A universal algebra for (spaces of) knots

Ryan Budney rybu@uvic.ca

University of Victoria

Embedding spaces

Definition: For compact manifolds M and N let Emb(M,N) be the set of embeddings of M in N. Let $\mathcal{K}_{n,j} \equiv \text{Emb}(\mathbf{R}^j,\mathbf{R}^n)$ be the set of embeddings of \mathbf{R}^j in \mathbf{R}^n which agrees with the inclusion $x \to (x,0)$ outside of $\mathbf{I}^j \equiv [-1,1]^j$.

Example: The C^0 -uniform topology is the wrong topology on embedding spaces. Consider F: $[0,1] \times \mathcal{K}_{n,j} \to \mathcal{K}_{n,j}$ where

$$F(t,f)(x) = \begin{cases} (1-t)f(\frac{1}{1-t} \cdot x) & t < 1\\ (x,0) & t = 1 \end{cases}$$

The 'right' topology on $\mathcal{K}_{n,j}$

Definition: The C^k -metric on $\mathcal{K}_{n,j}$ is given by $d_k(f,g) = \max_{x \in \mathbf{R}^j} \left\{ \sqrt{\sum_{i=0}^k |D^i f_{(x)} - D^i g_{(x)}|^2} \right\}$

The topology on $\mathcal{K}_{n,j}$ is defined to be the one generated by all the C^k -metrics $k \in \{0,1,2,\cdots\}$.

The topology on $\operatorname{Emb}(M,N)$ is defined analogously, via charts.

Example of relevance

Proposition: Elements of $\pi_i \mathcal{K}_{n,1}$ produce 'spun' embeddings of S^{i+1} 's in \mathbf{R}^{i+n} .

Theorem: (B '07) Spinning produces an isomorphism

$$\mathbf{Z} \simeq \pi_2 \mathcal{K}_{4,1} \to \pi_0 \mathsf{Emb}(S^3, \mathbf{R}^6) \simeq \mathbf{Z}$$

Embedding and the cubes operad

Theorem: (B '07) The connect-sum operation $\mathcal{K}_{3,1} \times \mathcal{K}_{3,1} \to \mathcal{K}_{3,1}$ extends to an action of the operad of 2-cubes on $\mathcal{K}_{3,1}$. Moreover, $\mathcal{K}_{3,1}$ is free with respect to this action,

$$\mathcal{K}_{3,1} \simeq \mathcal{C}_2(\mathcal{P} \sqcup \{*\})$$

Here $\mathcal{P} \subset \mathcal{K}_{3,1}$ is subspace consisting of knots that are prime.

Corollary:

$$\Omega B \mathcal{K}_{3,1} \simeq \Omega^2 \Sigma^2 (\mathcal{P} \sqcup \{*\})$$

$$\simeq \Omega^2 \bigvee_{[f] \in \pi_0 \mathcal{P}} (S^2 \vee \Sigma^2 \mathcal{K}_{3,1}(f))$$

Theorem: (B, Cohen '09) $H_*(\mathcal{K}_{3,1}; \mathbf{Q})$ is a free Poisson algebra.

Little cubes operad

A (single) little n-cube is an embedding L: $\mathbf{I}^n \to \mathbf{I}^n$ such that $L = l_1 \times \cdots \times l_n$ where l_i : $\mathbf{I} \to \mathbf{I}$ has the form $l_i(t) = a_i t + b_i$ with $a_i > 0$. $\mathbf{I} = [-1, 1]$.

A j-tuple (L_1, L_2, \cdots, L_j) is 'j little n-cubes' if

- 1) L_i is a little *n*-cube for all $1 \le i \le j$.
- 2) The interior of the images of L_i and L_k are disjoint provided $i \neq k$.

The space of j little n-cubes is denoted $C_n(j)$.

