CHAPTER 2

Distance from a smooth boundary: preliminary version

This version is in progress: please, take this into account. All corrections and comments are welcome.

In this chapter we collect some of the main properties of the distance function from a smooth boundary.

We denote by $\left\{e_{1}, \ldots, e_{n}\right\}$ the canonical basis of \mathbb{R}^{n}. Coordinates of points z in \mathbb{R}^{n} are denoted as $\left(z^{1}, \ldots, z^{n}\right)$, and we write $z=z^{k} e_{k}=\left(z^{1}, \ldots, z^{n}\right)$, where we adopt the convention of summation on repeated indices. \mathbb{R}^{n} is endowed with the euclidean norm $|\cdot|$, induced by the euclidean scalar product. The tangent space $T_{z} \mathbb{R}^{n}$ to \mathbb{R}^{n} at z is a copy of \mathbb{R}^{n} which is independent of z. There is an identification between a point $z \in \mathbb{R}^{n}$ and the position vector of z, which belongs to $T_{z} \mathbb{R}^{n}$; we will use this identification in the sequel.

Let $Y=\left(Y^{1}, \ldots, Y^{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth vector field. The Jacobian $(m \times n)$ matrix representing the differential $d Y(z)$ of Y at z is indicated by $J Y(z)$. If $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$, the $i j$-entry $(J Y(z))_{i j}$ of $J Y(z)$ is $\frac{\partial Y^{i}}{\partial z^{j}}(z)$, so that the i-th column of the transposed matrix $J Y(z)^{T}$ is $\nabla Y^{i}(z)$. We write $\nabla Y(z)=J Y(z)^{T}$. If $n=m$, the determinant of the linear map $d Y(z)$ is denoted by $\operatorname{det}(J Y(z))$ or by $\operatorname{det}(\nabla Y(z))$.

We set

$$
\mathcal{K}\left(\mathbb{R}^{n}\right):=\left\{K \subset \mathbb{R}^{n}: K \text { compact }\right\}
$$

If $F \subseteq \mathbb{R}^{n}$ is a nonempty set and $z \in \mathbb{R}^{n}$, we let

$$
\operatorname{dist}(z, F):=\inf _{x \in F}|x-z|
$$

We also let $\operatorname{dist}(z, \emptyset):=+\infty$.

Remark 2.0.1. Note that

$-\operatorname{dist}(z, F)=\operatorname{dist}(z, \bar{F})$ and $\operatorname{dist}\left(z, \mathbb{R}^{n} \backslash F\right)=\operatorname{dist}\left(z, \mathbb{R}^{n} \backslash \operatorname{int}(F)\right)$, where \bar{F} and $\operatorname{int}(F)$ denote the topological closure and the topological interior of F respectively;
$-(\operatorname{dist}(z, F))^{2}=\inf _{y \in F}|y-z|^{2}$;

- dist (\cdot, F) is Lipschitz continuous, and therefore almost everywhere differentiable by Rademacher's theorem. Moreover, if we indicate by $\nabla=\left(\frac{\partial}{\partial z^{1}}, \ldots, \frac{\partial}{\partial z^{n}}\right)$ the gradient vector ${ }^{1}$, we have that $|\nabla \operatorname{dist}(\cdot, F)| \leq 1$ almost everywhere.
In what follows we will use the notation $\nabla_{i}=\frac{\partial}{\partial z^{2}}$. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function of class \mathcal{C}^{1}, we identify the one-covector $d f(z)$ and the vector $\nabla f(z)$ in the usual way, i.e.,

[^0]$\langle d f(z), v\rangle=\nabla f(z) \cdot v$ for any $v \in \mathbb{R}^{n}$, where $\langle\cdot, \cdot\rangle$ denotes the duality between \mathbb{R}^{n} and its dual space, and \cdot is the euclidean scalar product between vectors. Consequently, the scalar product will be also denoted as $\langle\cdot, \cdot\rangle$.

Given $z \in \mathbb{R}^{n}$, we set

$$
\begin{equation*}
\operatorname{pr}_{F}(z):=\{x \in F:|z-x|=\operatorname{dist}(z, F)\} . \tag{2.1}
\end{equation*}
$$

