
cohomology of L.

Also notice that if σ is an independent subset of A then it is a
cycle in ∇. Denote by [σ] its homology class.

15



Multiplication

Define

σ · τ =

{
0, if rk(

∨
(σ ∪ τ)) 6= rk(

∨
(σ)) + rk(

∨
(τ)),

ε(σ, τ)σ ∪ τ, otherwise.

(1)
where ε(σ, τ) is the sign of the permutation of σ ∪ τ putting all
elements of τ after elements of σ and preserving fixed orders
inside these sets (the shuffle of σ and τ ).

Theorem

The multiplication defined above converts ∇ to a (commutative)
DGA graded by L. The correspondence ei 7→ [{i}] generates an
isomorphism A → H∗(∇; k) of graded algebras.
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Corollary

The following statements follow from the previous theorem.

Corollary

(i) The algebra A is graded by L, i.e., A = ⊕X∈LAX where AX is
a graded linear subspace of A (in fact homogeneous)
generated by eS with

∨
S = X and AX AY ⊂ AX∨Y .

(ii)The Hilbert series H(A, t) = πL(t).

This corollary uses not only the theorem but also certain
property of homology of geometric lattices (namely the
Folkman theorem).

17



Cohomology of M

From know on we assume K = k = C.

Theorem (Arnold, Brieskorn, Orlik-Solomon)

Let A be an arrangement in C` and M its complement.
(i) The de Rham homomorphism for M restricts to an
isomorphism of the graded algebras F and H∗(M, C) where F
is the subalgebra of the algebra of closed holomorphic forms
on M generated by all the forms dαH

αH
(H ∈ A);

(ii) Let [ω] be the cohomology class of a form ω. Then the
correspondence [dαH

αH
] 7→ eH defines a graded algebra

isomorphism H∗(M, C) ' A.

Remark. The theorem still holds if one defines all three
algebras over Z. In particular the cohomology of M is torsion
free.

18



Poincaré polynomial

Corollary

The Poincarè polynomial of M coincides with the characteristic
polynomial πL(t) of L.

Corollary

Space M is formal, i.e., the DGA of differential holomorphic
forms on it is quasi-isomorphic to its cohomology algebra.
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Braid arrangements

Example. Fix a positive integer n and consider the arrangement
An−1 in Cn given by linear functionals xi − xj , 1 ≤ i < j ≤ n. In
fact An−1 consists of all reflecting hyperplanes of the Coxeter
group of type An−1. The complement Mn of this arrangement
can be identified with the configuration space of n distinct
ordered points in C. Considering loops in this space makes it
pretty clear that π1(Mn) is the pure braid group on n strings.

The natural way to study Mn is to project it to Mn−1 ignoring the
last coordinate of points in Cn. This defines a fiber bundle
projection that is the restriction to Mn of the projection
Cn → Cn/X where X is a coordinate line (Mn is linearly
fibered). The fiber of the projection is C without n − 1 points.
Repeating this process one obtains a sequence of such
projections with decreasing n that ends at projecting to a point.
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Fiber-type arrangements

Generalizing that construction one obtains a recursive definition
of a fiber-type arrangement.
For X ∈ L we put AX = {H/X |H ∈ A, H ⊃ X} and consider it
as an arrangement in V/X (cf. LX ).

Definition

An arrangement A in V is fiber-type if there is a line X ∈ L(A)
for which AX is fiber-type and M(A) is linearly fibered over
M(AX ). Also arrangement of one hyperplane is fiber-type.

Using the sequence of consecutive fiber bundles it is possible
to prove for every fiber-type arrangement that
(1) M is a K [π, 1]-space;
(2) π1(M) is a semidirect product of free groups.
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Supersolvable lattices

It turns out that being fiber-type is a combinatorial property of
an arrangement.

Let L here be an arbitrary geometric lattice. Then X ∈ L is
modular if

rk X + rk Y = rk(X ∨ Y ) + rk(X ∧ Y )

for every Y ∈ L. The lattice L is supersolvable if it contains a
maximal flag of modular elements. If for an arrangement A its
lattice is supersolvable we say A is.

Theorem

An arrangement is fiber-type if and only if it is supersolvable.
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Examples

(1) All central arrangements of lines are supersolvable.

(2) A non-central arrangement A of lines is supersolvable if and
only if there is a point P ∈ L(A) such that for any other point
Q ∈ L(A) the line PQ ∈ A.

23
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(3) A Coxeter arrangement, i.e., the arrangement of all
reflecting hyperplanes of a Coxeter groups, may be
supersolvable or not. For instance, types An and Bn are
supersolvable for all n, but type Dn is not for n ≥ 4.

Remark. In spite of the last comment about Dn for every
reflection arrangement A, i.e., the arrangement of all reflecting
hyperplanes of a finite reflection group, M(A) is K [π, 1].
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Modules of derivations

We consider central arrangements in V ' C`. Recall that
S = C[x1, . . . , x`] (or, invariantly, the symmetric algebra of the
dual space V ∗) .