 $C_n := \{C_n(0), C_n(1), C_n(2), \dots\}$ is the operad of little n-cubes, the operad structure being given by the composition maps

$$C_n(j) \times (C_n(k_1) \times \cdots \times C_n(k_j)) \rightarrow C_n(k_1 + \cdots + k_j)$$

Composition of little cubes

$$C_n(j) \times (C_n(k_1) \times \cdots \times C_n(k_j)) \rightarrow C_n(k_1 + \cdots + k_j)$$

Example:

$$\mathcal{C}_2(2) \times (\mathcal{C}_2(3) \times \mathcal{C}_2(4)) \rightarrow \mathcal{C}_2(7)$$

Σ -operad action on a space X

$$\kappa_i:\mathcal{C}_n(i) imes X^i o X\quad i\in\{1,2,3,\cdots\}$$

Satisfying:

- 1) Identity. $\kappa_1(Id_{\mathbf{I}^n}, x) = x$ for all $x \in X$.
- 2) Symmetry. $\kappa_i(L.\sigma, \sigma.x) = \kappa_i(L, x)$ for all $L \in \mathcal{C}_n(j)$, $x \in X^j$ and $\sigma \in \Sigma_n$.
- 3) Associativity. Let $Y_i = \mathcal{C}_n(k_i) \times X^{k_i}$ then

$$\mathcal{C}_{n}(j) \times Y_{1} \times \cdots \times Y_{j} \longrightarrow \mathcal{C}_{n}(j) \times X^{j}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{C}_{n}(k_{1} + \cdots + k_{j}) \times X^{k_{1} + \cdots + k_{j}} \longrightarrow X$$

commutes.

The point of the cubes operad

Observation: Let

$$\Omega^n(X,*) = Maps((I^n, \partial I^n), (X,*))$$

then $\Omega^n(X,*)$ admits an action of \mathcal{C}_n .

Observation: If a space X admits an action of C_n , then $\pi_0 X$ is a monoid.

Theorem: (Boardman-Vogt '68, May '74) If X admits an action of \mathcal{C}_n making $\pi_0 X$ into a group, then $X \simeq \Omega^n X'$ for some space X'.

Cubes operad and knot spaces

A \mathcal{C}_2 -action on $\mathcal{K}_{3,1}$ which extends the connectsum operation would give a 'pull one knot through the other' family of maps.

$$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

This existance of such an action was conjectured by Victor Turchin.

A knot space on which cubes act

$$\mathsf{EC}(k,M) = \{ f \in Emb(\mathbf{R}^k \times M, \mathbf{R}^k \times M), supp(f) \subset \mathbf{I}^k \times M \}$$

Theorem: (B '07) EC(k, M) admits an action of the operad of little (k + 1)-cubes.

The relation between $EC(1, D^2)$ and $\mathcal{K}_{3,1}$ is the trivial fibration

$$\Omega SO_2 \to \mathsf{EC}(1,D^2) \to \mathcal{K}_{3,1}$$

Construction of the action

Given a little (n+1)-cube L we define a little n-cube L^π and a real number L^ν

Definition of the cubes action on EC(n, M)

$$\mathcal{C}_{n+1}(j) \times \mathsf{EC}(n,M)^{j} \xrightarrow{\kappa_{j}} \mathsf{EC}(n,M)$$

$$(L_{1},\cdots,L_{j},f_{1},\cdots,f_{j}) \xrightarrow{L_{\sigma(j)}^{\pi}} L_{\sigma(j)}^{\pi} \cdot f_{\sigma(j)} \circ \cdots \circ L_{\sigma(1)}^{\pi} \cdot f_{\sigma(1)}$$

$$L_{\sigma(i)}^{\pi}.f := (L_{\sigma(i)}^{\pi} \times Id_{M}) \circ f \circ (L_{\sigma(i)}^{\pi} \times Id_{M})^{-1}$$

 $\sigma:\{1,\cdots,j\} \to \{1,\cdots,j\}$ is any permutation such that $L^{\nu}_{\sigma(j)} \geq L^{\nu}_{\sigma(j-1)} \geq \cdots \geq L^{\nu}_{\sigma(1)}$

Some related results

Theorem: (Cerf, Morlet '69)

$$\mathsf{EC}(n,*) \simeq \Omega^{n+1} \left(PL_n/O_n \right)$$

Theorem: (Salvatore '06) C_2 acts on $K_{n,1}$ and $EC(1, D^{n-1})$ provided $n \ge 4$.