REmark 2.0.2. Let $F \subseteq \mathbb{R}^{n}$ be a nonempty closed set and $z \in \mathbb{R}^{n} \backslash F$. It is possible to prove that $\operatorname{dist}(\cdot, F)$ is differentiable at z if and only if $\operatorname{pr}_{F}(z)$ consists of only one element, namely $\operatorname{pr}_{F}(z)=\{x\}, x \in F$. In this case $\nabla \operatorname{dist}(z, F)=\frac{z-x}{|z-x|}$, so that

$$
x=\operatorname{pr}_{F}(z)=z-\operatorname{dist}(z, F) \nabla \operatorname{dist}(z, F) ;
$$

moreover for any $\lambda \in(0,1]$ we have that $\operatorname{pr}_{F}(\lambda z+(1-\lambda) x)=\{x\}$. In particular, $\operatorname{dist}(\cdot, F)$ is differentiable at any point $\lambda z+(1-\lambda) x$. Furthermore, if $\operatorname{pr}_{F}(z)=\{x\}$, then pr_{F} is continuous at x, i.e., for any $\varepsilon>0$ there exists $\delta>0$ such that $\operatorname{pr}_{F}\left(B_{\delta}(z)\right) \subset B_{\varepsilon}(x)$.

For any $\rho>0$ we write

$$
\begin{equation*}
F_{\rho}^{+}:=\left\{z \in \mathbb{R}^{n}: \operatorname{dist}(z, F)<\rho\right\}, \quad F_{\rho}^{-}:=\left\{z \in \mathbb{R}^{n}: \operatorname{dist}\left(z, \mathbb{R}^{n} \backslash F\right)>\rho\right\} . \tag{2.2}
\end{equation*}
$$

Since $\overline{\mathbb{R}^{n} \backslash F}=\mathbb{R}^{n} \backslash \operatorname{int}(F)$, we have

$$
\begin{equation*}
F_{\rho}^{+}=(\bar{F})_{\rho}^{+}, \quad F_{\rho}^{-}=(\operatorname{int}(F))_{\rho}^{-} \tag{2.3}
\end{equation*}
$$

2.1. First order properties of the distance function

Given a set $E \subseteq \mathbb{R}^{n}$, we let

$$
\begin{equation*}
d(z, E):=\operatorname{dist}(z, E)-\operatorname{dist}\left(z, \mathbb{R}^{n} \backslash E\right), \quad z \in \mathbb{R}^{n} \tag{2.4}
\end{equation*}
$$

be the oriented distance function from the topological boundary ∂E of E, negative inside E. Note that $d(\cdot, E)=-d\left(\cdot, \mathbb{R}^{n} \backslash E\right)$.
Notation: when there is no ambiguity in the choice of the set E, for simplicity we use the notation

$$
d(\cdot)=d(\cdot, E)
$$

Moreover, if we want to remark that a quantity depends on ∂E rather than on E itself, we will use the notation

$$
\Sigma=\partial E .
$$

Example 2.1.1. Let $\rho>0$ and $d(\cdot):=d\left(\cdot, B_{\rho}\left(z_{0}\right)\right)$ be the oriented distance from the boundary of the open ball $B_{\rho}\left(z_{0}\right)$ centered at $z_{0} \in \mathbb{R}^{n}$ with radius ρ. Then $d(z)=\left|z-z_{0}\right|-\rho$, and for $z \neq z_{0}$ we have $\nabla d(z)=\frac{z-z_{0}}{\left|z-z_{0}\right|}$.

Definition 2.1.2. Let $E \subset \mathbb{R}^{n}$ be a set. We write $\partial E \in \mathcal{C}^{\infty}$ if there exists an open set U containing ∂E such that $d(\cdot, E) \in \mathcal{C}^{\infty}(\mathrm{U})$.

When $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}\left(\mathbb{R}^{n}\right)$ we can take U of the form $\mathrm{U}=(\partial E)_{\rho}^{+}$for some $\rho>0$.

REMARK 2.1.3. It is possible to show that $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}\left(\mathbb{R}^{n}\right)$ if and only if ∂E is an $(n-1)$-dimensional compact manifold of class \mathcal{C}^{∞}.

We indicate by $\mathrm{n}^{E}: \partial E \rightarrow \mathbb{R}^{n}$ the unit normal vector field to ∂E pointing toward $\mathbb{R}^{n} \backslash E$; when no confusion is possible, we write $\mathrm{n}^{E}=e_{k} \mathrm{n}^{k}=\mathrm{n}=\left(\mathrm{n}^{1}, \ldots, \mathrm{n}^{n}\right)$, considered as a column vector.

