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Background

Theme

If W is a finite group generated by reflections of a real vector
space V , there are some associated varieties X on which W acts.
One gets representations of W on the cohomologies H i (X (C),Q)
and H i (X (R),Q). The characters of these representations give a
more complete description than the Betti numbers alone. The
relationship between H i (X (C),Q) and H i (X (R),Q) can be subtle.

Main example: W = Sn (n ≥ 2), with its irreducible representation

Vn = R{e1, e2, · · · , en}/R{e1 + e2 + · · ·+ en}.

The transpositions (i j) act as reflections in the hyperplanes

Hij = {
∑

akek | ai = aj}, for i , j ∈ [n], i 6= j ,

which form the famous braid arrangement.



To encode the characters of representations Un of the symmetric
groups Sn, it is helpful to use the generating function∑

n≥0

chSn(Un) ∈ Q[[p1, p2, p3, · · · ]] =: A,

where ch denotes the Frobenius characteristic

chSn(Un) =
1

n!

∑
w∈Sn

tr(w ,Un)
∏
i

p
#(i-cycles of w)
i .

Note that
∑
n≥0

chSn(1n) =
∏
i

(
∑

a

pa
i

iaa!
) = exp(

∑
i

pi

i
) =: Exp.

In the power series ring A we define plethystic substitution:

1. (f + g)[h] = f [h] + g [h], (fg)[h] = f [h]g [h],

2. pi [f + g ] = pi [f ] + pi [g ], pi [fg ] = pi [f ]pi [g ],

3. pi [pj ] = pij , and pi [t] = t i if t is an additional indeterminate.

This is an associative operation with identity p1.



The algebraic torus
Assume W is the Weyl group of a root system. Let Λ ⊂ V be the
lattice dual to the root lattice. W acts on the torus T = Λ⊗Z Gm.
If W = Sn, take Λn = Z{e1, e2, · · · , en}/Z{e1 + e2 + · · ·+ en} and

Tn =
{(a1, a2, · · · , an) ∈ An | ai 6= 0, ∀i}

(a1, a2, · · · , an) ∼ (λa1, λa2, · · · , λan)
∼= (Gm)n−1.

Proposition

The cohomology ring H∗(T (C),Q) is canonically isomorphic to the
exterior algebra

∧∗(V̂Q). In particular, for any w ∈W,∑
i

tr(w ,H i (T (C),Q)) (−t)i = detV (1− tw).

For the symmetric groups, it is easy to deduce that

p1 +
∑
n≥2

∑
i

chSn(H i (Tn(C),Q)) (−t)i =
Exp[(1− t)p1]− 1

1− t
.



By contrast, since R× retracts onto {1,−1}, T (R) is canonically
homotopy equivalent to the finite set Λ/2Λ. So for any w ∈W ,

tr(w ,H0(T (R),Q)) = #(elements of Λ/2Λ fixed by w) =: π(2)(w).

If W = Sn, π(2)(w) counts the w -stable subsets of [n] which have
even size. We deduce that

1 + p1 +
∑
n≥2

chSn(H0(Tn(R),Q)) = Exp.Cosh,

where Cosh is the sum of the even-degree terms of Exp.
Although the answers for T (C) and T (R) look very different, there
is a partial connection between them: if w has odd order, then

π(2)(w) = 2dim V w
= detV (1 + w),

so tr(w ,H0(T (R),Q)) =
∑

i tr(w ,H i (T (C),Q)) in this case.



The complement of the reflecting hyperplanes

Let M be the affine variety defined by the hyperplane complement.
There is a stark topological contrast between M(C) and M(R):

I M(C) is a K (π, 1) space for the pure Artin group of W .

I M(R) is a union of contractible cones called chambers. The
group W permutes these chambers simply transitively. Hence
H0(M(R),Q) is the regular representation of W , which has
character tr(w ,H0(M(R),Q)) = |W |δ1w .

If W = Sn, then

Mn = {
∑

akek ∈ Vn | ai 6= aj , ∀i 6= j}

is the configuration space of ordered n-tuples in A1. Note that the
image Mn of Mn in P(Vn) is the configuration space M0,n+1 of
ordered (n + 1)-tuples in P1 (since the last point can be set to ∞).
So here the action of Sn actually extends to Sn+1.



There are two general ways to describe H∗(M(C),Q):

I as the Orlik–Solomon algebra of the hyperplane arrangement;

I as the Whitney homology of the lattice ΠW of reflection
subgroups of W (= the lattice of hyperplane intersections).

If W = Sn there is an inductive approach. The whole vector space
Vn(C) can be stratified according to which coordinates are equal:
Mn(C) is one stratum, and every other stratum is homeomorphic
to Mm(C) for some m < n. The alternating sum

∑
(−1)iH i

c is
additive on stratifications, and one can distinguish the H i

c ’s using
Hodge weights (hyperplane complements are minimally pure).

Theorem (Lehrer)

1 + p1 +
∑
n≥2

∑
i

chSn(H i (Mn(C),Q)) (−t)i = Exp[t−1L[tp1]],

where L =
∑ µ(d)

d log(1 + pd) is the solution of Exp[L] = 1 + p1.

Lehrer found similar character formulas for types B and D.



The De Concini–Procesi model of the arrangement

This projective variety M is defined as the closure of the image of

M →
∏

W ′∈Πirr,rk≥2
W

P(V /V W ′).