Theorem: (Sakai '08) Provided n is even, the Browder operation on $H_* EC(1, D^{n-1})$ is non-trivial. In particular, the bracket $[e, v] \in H_{3n-8}EC(1, D^{n-1})$ is non-zero where

- $v \in H_{2n-6} \mathsf{EC}(1, D^{n-1})$
- $e \in H_{n-3}\Omega SO_{n-1}$ adjoint to $\Sigma S^{n-3} \to SO_{n-1}$ the clutching map for TS^{n-1} .

Overlapping cubes operad

Definition: A collection of j overlapping ncubes is an equivalence class of pairs (L, σ) where

$$L=(L_1,\cdots,L_j)$$

is j little n cubes.

$$(L,\sigma) \sim (L',\sigma')$$
 iff $L=L'$ and $\sigma^{-1}(i) < \sigma^{-1}(k) \Longleftrightarrow \sigma'^{-1}(i) < \sigma'^{-1}(k)$ whenever $L_i^\circ \cap L_k^\circ \neq \emptyset$. $\mathcal{C}_n'(j) = \{(L,\sigma)\}$

Overlapping cubes and EC(k, M)

Proposition: The map $\mathcal{C}_{n+1} \to \mathcal{C}'_n$ is an equivalence of operads.

$$(L_1,\cdots,L_j)\longmapsto (L_1^\pi,\cdots,L_j^\pi,\sigma)$$

where
$$L^{\nu}_{\sigma(j)} \geq L^{\nu}_{\sigma(j-1)} \geq \cdots \geq L^{\nu}_{\sigma(1)}$$

Proposition: C'_k acts on EC(k, M) moreover the action of C_{k+1} on EC(k, M) factors through this action.

Splicing diagrams for EC(n, M)

Definition: An k-splicing diagram is an equivalence class of pair (L, σ) where $\sigma \in \Sigma_k$, $L_0 \in EC(n, M)$ and $L_i : I^n \times M \to I^n \times M$ an embedding.

$$(L,\sigma)\sim (L',\sigma')\Longleftrightarrow L=L'$$
 and if $L_i((I^n)^\circ imes M)\cap L_j((I^n)^\circ imes M)\neq\emptyset$ then

$$\sigma^{-1}(i) < \sigma^{-1}(j) \Longleftrightarrow \sigma'^{-1}(i) < \sigma'^{-1}(j)$$

For $0 \le i < j \le k$ there is also the *continuity* constraint on splicing diagrams:

$$\overline{L_{\sigma_i}(I^n \times M)) \setminus L_{\sigma_j}(I^n \times M)} \cap L_{\sigma_j}((I^n)^\circ \times \partial M) = \emptyset$$

Where we interpret $\sigma(0) = 0$ for the purposes of the continuity constraint.

The splicing diagram operad of EC(n, M)