TheOrem 2.1.4. Let $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}\left(\mathbb{R}^{n}\right)$ and let U be a tubular neighbourhood such that $d \in \mathcal{C}^{\infty}(\mathrm{U})$. Then
(i) d satisfies the eikonal equation in U :

$$
\begin{equation*}
|\nabla d(z)|^{2}=1, \quad z \in \mathrm{U} \tag{2.5}
\end{equation*}
$$

(ii) $\operatorname{pr}_{\Sigma}(z)$ is a singleton for any $z \in \mathrm{U}$, and

$$
\operatorname{pr}_{\Sigma}(z)=\{z-d(z) \nabla d(z)\}
$$

Moreover

$$
\begin{equation*}
\nabla d(z)=\nabla d\left(\operatorname{pr}_{\Sigma}(z)\right) \tag{2.6}
\end{equation*}
$$

In view of (2.5) we have

$$
\nabla d(x)=\mathrm{n}^{E}(x), \quad x \in \partial E .
$$

Note that the $i j$-component of $\nabla \operatorname{pr}_{\Sigma}(z)$ reads as

$$
\begin{equation*}
\mathrm{Id}_{i j}-\nabla_{i} d \nabla_{j}-d \nabla_{i j}^{2} d \quad \text { in } \mathrm{U} \tag{2.7}
\end{equation*}
$$

where $\operatorname{Id}_{i j}$ is the $i j$-component of the identity map Id in \mathbb{R}^{n}, and $\nabla^{2}=\left(\nabla_{i j}^{2}\right)$ is the Hessian matrix ${ }^{2}$ in \mathbb{R}^{n}, where we use the notation $\nabla_{i k}^{2}=\frac{\partial^{2}}{\partial z^{i} \partial z^{k}}$.

In particular, if $x \in \Sigma, \nabla \operatorname{pr}_{\Sigma}(x)$ coincides with the orthogonal projection $P_{T_{x} \Sigma}: \mathbb{R}^{n} \rightarrow$ $T_{x} \Sigma$ on the tangent space $T_{x} \Sigma \subset \mathbb{R}^{n}$ to Σ at x,

$$
\nabla \operatorname{pr}_{\Sigma}(x)=P_{T_{x} \Sigma}
$$

We denote by $N_{x} \Sigma$ the normal line to ∂E at x, and by $P_{N_{x} \Sigma}=\mathrm{Id}-P_{T_{x} \Sigma}$ the orthogonal projection on $N_{x} \Sigma$.
2.1.1. Extensions. Let $u \in \mathcal{C}^{\infty}(\partial E)$, and let $u^{e} \in \mathcal{C}^{\infty}(\mathrm{U})$ be a smooth extension of u on U . The vector field $\nabla u^{e}-\left\langle\nabla u^{e}, \nabla d\right\rangle \nabla d$ restricted to ∂E is independent of the particular extension of u; it is called the tangential gradient of u on ∂E and denoted by $\nabla^{\Sigma} u$. Clearly $\nabla^{\Sigma} u(x)=P_{T_{x} \Sigma}\left(\nabla u^{e}(x)\right)$ for $x \in \partial E$. The tangential gradient is sometimes denoted as $\delta=\nabla-\langle\nabla, \mathrm{n}\rangle \mathrm{n}=\left(\delta_{1}, \ldots, \delta_{n}\right), \delta_{i}=\nabla_{i}^{\Sigma}$.

Definition 2.1.5. We define $\bar{u}: \mathrm{U} \rightarrow \mathbb{R}$ as $\bar{u}(z):=u\left(\operatorname{pr}_{\Sigma}(z)\right)$ for any $z \in \mathrm{U}$.
Then $\bar{u} \in \mathcal{C}^{\infty}(\mathrm{U})$ is an extension of u on U , and

$$
\begin{equation*}
\nabla \bar{u}=\nabla^{\Sigma} u \quad \text { on } \partial E \tag{2.8}
\end{equation*}
$$

[^1]REmARK 2.1.6. For any $k=1, \ldots, n$ let $\pi_{k}(z):=\left\langle z, e_{k}\right\rangle=z^{k}$, so that

$$
\operatorname{Id}=\left(\pi_{1}, \ldots, \pi_{n}\right)
$$

Then $\overline{\pi_{j}}(z)=z^{j}-d(z) \nabla_{j} d(z)$,

$$
\left\langle e_{i}, \nabla^{\Sigma} \pi_{j}\right\rangle=P_{T_{x} i j}, \quad i, j=1, \ldots, n .
$$

Let $X=\left(X^{1}, \ldots, X^{n}\right): \partial E \rightarrow \mathbb{R}^{n}$ be a smooth vector field. The scalar quantity $\left\langle e_{k}, \nabla^{\Sigma} X^{k}\right\rangle$ is called the tangential divergence of X and denoted by $\operatorname{div}_{\Sigma} X$. If $X^{e}=$ $\left(X^{1^{e}}, \ldots, X^{n e}\right): \mathrm{U} \rightarrow \mathbb{R}$ is any smooth extension of X on U we have