Definition

A derivation of S is a C-linear map θ : S → S satisfying the
Leibniz condition

θ(fg) = θ(f )g + gθ(f )

for every f , g ∈ S.

The set Der(S) of all derivations is naturally an S-module. This
is a free module of rank ` with a basis consisting of partial
derivatives Di = ∂

∂xi
, (i = 1, . . . , `).

26



Module D(A)

The following S-module reflects more about the arrangement.
Let A be a central arrangement and Q =

∏
H∈A αH its defining

polynomial.

Definition

The module of A-derivations is

D(A) = {θ ∈ Der(S)|θ(Q) ∈ QS}.

D(A) is a graded submodule of Der(S) which is not necessarily
free though. For every θ ∈ D(A) we still have θ =

∑
i θiDi with

uniquely defined θi ∈ S but in general Di 6∈ D(A). θ is
homogeneous if deg θi does not depend on i and then this
degree is called the degree of θ.
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Free arrangements

Definition

A central arrangement A is free if the S-module D(A) is free.

D(A) is free if and only if it generated by ` homogeneous
generators. Another (Saito’s) criterion says D(A) is free if and
only if it contains a system of ` homogeneous linearly
independent over S derivations with the sum of there degrees
equal n = |A|.
Examples.
(1) Every central arrangement of lines is free.
(2) Consider the arrangement in C3 given by
Q = xyz(x + y + z). Then it can be seen that D(A) does not
contain two linearly independent derivations of degree less or
equal one (one of such is the Euler derivation θE =

∑
i xiDi ).

Since n = 4 Saito’s criterion cannot be satisfied and A is not
free. 28
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Free arrangements and combinatorics

The following results (by Terao) about free arrangements shows
that the freeness is related to combinatorics.

Theorem

(i) Every supersolvable arrangement is free.
(ii) If an arrangement A is free then the characteristic
polynomial

πL(A)(t) =
∏̀
i=1

(1 + bi t)

where bi are the degrees of the homogeneous generators of
D(A).

Terao Conjecture. The property of arrangement being free is
combinatorial, i.e., it is determined by L(A).
There are many partial results supported the conjecture.
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Multiarrangements

A multiarrangement is a pair (A, m) where A is a central
arrangement and m : A → Z≥0 is a multiplicity function.
There are several instances in arrangement theory where a
multiplicity function appears naturally. Here are two examples.
(i) Suppose A is a central arrangement and H0 ∈ A. The
restriction of A to H0 is the arrangement
AH0 = {H ∩ H0 | H ∈ A \ {H0}}. For every H̄ from the
restriction there is the natural mutiplicity

m(H̄) = |{H ∈ A | H ∩ H0 = H̄}|.

(ii) Let A be a reflection arrangement of a finite reflection group
G. In the theory of invariants of G the following multiplicity is
often used: m(H) = oH − 1 where H ∈ A and oH is the order in
G of the reflection at H.
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The notion of being free can be extended to multiarrangements.
In a recent development Yoshinaga obtained a new criterion for
the freeness of A using the multiarrangements AH . Using this
criterion one can prove the Terao conjecture for arrangements
with at most 11 hyperplanes.
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Fundamental group of M

We will consider central arrangements only. Using as before
the Lefschetz hyperplane section theorem it suffices to
consider arrangements of planes in C3.
The important result about π1(M) is negative - this group is not
determined by the lattice L. The example (by G. Rybnikov in
1994) consists of two arrangements of 13 hyperplanes each
with rk L = 4. It is still not very well understood, in particular no
general group invariant is known that distinguishes π1 for the
two arrangemens in the example.
π1 is generated by a set {z1, z2, . . . , zn} which is in
correspondence with A. There are several known presentations
of π1 = π1(M) using this set. None of them is sufficiently simple
or instructive to be described in the talk. We give several
examples.
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Examples

Examples. (i) First we define a generic arrangements. A in C3

is is generic if every subset of it of rank 2 is independent. For a
generic arrangement π1(M) = Zn. Moreover πp(M) = 0 for
1 < p < `.

(ii) Let A be a Coxeter arrangement corresponding to a Coxeter
group G. Then π1 is the pure Artin group corersponding to G.
(Moreover M is K [π, 1].)

(iii) Let A be given by the polynomial
Q = x(x − y)(x + y)(2x − y + z). Then π1 is given by
presentation〈

x1, x2, x3, x4|x1x2x4 = x4x1x2 = x2x4x1,

[x1, x3] = [x2, x3] = [x4, x3] = 1
〉
.

It gives π1 ' F2 × Z2 where F2 is the free group on two
generators.
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Open problems

In spite of known presentations the following questions about
π1 are open in general.
(1) Is it torsion-free?
(2) Is it residually nilpotent?
(3) Is it residually finite?
(4) Find a group invariant that distinguishes two groups in the
Rybnikov example.
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Quadratic and Koszul algebras

A distinguished class of graded algebras is formed by Koszul
algebras. One of many equivalent definitions of this class is as
follows. A graded connected K -algebra is Koszul if the minimal
free graded resolution of its trivial module K is linear, i.e., the
matrices of all mappings in it have all their entries of degree
one. If an algebra is Koszul then it is generated in degree one
and the ideal of relations among generators is generated in
degree two. An algebra with these two properties is a quadratic
algebra.