Definition: $\mathcal{SD}_n^M(k) = \{(L, \sigma) : k\text{-splicing diagram}\}.$

We want $\mathcal{SD}_n^M = \sqcup_k \mathcal{SD}_n^M(k)$ to be an operad, and

$$\mathcal{SD}_n^M(k) \times \mathsf{EC}(n,M)^k \to \mathsf{EC}(n,M)$$
 defined by

$$(L_0, L_1, \cdots, L_k, \sigma), (f_1, \cdots, f_k) \longmapsto$$

$$(L_{\sigma(k)} \circ f_{\sigma(k)} \circ L_{\sigma(k)}^{-1}) \circ \cdots \circ (L_{\sigma(1)} \circ f_{\sigma(1)} \circ L_{\sigma(1)}^{-1}) \circ L_0$$

$$\equiv \left(\bigcirc_{i=1}^k L_{\sigma(i)} f_{\sigma(i)} L_{\sigma(i)}^{-1} \right) L_0$$

to be an action of \mathcal{SD}_n^M on $\mathsf{EC}(n,M)$ where $L_{\sigma(i)} \circ f_{\sigma(i)} \circ L_{\sigma(i)}^{-1}$ is defined to be the identity outside of the image of $L_{\sigma(i)}$.

Splicing in pictures

a splicing diagram

 $\sigma^{-1}(2) < \sigma^{-1}(3)$ the only restriction $\sigma \in \Sigma_3$

Splicing in pictures

the splicing process

The definition of the operad \mathcal{SD}_n^M

$$\mathcal{SD}(k) \times \mathcal{SD}(j_1) \times \cdots \times \mathcal{SD}(j_k) \to \mathcal{SD}(j_1 + \cdots + j_k)$$

 $(J_0, J_1, \cdots, J_k, \alpha), (L_1, \sigma_1), \cdots, (L_k, \sigma_k) \longmapsto J.L$

J.L is defined to have 0-th entry

$$\left(\bigcirc_{i=1}^k (J_{\alpha(i)} L_{\alpha(i)0} J_{\alpha(i)}^{-1})\right) J_0$$

(a,b)-th coordinate entry is given by

$$\left(\bigcirc_{i=\alpha^{-1}(a)+1}^{k} (J_{\alpha(i)} L_{\alpha(i)0} J_{\alpha(i)}^{-1})\right) J_a L_{a,b}$$

where we lexicographically identify

$$\{(a,b): a \in \{1,\cdots,k\}, b \in \{1,\cdots,j_a\}\}$$
 with $\{1,2,\cdots,j_1+\cdots+j_k\}$

Theorem: $\mathcal{SD}_n^M \equiv \mathcal{SD}$ is a $\Sigma^* \wr Diff(I^n \times M)$ -operad, where $\Sigma^* \wr Diff(I^n \times M) = \sqcup_j Diff(I^n \times M) \times (\Sigma_j \ltimes Diff(I^n \times M)^j)$.

Structure maps for $\mathcal{S}\mathcal{D}_1^{D^2}$

Overlapping cubes in splicing operad

Proposition: The map $\mathcal{C}'_n o \mathcal{S}\mathcal{D}^M_n$ given by

$$(L_1, \cdots, L_k, \sigma) \longmapsto (Id_{\mathbf{R}^n \times M}, L_1 \times Id_M, \cdots, L_k \times Id_M, \sigma)$$

is an inclusion of operads. Moreover, the action of \mathcal{SD}_n^M on $\mathsf{EC}(n,M)$ extends the action of \mathcal{C}_n' on $\mathsf{EC}(n,M)$.

 $n = 1, M = D^2, k = 3$ example

Freeness of $\mathcal{K}_{3,1}$ over \mathcal{SP}

Let $\mathcal{SP} \subset \mathcal{SD}_1^{D^2}$ be the suboperad where the elements $(L_0, L_1, \cdots, L_k, \sigma)$ satisfy:

- (a) $L_0 \in \widehat{\mathcal{K}}_{3,1}$ always.
- (b) (L_0, L_1, \dots, L_k) is a non-split link.

(c)
$$SP(0) = \{Id_{\mathbf{R} \times D^2}\}.$$

Let $\mathcal{TH}\subset\widehat{\mathcal{K}}_{3,1}$ be the subspace of non-trivial torus knots and hyperbolic knots.