$$
\begin{equation*}
\operatorname{div}_{\Sigma} X=\operatorname{div} X^{e}-\left\langle\nabla X^{e} \mathrm{n}, \mathrm{n}\right\rangle=\operatorname{div} X^{e}-\frac{\partial X^{i^{e}}}{\partial z^{j}} \mathrm{n}^{i} \mathrm{n}^{j} \quad \text { on } \Sigma, \tag{2.9}
\end{equation*}
$$

where div is the divergence in \mathbb{R}^{n}. Note that $\operatorname{div}_{\Sigma} X(x)=\operatorname{tr}\left(P_{T_{x} \Sigma} \nabla X^{e}(x)\right)$ for $x \in \partial E$.
Also $P_{T_{x} \Sigma} \nabla X^{e} P_{T_{x} \Sigma}$ is independent of the particular extension of X, and is denoted by $\nabla^{\Sigma} X$, and we have $\operatorname{div}_{\Sigma} X(x)=\operatorname{tr}\left(\nabla^{\Sigma} X(x)\right)$.

Definition 2.1.7. We define $\bar{X}: \mathrm{U} \rightarrow \mathbb{R}^{n}$ as $\bar{X}(z):=X\left(\operatorname{pr}_{\Sigma}(z)\right)$ for any $z \in \mathrm{U}$.
Then $\bar{X} \in \mathcal{C}^{\infty}\left(\mathrm{U} ; \mathbb{R}^{n}\right)$ is an extension of X, and

$$
\operatorname{div} \bar{X}=\operatorname{div}_{\Sigma} X \quad \text { on } \partial E
$$

Note that

$$
\overline{\mathrm{n}}^{E}(z)=\nabla d(z), \quad z \in \mathrm{U} .
$$

$\overline{\mathrm{n}}^{E}$ is the natural extension of the vector field n^{E} on the whole of U , in the sense that $\overline{\mathrm{n}}^{E} \in C^{\infty}(\mathrm{U}), \overline{\mathrm{n}}^{E}=\mathrm{n}^{E}$ on ∂E, and $\overline{\mathrm{n}}^{E}$ keeps the constraint $\left|\overline{\mathrm{n}}^{E}(z)\right|=1$ for any $z \in \mathrm{U}$. When no confusion is possible, we will write $\overline{\mathrm{n}}^{E}=\overline{\mathrm{n}}=e_{k} \overline{\mathrm{n}}^{k}=\left(\overline{\mathrm{n}}^{1}, \ldots, \overline{\mathrm{n}}^{n}\right)$.

Observe that $\overline{\delta_{k} u}$ does not coincide, in general, with $\nabla_{k} \bar{u}$ in U , since

$$
\overline{\delta_{k} u}(z)=\delta_{k} u(\operatorname{pr}(z))=\nabla_{k} \bar{u}(\operatorname{pr}(z)), \quad z \in \mathrm{U}
$$

while from $\bar{u}(z)=\bar{u}(\operatorname{pr}(z))$ it follows

$$
\begin{aligned}
\nabla_{k} \bar{u}(z) & =\nabla_{j} \bar{u}(\operatorname{pr}(z))\left(\operatorname{Id}_{j k}-\nabla_{k} d(z) \nabla_{j} d(z)-d(z) \nabla_{j k} d(z)\right) \\
& =\nabla_{j} \bar{u}(\operatorname{pr}(z))\left(\operatorname{Id}_{j k}-d(z) \nabla_{j k} d(z)\right), \quad z \in \mathrm{U},
\end{aligned}
$$

so that $\nabla_{k} \bar{u}(\operatorname{pr}(z))=\nabla_{j} \bar{u}(z)\left(\operatorname{Id}_{j k}-d(z) \nabla_{j k}^{2} d(z)\right)^{-1}$. ${ }^{* * * *}$ check $* * * *$
Given $u \in \mathcal{C}^{\infty}(\partial E)$, we denote by $\Delta_{\Sigma} u$ the tangential laplacian of u on ∂E, defined as

$$
\Delta_{\Sigma} u:=\operatorname{div}_{\Sigma}\left(\nabla^{\Sigma} u\right) .
$$

Remark 2.1.8. Note that

$$
\begin{equation*}
\Delta_{\Sigma} u=\Delta \bar{u} \quad \text { on } \partial E, \tag{2.10}
\end{equation*}
$$

where $\Delta=\operatorname{div} \nabla$ is the Laplacian in \mathbb{R}^{n}. Indeed by definition

$$
\Delta_{\Sigma} u=\operatorname{div}_{\Sigma} \nabla^{\Sigma} u=\left\langle e_{k}, \nabla^{\Sigma} \overline{\delta_{k} u}\right\rangle \quad \text { on } \partial E .
$$

Since

$$
\overline{\delta_{k} u}=\nabla_{k} \bar{u} \quad \text { on } \partial E,
$$

we have

$$
\Delta_{\Sigma} u=\left\langle e_{k}, \nabla^{\Sigma} \nabla_{k} \bar{u}\right\rangle=\left\langle e_{k}, \nabla \nabla_{k} \bar{u}\right\rangle-\left\langle e_{k}, \mathrm{n}\right\rangle\left\langle\nabla \nabla_{k} \bar{u}, \mathrm{n}\right\rangle \quad \text { on } \partial E,
$$

and (2.10) follows since $\left\langle\nabla \nabla_{k} \bar{u}, \mathrm{n}\right\rangle=0^{3}$.