A quadratic algebra A = ⊕Ap (A0 = K ) can be represented as
A = T (A1)/J where T (A1) is the tensor algebra on the space
A1 in degree one and J is the graded ideal of relations. Then
the quadratic algebra A! = T (A∗

1)/J∗ where A∗
1 is the dual linear

space of A1 and J∗ is the annihilator of J is called the quadratic
dual (“shriek”) of A.
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Properties of Koszul algebras

The following implications are very well-known.

(1) A quadratic algebra A is Koszul if and only if A! is Koszul.

(2) If A is Koszul then the following relation between the Hilbert
series holds

H(A, t) · H(A!,−t) = 1.

The converse of (2) is false in general.

(3) If J has a quadratic (i.e., of degree 2) Gröbner basis then A
is Koszul.
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Koszul and quadratic OS algebras

Recall that an OS-algebra A is graded commutative and
generated in degree one.

(1) A is not necessarily quadratic. There are several necessary
conditions on L but no nice equivalent condition is known.

(2) On the other hand, if A is supersolvable then A is Koszul
whence also quadratic. Moreover A is supresolvable if and only
if the defining ideal of A has a quadratic Gröbner basis.

(3) A being Koszul is equivalent to a topological property of the
complement M. A space with this property is called a rational
K [π, 1] and can be defined using the rational model of the
space.
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One corollary of A being Koszul (equiv., M being a rational
K [π, 1]) is a connection between G = π1(M) and A.

More precisely assume A is quadratic and let
Γ1 = G ⊃ Γ2 ⊃ · · · ⊃ Γp ⊃ · · · be the lower central series of G
(i.e., Γp = [G, Γp−1]). The Abelian group G∗ = (⊕pΓP/Γp−1)⊗Q
has the natural structure of a graded Lie algebra induced by
taken commutators in G. If U is the universal enveloping
algebra of G∗ then U ' A! and the Hilbert series of U is

H(U, t) =
∏
p≥1

(1− tn)−φp

where φp = rk Γp/Γp+1.
Now if A is Koszul then

π(L,−t) = H(A,−t) = H(U, t)−1 =
∏
p≥1

(1− tn)φp .

It is an old problem to obtain a formula (an LCS-formula) for the
numbers φp in general. 38
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Open problems

The interesting open problems in that circle of questions are as
follows.
Which of the following implications can be inverted in the realm
of OS algebras:
The defining ideal of A has a quadratic Gröbner basis =⇒ A is
Koszul =⇒ H(A, t) · H(A!,−t) = 1.
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Motion planning

One of applications of arrangement theory is to topological
robotics.
Let X be a topological space, thought of as the configuration
space of a mechanical system. Given two points A, B ∈ X , one
wants to connect them by a path in X ; this path represents a
continuous motion of the system from one configuration to the
other. A solution to this motion planning problem is a rule
(algorithm) that takes (A, B) ∈ X × X as an input and produces
a path from A to B as an output.

Let PX denote the space of all continuous paths γ : [0, 1] → X ,
equipped with the compact-open topology, and let
f : PX → X × X be the map assigning the end points to a path:
f (γ) = (γ(0), γ(1)). The map f is a fibration whose fiber is the
based loop space ΩX . The motion planning problem consists
of finding a section s of this fibration.
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Topological complexity

The section s cannot be continuous, unless X is contractible.
M.Farber has defined TC(X ), the topological complexity of X ,
as the smallest number k such that X × X can be covered by
open sets U1, . . . , Uk , so that for every i = 1, . . . , k there exists
a continuous section si : Ui → PX , f ◦ si = id.

Farber’s topological complexity has various properties allowing
one to obtain several lower and upper bounds for it in terms of
other invariants. However precise computation of TC(X ) for
concrete X is often a challenging problem.
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Properties of TC(X ).

1. TC(X ) is a homotopy invariant of X .

2. If X is r -connected then

TC(X ) <
2 dim X + 1

r + 1
+ 1.

3. TC(X ) is greater than the zero-divisor-cup-length of the ring
H∗(X ; k) for every field k .
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TC(M)

Arrangement complements (as well as configuration spaces of
points in Rn) can be very naturally viewed as configuration
spaces of mechanical systems. For instance, for a braid
arrangement the complement M appears for the system of
several robots on a large plane. The complement of an
arbitrary arrangement in C` would appear if a robot has 2`
parameters and the hyperplanes represent linear obstructions.

The known results about TC(M) are as follows:
(1) If A is an arrangement of n hyperplanes in general position
in C` then TC(M(A)) = min{n + 1, 2` + 1}.

(2) Let A be a Coxeter arrangement of classical types (A,B, or
D). Then TC(M(A)) = 2 rk(A).

The problem to compute TC(M) for an arbitrary arrangement is
still open.
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