If W = Sn, Mn is the moduli space M0,n+1 of stable genus 0

curves with n + 1 marked points (Πirr,rk≥2
Sn

↔ {K ⊆ [n], |K | ≥ 3}).

De Concini and Procesi gave a presentation of H∗(M(C),Q)
(generalizing the Mn case due to Keel), where the generators in

H2 are the classes of the divisors labelled by W ′ ∈ Πirr,rk≥2
W .

It follows that H2i (M(C),F2) ∼= H i (M(R),F2), and one can
conclude that if w ∈W has odd order,∑

i

(−1)i tr(w ,H2i (M(C),Q)) =
∑

i

(−1)i tr(w ,H i (M(R),Q)).

But overall, H∗(M(C),Q) and H∗(M(R),Q) are very different.



Mn has a stratification where the strata are indexed by rooted
trees with n leaves (these indicate the intersection pattern of the
components of the curve); each stratum is isomorphic to a product
Mn1 ×Mn2 × · · · ×Mnk

where n1 + n2 + · · ·+ nk = n.

Theorem (Ginzburg–Kapranov 1994)

The following elements of A are inverses for plethystic substitution:

p1 +
∑
n≥2

∑
i

chSn(H2i (Mn(C),Q)) t i and

p1 −
∑
n≥2

∑
i

chSn(H i (Mn(C),Q)) (−1)i tn−2−i .

Since Lehrer’s result determines the latter, this can be viewed as a
very complicated recursion for chSn(H∗(Mn(C),Q)). There are
some results about other W : bases for H∗(M(C),Q) in types B
and D (Yuzvinsky), character formula in type B (myself).



Surprisingly, Mn(R) is analogous to Mn(C).

I As shown by Davis–Januszkiewicz–Scott, it is a K (π, 1) space
for the pure cactus group.

I Etingof–Henriques–Kamnitzer–Rains gave a presentation for
H∗(Mn(R),Q) which is like the Orlik–Solomon algebra, but
with generators labelled by K ⊆ [n], |K | = 3.

There is also an analogue of the Whitney homology description:

Theorem (Rains 2006)

Let Π
(2)
W be the subposet of ΠW consisting of W ′ whose irreducible

components all have even rank. There is a natural isomorphism

H∗(M(R),Q) ∼=
⊕

W ′∈Π
(2)
W

H̃
Π

(2)
W
∗ (({1},W ′),Q)⊗ or(V /V W ′).

Rains deduced a formula for chSn(H∗(Mn(R),Q)), similar to
Lehrer’s for Mn(C). He and I generalized this to types B and D.



The toric variety of the arrangement
Associated to the lattice Λ ⊂ V , and the fan defined by the
hyperplane arrangement, there is a toric variety T , which is
nonsingular and projective. (It has an alternative definition as a
Hessenberg variety, a certain closed subvariety of the flag variety.)
Choose a chamber, and let I denote the set of hyperplanes which
bound it. Then the T -orbits on T are labelled by the cones in the
fan, which are in bijection with

∐
J⊆I W /WJ .

Using the Stanley–Reisner presentation of H∗T (T (C),Q), one gets:

Theorem (Procesi)∑
i

tr(w ,H2i (T (C),Q)) t i = det V (1− tw)
∑
J⊆I

1W
WJ

(w)(
t

1− t
)|I\J|.

For the symmetric groups, Stanley deduced that

1 + p1 +
∑
n≥2

∑
i

chSn(H2i (Tn(C),Q)) t i =
1− t

Exp[(t − 1)p1]− t
.



When W = Sn, Tn can be described as a De Concini–Procesi
model of the arrangement of coordinate hyperplanes; namely, it is
the closure of the image of

Tn →
∏

K⊆[n],|K |≥2

P(AK ).

Identifying this arrangement with the hyperplanes Hi ,n+1 in Vn+1

gives a birational map Mn+1 → Tn. Hence H∗(Tn(C),Q) maps
(injectively?) to the subring of H∗(Mn+1(C),Q) generated by the
divisors labelled by the subsets K ∪ {n + 1} ⊆ [n + 1].
Rains’ theorem applies to general building sets; here, the relevant
poset is that of even-size subsets of [n]. One deduces:

1+p1+
∑
n≥2

∑
i

chSn(H i (Tn(R),Q)) (−t)i = Exp.(Coshε[t1/2p1])−1,

where ε indicates multiplying by the sign character. In particular,
dim H i (Tn(R),Q) =

(n
2i

)
A2i , where A2i is the Euler secant number.

Problem: find a presentation for H∗(Tn(R),Q).



Lehrer and I have a project to describe H∗(T (R),Q) in general;
preferably as a representation of W , but at present even the Betti
numbers are unknown. Using the fact that

∑
(−1)iH i

c is additive
on the stratification into T -orbits, we found the ‘Euler character’:

Theorem (H.–Lehrer 2009)∑
i

(−1)i tr(w ,H i (T (R),Q)) =
∑
J⊆I

(−1)|J| IndW
WJ

(ε.π
(2)
WJ

)(w).

Over R, we have no Hodge weights to distinguish individual H i ’s.
There is an alternative proof. It is known that the real toric variety
T (R) can be constructed by gluing together 2dim V copies of the
polytope dual to the fan; in the resulting cell chain complex, Cj

has character
∑

J⊆I ,|J|=j IndW
WJ

(ε.π
(2)
WJ

).
Problem: compute the homology of this complex.
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