2.2. Second order properties of the distance function

Let $\partial E \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$, and U be as in Definition 2.1.2. Differentiating the equality (2.5) with respect to z^{i} it follows

$$
\begin{equation*}
\nabla_{i k}^{2} d \nabla_{k} d=0 \quad \text { in } \mathrm{U}, \quad i \in\{1, \ldots, n\}, \tag{2.11}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\nabla d(z) \in \operatorname{ker}\left(\nabla^{2} d(z)\right), \quad z \in \mathrm{U} \tag{2.12}
\end{equation*}
$$

Hence $\nabla d(z)$ is a unit zero eigenvector of $\nabla^{2} d(z)$; therefore, given $z \in U$, it is possible to choose an orthonormal basis of \mathbb{R}^{n} which diagonalizes $\nabla^{2} d(z)$ for which the last vector is $\nabla d(z)^{4}$.

From (2.12) it follows that

$$
\begin{equation*}
\operatorname{div}_{\Sigma}(\nabla d)=\operatorname{div}(\nabla d)=\Delta d \quad \text { on } \partial E \tag{2.13}
\end{equation*}
$$

Note that if we apply (2.10) to $u=\pi_{k}$, for a given $k \in\{1, \ldots, n\}$, where π_{k} is defined in Remark 2.1.6, we find, using (2.11),

$$
\begin{equation*}
\Delta_{\Sigma} \pi_{j}=\Delta \overline{\pi_{j}}=-\Delta d \nabla_{j} d \quad \text { on } \partial E \tag{2.14}
\end{equation*}
$$

2.2.1. Mean curvature. Let us recall the definition of second fundamental form ${ }^{5}$. and of mean curvature

Definition 2.2.1. Let $\partial E \in \mathcal{C}^{\infty}, i, j, k \in\{1, \ldots, n\}$, and $x \in \partial E$. The ijk-th component of the second fundamental form of ∂E at x is defined as

$$
\nabla_{i j} d(z) \nabla_{k} d(z)
$$

The mean curvature vector of ∂E at x is defined as as $\Delta d(x) \nabla d(x)$, and the mean curvature of ∂E at x as $\Delta d(x)$.

Note that $\Delta d \nabla d$ is unchanged if we substitute $\mathbb{R}^{n} \backslash E$ to E in (2.4). Moreover Δd is positive for a smooth uniformly convex set E, so that in this case $\Delta d \nabla d$ points toward $\mathbb{R}^{n} \backslash E$.

In what follows we set

$$
\left|\nabla^{2} d\right|^{2}:=\operatorname{tr}\left(\nabla^{2} d \nabla^{2} d\right)
$$

where tr is the trace operator in \mathbb{R}^{n}.

[^2]The eigenvalues of $\nabla^{2} d(x)$ are denoted by $\kappa_{1}^{E}(x), \ldots, \kappa_{n}^{E}(x)$; if we take $\nabla d(x)$ as the last eigenvector, from (2.12) we have that $\kappa_{n}^{E}(x)=0$, and

$$
\left|\nabla^{2} d\right|^{2}=\sum_{i=1}^{n-1}\left(\kappa_{i}\right)^{2}
$$

Remark 2.2.2. The mean curvature can be expressed also using the squared distance function as follows. Let $\eta:=d^{2} / 2$. Then $\eta \in C^{\infty}(\mathrm{U}), \eta=0$ on ∂E, and

$$
\begin{equation*}
\nabla \eta=d \nabla d=0 \quad \text { on } \partial E \tag{2.15}
\end{equation*}
$$

Moreover, if $i, j \in\{1, \ldots, n\}$ we have $\nabla_{i j}^{2} \eta=\nabla_{i} d \nabla_{j} d+d \nabla_{i j}^{2} d$ in U, so that

$$
\begin{equation*}
\nabla_{i j}^{2} \eta=\nabla_{i} d \nabla_{j} d \quad \text { on } \partial E . \tag{2.16}
\end{equation*}
$$