Theorem: (B) The action of the operad \mathcal{SP} on $\widehat{\mathcal{K}}_{3,1}$ induces a homotopy-equivalence

$$\sqcup_{n=0}^{\infty} \left(\mathcal{SP}(n) \times_{\sum_{n} \wr O_2} \mathcal{TH}^n \right) \to \widehat{\mathcal{K}}_{3,1}$$

Splicing and geometrization

Definition: Given a 3-manifold M let c(M) denote the sum of the number of components of M split along its canonical (geometric) decomposition.

Theorem: (Schubert, Burde, Murasugi, JSJ, Thurston) Given $f \in \mathcal{K}_{3,1}$ its complement has complexity one if and only if it is a non-trivial torus or hyperbolic knot. $L \in \mathcal{SP}$ has a complement with complexity one if and only if it is hyperbolic or Seifert. Moreover, every link $L \in \mathcal{SP}$ is an iterated-splice of complexity-one links.

Proposition: The splicing map satisfies

$$\mathcal{SP}(k) imes \prod_{i=1}^k \mathcal{SP}(j_i) o \mathcal{SP}(\sum_{i=1}^k j_i)$$

$$c(J.(L_1, \dots, L_k)) = c(J) + \sum_{i=1}^k c(L_i)$$

except in the cases:

- (a) Either J or one of the L_i 's is a Hopf link.
- (b) One of the L_i 's is the unknot.
- (c) For some i, L_i is not prime, and J contains two parallel components (an untwisted annulus whose boundary is two components of J), of which J_i is one.

An exception we call a redundant splice.

Definition: An operad \mathcal{O} is homotopically generated by a subspace $\mathcal{X} \subset \mathcal{O}$ if the inclusion $\overline{\mathcal{X}} \to \mathcal{O}$ is a homotopy-equivalence where $\overline{\mathcal{X}}$ is the operadic closure of \mathcal{X} in \mathcal{O} .

Theorem: SP is homotopically generated by the union of the three subspaces

- 1. $\mathcal{KCL}_k \subset \mathcal{SP}(k)$ of (k+1)-component keychain links, $k=2,3,\cdots$.
- 2. $\mathcal{SFL} \subset \mathcal{SP}(1)$ of 2-component Seifert links (Hopf link excluded).
- 3. $\mathcal{HGL}_k \subset \mathcal{SP}(k)$ of (k+1)-component hyperbolic links, $k=1,2,3,\cdots$.

$$\mathcal{SP}(k) imes_{\sum_{k} \wr O_2} \prod_{i=1}^k \mathcal{SP}(j_i) o \mathcal{SP}(\sum_{i=1}^k j_i)$$

is a homotopy-equivalence between non-redundant splice components.

Proposition: There are homotopy-equivalences:

•
$$\mathcal{C}'_1(k) \times O_2^k \to \mathcal{KCL}_k$$

•
$$\sqcup_{p,q} S^1 \times S^1 \to \mathcal{SFL}$$
.

•
$$\sqcup (S^1 \times S^1) \times (S^1)^k \to \mathcal{HGL}_k$$

The above homotopy-equivalences can be made to be equivariant with respect to the action of $\Sigma^* \wr O_2$ on \mathcal{SP} . Moreover, the maps

$$\mathcal{SP}(k) imes_{\sum_{k} \wr O_2} \prod_{i=1}^k \mathcal{SP}(j_i) o \mathcal{SP}(\sum_{i=1}^k j_i)$$

$$\sqcup_{n=0}^{\infty} \left(\mathcal{SP}(n) \times_{\sum_{n \in O_2}} \mathcal{TH}^n \right) \to \widehat{\mathcal{K}}_{3,1}$$

are similarly equivariant.

Corollary: SP contains a suboperad such that each path-component is finite-dimensional.

Whitehead link example

Symmetric links and positions I

Borromean rings, two maximal symmetry positions

 L_{0}

Symmetric links and positions II Sakuma's example

'pure translation' symmetry example

