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ABSTRACT. Note for students with a proof of the fact that the circle is the only smooth
embedded curve in the plane homothetically shrinking by curvature.
This result is due to Abresch and Langer [1] and, independently, to Epstein and Wein-
stein [3].

Let γ ⊂ R2 be a smooth connected embedded curve, fixing a reference point on the
curve γ we have an arclength parameter s which gives a unit tangent vector field and
a unit normal vector field ν, which is the counterclockwise rotation of π/2 in R2 of the
vector τ . Then, the curvature is given by k = 〈∂sτ | ν〉.

If γ is homothetically shrinking around the origin of R2 when moving by curvature,
it is easy to see that the normal projection of the position vector γ at every point must
be proportional to the curvature vector kν = k = ∂2

ssγ which gives the velocity of the
evolving curve. That is, λk+ 〈γ | ν〉 = 0 for a nonnegative constant λ. Dilating the curve
by a factor 1/

√
λ we can assume that λ = 1. Multiplying then this equation for ν we get

the characterizing equation k + 〈γ | ν〉 = 0.

THEOREM 1. The only smooth complete embedded curves in R2 satisfying k + 〈γ | ν〉 = 0
are the lines through the origin and the unit circle.

PROOF. The relation k = −〈γ | ν〉 implies ks = k〈γ | τ〉. Suppose that at some point
k = 0, it follows that also ks = 0 at the same point, hence, by the uniqueness theorem
applied to such first order ODE for the curvature k, we can conclude that k is identically
zero and we are dealing with a line L, which then, as 〈x | ν〉 = 0 for every x ∈ L, it must
contain the origin of R2.

From now on we will suppose that k is everywhere nonzero and, possibly reversing
the orientation of the curve, we can assume that k > 0 at every point, that is the curve
is strictly convex.

Computing the derivative of |γ|2,

∂s|γ|2 = 2〈γ | τ〉 = 2ks/k = 2∂s log k

we get k = Ce|γ|
2/2 for some constant C > 0.
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We consider the new coordinate θ = arccos 〈e1 | ν〉, which is global since the curve is
convex.
Differentiating with respect to the arclength parameter we have ∂sθ = k and

kθ = ks/k = 〈γ | τ〉 kθθ =
∂skθ
k

=
1 + k〈γ | ν〉

k
=

1

k
− k . (1)

Multiplying both sides of the last equation by 2kθ we get ∂θ[k2
θ + k2 − log k2] = 0, that is,

the quantity k2
θ + k2 − log k2 is equal to some constant E along all the curve. Notice that

such quantity E cannot be less than 1, moreover, if E = 1 we have k must be constant
and equal to one along the curve which consequently must be the unit circle centered
in the origin of R2.
Considering the case E > 1, from the strict convexity of the function x− log x, it follows
that k must be uniformly bounded from above and below and it can never be equal to
zero. Hence, remembering that k = Ce|γ|

2/2, the image of the curve is contained in a
compact set of R2 and, by the embeddedness hypothesis, the curve must be closed and
simple.

We now look at the critical points of the curvature k. Since kθθ = 1
k
− k, it holds

that kθθ 6= 0 when kθ = 0, otherwise, the second order ODE for k would imply kθ = 0
identically. This way we would have k = 1 identically and we would be in the case
of the unit circle centered in the origin of R2 as before. Since kθθ 6= 0 when kθ = 0,
the critical points of the curvature are not degenerate hence, by the compactness of the
curve, they are isolated and finite.
Moreover, by looking at the equation for the curvature (1) we can see easily that kmin < 1
and kmax > 1.

Suppose now that k(0) = kmax and k(θ) for θ > 0 are a pair of consecutive critical val-
ues for k then, the curvature is strictly decreasing in the interval [0, θ] and, again by the
second order ODE, the curvature function (hence also the curve) function is symmetric
with respect to θ = 0 and θ = θ. This clearly implies that k(θ) must be the minimum
kmin as every critical point is not degenerate.

By the four vertex theorem [5, 6], there are at least four critical points of k and conse-
quently the curve is composed by at least four pieces like the one above, hence, by the
assumption that the curve is embedded, the curvature k(θ) must be a periodic function
with period T > 0 not larger than π (since 2π is an obvious multiple of the period) and
θ = T/2. Precisely, by the previous symmetry argument, the period must be π/n for
some even n ∈ N.
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By a straightforward computation, starting by differentiating the equation kθθ =
1
k
− k, one gets (k2)θθθ + 4(k2)θ = 4kθ/k, then we compute

4

∫ T/2

0

sin 2θ
kθ
k
dθ =

∫ T/2

0

sin 2θ [(k2)θθθ + 4(k2)θ] dθ

= sin 2θ(k2)θθ|T/20 − 2

∫ T/2

0

cos 2θ(k2)θθ dθ + 4

∫ T/2

0

sin 2θ(k2)θ dθ

= 2 sinT [k(T/2)kθθ(T/2) + k2
θ(T/2)]− 2 cos 2θ(k2)θ|T/20

− 4

∫ T/2

0

sin 2θ(k2)θ dθ + 4

∫ T/2

0

sin 2θ(k2)θ dθ

= 2 sinT [k(T/2)kθθ(T/2) + k2
θ(T/2)]

− 4 cosTk(T/2)kθ(T/2) + 4k(0)kθ(0) .