Hence $\nabla^{2} \eta(x)=P_{N_{x} \Sigma}$. Finally, if $i, j, k \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
\nabla_{i j k}^{3} \eta=\nabla_{i} d \nabla_{j k}^{2} d+\nabla_{j} d \nabla_{i k}^{2} d+\nabla_{k} d \nabla_{i j}^{2} d+d \nabla_{i j k}^{3} d \tag{2.17}
\end{equation*}
$$

on U, where we use the notation $\nabla_{i j k}^{3}=\frac{\partial^{3}}{\partial z^{i} \partial z^{j} \partial z^{k}}$.
Therefore, recalling (2.12), we find

$$
\begin{equation*}
\Delta \nabla \eta=\Delta d \nabla d \quad \text { on } \partial E \tag{2.18}
\end{equation*}
$$

The mean curvature can be expressed by differentiating the projection as follows.
REMARK 2.2.3. Differentiating the $r l$-component of (2.7) with respect to z^{s}, we obtain

$$
\nabla_{s r}^{2} \mathrm{pr}_{l}=-\nabla_{l} d \nabla_{r s}^{2} d-\nabla_{r} d \nabla_{s l}^{2} d-\nabla_{s} d \nabla_{r l}^{2} d-d \nabla_{s l r}^{3} d \quad \text { on } U
$$

In particular, using (2.11),

$$
\Delta \mathrm{pr}_{l}=-\Delta d \nabla_{l} d \quad \text { on } \partial E .
$$

Remark 2.2.4. Let $X \in \mathcal{C}^{\infty}\left(\partial E ; \mathbb{R}^{n}\right)$; split X as $X=X_{\Sigma}+X_{\perp}$, where $X_{\Sigma}:=X-$ $\langle X, \mathrm{n}\rangle \mathrm{n}$ is the orthogonal projection of X on the tangent space to Σ. Then, writing $X_{\perp}=$ $\xi \mathrm{n}$, where $\xi:=\langle X, \mathrm{n}\rangle$, we have

$$
\begin{equation*}
\operatorname{div}_{\Sigma} X_{\perp}=\operatorname{div}_{\Sigma}(\xi \mathrm{n})=\left\langle\nabla^{\Sigma} \xi, \mathrm{n}\right\rangle+\xi \operatorname{div}_{\Sigma} \mathrm{n}=\xi \operatorname{div}_{\Sigma} \mathrm{n}=\xi \Delta d \tag{2.19}
\end{equation*}
$$

so that

$$
\operatorname{div}_{\Sigma} X=\operatorname{div}_{\Sigma}\left(X_{\Sigma}+X_{\perp}\right)=\operatorname{div}_{\Sigma} X_{\Sigma}+\Delta d\langle X, n\rangle
$$

The mean curvature can be expressed looking at ∂E as a level set of any smooth function with nonvanishing gradient as follows.

REMARK 2.2.5. Let $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}\left(\mathbb{R}^{n}\right)$. If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth function with $E=\{u<0\}, \partial E=\{u=0\}$, and $\nabla u \neq 0$ on ∂E, then $n^{E}=\frac{\nabla u}{|\nabla u|}$, and $i j k$-component of the second fundamental form is

$$
\left(P_{T_{x} \Sigma} \nabla^{2} u P_{T_{x} \Sigma}\right)_{i j} \frac{\nabla_{k} u}{|\nabla u|},
$$

where we recall that $P_{T_{x} \Sigma_{i j}}=\operatorname{Id}_{i j}-\frac{\nabla_{i} u(x)}{|\nabla u(x)|} \frac{\nabla_{j} u(x)}{|\nabla u(x)|}$. Then the mean curvature vector equals

$$
\begin{equation*}
\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) \frac{\nabla u}{|\nabla u|}, \tag{2.20}
\end{equation*}
$$

and the mean curvature equals

$$
\begin{equation*}
\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=\operatorname{tr}\left(P_{T_{x} \Sigma} \nabla^{2} u\right) \tag{2.21}
\end{equation*}
$$

If $\{u=0\}$ is, in a neighbourhood O of a point, the graph of a smooth function v defined on an open set $\Omega \subset \mathbb{R}^{n-1}$, i.e., $\{u=0\} \cap O=\left\{\left(s, z_{n}\right) \in \Omega \times \mathbb{R}: z_{n}=v(s)\right\}$, and $\{u<0\} \cap O=\left\{\left(s, z_{n}\right) \in \Omega \times \mathbb{R}: v(s)<z_{n}\right\}$, then the mean curvature vector equals

$$
\begin{equation*}
\operatorname{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v|^{2}}}\right) \frac{(\nabla v,-1)}{\sqrt{1+|\nabla v|^{2}}} \tag{2.22}
\end{equation*}
$$

where in (2.22) the symbols div and ∇ are the gradient and the divergence with respect to s, respectively. Note that if $s \in \Omega$ is such that $\nabla v(s)=0$ then the mean curvature of the graph of v at $(s, v(s))$ equals $\Delta v(s)$.

Remark 2.2.6. If $E \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ note that

$$
\begin{equation*}
\Delta d \nabla d=\operatorname{div}_{\Sigma} \mathrm{n} \mathrm{n} \quad \text { on } \partial E \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta d=\operatorname{div}_{\Sigma} \mathrm{n} \quad \text { on } \partial E \tag{2.24}
\end{equation*}
$$

2.2.1.1. Mean curvature using parametrizations. Let \mathcal{S} be a smooth ($n-1$)-dimensional orientable manifold without boundary, let $\varphi: \mathcal{S} \rightarrow \mathbb{R}^{n}$ be a smooth bijection between \mathcal{S} and

$$
\partial E=\varphi(\mathcal{S}),
$$

and such that for any $s \in \mathcal{S}$ the differential $d \varphi(s)$ is injective.
Let $x=\varphi(s) \in \partial E$ and let s^{1}, \ldots, s^{n-1} be local coordinates on \mathcal{S}. We set

$$
\nu(s):=\mathrm{n}(x) .
$$

Let us define the map $\mathcal{B}_{x}=\left(\mathcal{B}_{x}^{1}, \ldots, \mathcal{B}_{x}^{n}\right): T_{x} \Sigma \times T_{x} \Sigma \rightarrow N_{x} \Sigma \subset \mathbb{R}^{n}$ as follows: if $i, j \in\{1, \ldots, n-1\}, k \in\{1, \ldots, n\}$, and $\tau_{i}(s):=\frac{\partial \varphi}{\partial s^{2}}(s)$,

$$
\mathcal{B}_{x}^{k}\left(\tau_{i}(s), \tau_{j}(s)\right):=\left\langle\nu(s), \frac{\partial \tau_{j}(s)}{\partial s^{i}}\right\rangle \nu^{k}(s)=\left\langle\nu(s), \frac{\partial^{2} \varphi(s)}{\partial s^{i} \partial s^{j}}\right\rangle \nu^{k}(s) .
$$

Then \mathcal{B} is a symmetric bilinear form and, for $x=\varphi(s)$ one defines

$$
\begin{equation*}
\mathbf{H}(s):=g^{i j}(s) \mathcal{B}_{x}\left(\tau_{i}(s), \tau_{j}(s)\right), \quad \mathrm{H}(s):=g^{i j}(s)\left\langle\nu(s), \frac{\partial^{2} \varphi(s)}{\partial s^{i} \partial s^{j}}\right\rangle \tag{2.25}
\end{equation*}
$$

where $g^{i j}(s)$ is the $i j$-component of the inverse matrix of $g_{i j}(s):=\left\langle\frac{\partial \varphi(s)}{\partial s^{i}}, \frac{\partial \varphi(s)}{\partial s^{j}}\right\rangle$. It turns out that

$$
-\mathbf{H}(s)=\Delta d(x) \nabla d(x), \quad \mathbf{H}(s)=\Delta d(x), \quad x=\varphi(s)
$$

If we define $\hat{\mathcal{B}}_{x}=\left(\hat{\mathcal{B}}_{x}^{1}, \ldots, \hat{\mathcal{B}}_{x}^{n}\right): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ as $\hat{\mathcal{B}}_{x}(v, w)=\mathcal{B}_{x}\left(P_{T_{x}}(v), P_{T_{x}}(w)\right) \in N_{x} \Sigma$ for every pair $v, w \in \mathbb{R}^{n}$, where $P_{T_{x} \Sigma}:=\operatorname{Id}-P_{N_{x} \Sigma}$, then $\mathcal{B}_{i j}^{k}=\left\langle\hat{\mathcal{B}}\left(e_{i}, e_{j}\right), e_{k}\right\rangle=\nabla_{i j}^{2} d \nabla_{k} d$. Note that

$$
\begin{equation*}
|\mathcal{B}|^{2}=\left|\nabla^{2} d\right|^{2} \tag{2.26}
\end{equation*}
$$