Now, since kθ(0) = kθ(T/2) = 0, k(0) = kmax and k(T/2) = kmin, using the equation for
the curvature kθθ = 1/k − k, we get

4

∫ T/2

0

sin 2θ
kθ
k
dθ = 2 sinT (1− k2

min) ,

and this last term is nonnegative as kmin < 1 and 0 < T ≤ π.
Looking at the left hand integral we see instead that the factor sin 2θ is always nonneg-
ative as T ≤ π and kθ is always nonpositive in the interval [0, T/2], as we assumed that
we were moving from the maximum kmax at θ = 0 to the minimum kmin at θ = T/2,
without crossing any critical point of k. This gives a contradiction and concludes the
proof. �

REMARK 2. The original proof of Abresch and Langer (or the one by Epstein and
Weinstein) is different, actually this result is a consequence of their general classification
theorem.
To my knowledge, this “shortcut” in the embedded case is due to Chou and Zhu [2,
Proposition 2.3].

We discuss a while the analysis in the case of an immersed closed curve.
The initial part of the proof in theorem still holds, that is, that is the curve is a line
or k 6= 0 everywhere, it is bounded, and the ODEs (1) hold. The quantity k2

θ + k2 −
log k2 is equal to some constant E which must be larger than one (otherwise we are
dealing with a circle). Again the curve is symmetric with respect to the critical points
of the curvature, which are all nondegenerate, isolated and finite. Hence, the curvature
function is oscillating between its maximum and its minimum with some period T > 0
which is an integer fraction (at least by a factor 4) of an integer multiple (at least 2) of
2π.
Notice that there are two parameters here around, the rotation number of the closed
curve and the number of critical points of the curvature.
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Suppose that kmin < kmax are these two consecutive critical values of k, It follows
that they are two distinct positive zeroes of the function E+log k2−k2 when E > 1 with
0 < kmin < 1 < kmax.
We have that the change ∆θ in the angle θ along the piece of curve delimited by two
consecutive points where the curvature assumes the values kmin and kmax, must be the
semiperiod T/2. Then, the analysis reduce to understand what are the admissible T .
Such quantity ∆θ is given by the integral

I(E) =

∫ kmax

kmin

dk√
E − k2 + log k2

.

Abresch and Langer (and also Epstein and Weinstein) by studying the behavior of
this integral were able to classify all the immersed closed curves in R2 satisfying the
structural equation k + 〈γ | ν〉 = 0.
They are a family of curves indexed by two parameters called Abresch–Langer curves,
see [1] for the description, proofs and details.

We conclude stating and partially proving the main properties of the integral I(E).
It should be noticed that, by the discussion about the semiperiod T , the last statement
implies Theorem 1.

PROPOSITION 3. The function I : (1,+∞)→ R satisfies

(1) limE→1+ I(E) = π/
√

2,
(2) limE→+∞ I(E) = π/2,
(3) I(E) is monotone nonincreasing.

As a consequence I(E) > π/2.

PROOF. Notice that the study of the quantity I(E) is equivalent to the study of the
semi–period for the one dimensional Hamiltonian system with Hamiltonian function
given by H(kθ, k) = k2

θ + k2 − log k2.
(1) As the global minimum 1 of the strictly convex potential V (k) = k2 − log k2

is assumed at k = 1, the limiting value for the period of the Hamiltonian system when
E → 1+ is equal to the period of the corresponding linearized system (see [4, Chap. 12]).
The linearized Hamiltonian is HL(k̂θ, k̂) = k̂2

θ + k̂2, which gives k̂θθ = −2k̂. The solution
to this last ODE is clearly

√
2π–periodic, hence its semi–period is equal to π/

√
2.

(2) As 0 < kmin < 1 < kmax for E > 1, we can write

I(E) =

∫ 1

kmin

dk√
E − k2 + log k2

+

∫ kmax

1

dk√
E − k2 + log k2

= I−(E) + I+(E) .

We want to prove that limE→+∞ I−(E) = 0 and limE→+∞ I+(E) = π/2. This claim is
motivated by the structure of the potential, that is, as E increases more and more, the
motion of the system can be seen as an ”instantaneous reflection” against a wall situated
at kmin ' 0.



CURVES HOMOTHETICALLY SHRINKING BY CURVATURE 5

Introducing the variable w = k/kmin the first integral becomes

I−(E) = kmin

∫ 1/kmin

1

dw√
k2

min(1− w2) + logw2
.

Notice that, given a real number 0 < α < 1, it is always possible to find k̃(α) such that
|kmin(1− w2)| ≤ α| logw2|with w ∈ [1, 1/kmin] and kmin ≤ k̃. Fixing such an α, we have

0 ≤ I−(E) ≤ kmin√
1− α

∫ 1/kmin

1

dw√
2 logw

≤ kmin√
1− α

(∫ n

1

dw√
2 logw

+

∫ 1/
√
kmin

n

dw√
2 logw

+

∫ 1/kmin

1/
√
kmin

dw√
2 logw

)
≤ kmin(C1 + C2/

√
kmin + okmin

(1)/kmin) ,

hence, the claim on I−(E) follows.
Regarding I+(E), we proceed in a similar way changing again integration variable to
w = k/kmax. This way we obtain

lim
E→+∞

I+(E) = lim
E→+∞

∫ 1

1/kmax

dw√
1− w2 + 2 logw

k2
max

= lim
E→+∞

∫ 1

0

χ[1/kmax,1]
dw√

1− w2 + 2 logw
k2
max

= π/2 ,

where in the last equality we applied the dominated convergence theorem.
(3) See the original paper of Abresch and Langer [1] or the general result by Zevin

and Pinsky [7]. �
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