Finally, another expression of the mean curvature vector at $x=\varphi(s)$ is given by

$$
\mathbf{H}(s)=\Delta_{g} \varphi(s)=\left(\Delta_{g} \varphi_{1}(s), \ldots, \Delta_{g} \varphi_{n}(s)\right)
$$

where $\Delta_{g} \varphi_{k}:=g^{i j}\left(\frac{\partial^{2} \varphi_{k}}{\partial s^{2} \partial s^{j}}-\Gamma_{i j}^{h} \frac{\varphi_{k}}{\partial s^{h}}\right)=\frac{1}{\sqrt{G}} \frac{\partial}{\partial s^{i}}\left(\sqrt{G} g^{i j} \frac{\partial \varphi_{k}}{\partial s^{i}}\right)$ for any $k \in\{1, \ldots, n\}$, and $\Gamma_{i j}^{k}:=\frac{1}{2} g^{k h}\left(\frac{\partial g_{j h}}{\partial s^{i}}+\frac{\partial g_{i h}}{\partial s^{j}}-\frac{\partial g_{i j}}{\partial s^{k}}\right)$ and $G:=\operatorname{det}\left(g_{i j}\right)$.
Notation: if $x=\varphi(s)$, we sometimes will use the notation

$$
\mathrm{H}(s)=H(x)=H^{E}(x)
$$

Example 2.2.7. Let $n=1, E \subset \mathbb{R}$ be a finite union of intervals. Then d is linear around the boundary points of the intervals, and hence $\Delta d=0$ on ∂E.

Example 2.2.8. Let $n=2$ and $\partial E=\gamma\left(\mathbb{S}^{1}\right)$, where \mathbb{S}^{1} is the unit circle and $\gamma: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ is a smooth embedding of \mathbb{S}^{1} in \mathbb{R}^{2}. Then the (mean) curvature vector of ∂E at $x=\gamma(s)$ is given $\frac{1}{\left|\gamma^{\prime}\right|^{2}}\left(\gamma^{\prime \prime}-\left\langle\gamma^{\prime \prime}, \frac{\gamma^{\prime}}{\left|\gamma^{\prime}\right|^{2}}\right\rangle \gamma^{\prime}\right)$.

Example 2.2.9. In Example 2.1.1 we have $\Delta d(z)=\frac{n-1}{\left|z-z_{0}\right|}$ and, for $z \neq z_{0}, \nabla_{i j}^{2} d(z)=$ $\frac{1}{\left|z-z_{0}\right|}\left(\operatorname{Id}_{i j}-\frac{\left(z^{i}-z_{0}^{i}\right)}{\left|z-z_{0}\right|} \frac{\left(z^{j}-z_{0}^{j}\right)}{\left|z-z_{0}\right|}\right)$.

Example 2.2.10. Let $n=2$ and $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}\left(\mathbb{R}^{2}\right)$. Then $\nabla^{2} d=\Delta d\left(\nabla d^{\perp}\right)_{i}\left(\nabla d^{\perp}\right)_{j}$, where ∇d^{\perp} is the $\pi / 2$-counterclockwise rotation of ∇d.

Example 2.2.11. Let $v \in C^{\infty}(\mathbb{R},(0,+\infty))$, and let $E:=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}:\left(v\left(z_{1}\right)\right)^{2} \leq\right.$ $\left.z_{2}^{2}+z_{3}^{2}\right\}$, which is a solid of revolution, having as boundary the rotation of the graph of v around the z_{1}-axis, $\partial E=\{u(z)=0\}, u(z):=\frac{1}{2}\left(\left(v\left(z_{1}\right)\right)^{2}-z_{2}^{2}-z_{3}^{2}\right)$. Direct computations give, for points of \mathbb{R}^{3},

$$
\begin{align*}
\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)= & \left(v^{2}\left(v^{\prime}\right)^{2}+z_{2}^{2}+z_{3}^{2}\right)^{-3 / 2}\left\{\left(\left(v^{\prime}\right)^{2}+v v^{\prime \prime}-2\right)\left(v^{2}\left(v^{\prime}\right)^{2}+z_{2}^{2}+z_{3}^{2}\right)\right. \tag{2.27}\\
& \left.-\left[v^{2}\left(v^{\prime}\right)^{2}\left(\left(v^{\prime}\right)^{2}+v v^{\prime \prime}\right)-z_{2}^{2}-z_{3}^{2}\right]\right\} \tag{2.28}
\end{align*}
$$

so that, if $\left(v\left(z_{1}\right)\right)^{2}=z_{2}^{2}+z_{3}^{2}$,

$$
\begin{align*}
H^{E}\left(z_{1}, z_{2}, z_{3}\right) & =\left(v^{2}\left(v^{\prime}\right)^{2}+v^{2}\right)^{-3 / 2} v^{2}\left[v v^{\prime \prime}-\left(\left(v^{\prime}\right)^{2}+1\right)\right] \tag{2.29}\\
& =\frac{1}{\left(1+\left(v^{\prime}\right)^{2}\right)^{1 / 2}}\left(\frac{v^{\prime \prime}}{1+\left(v^{\prime}\right)^{2}}-\frac{1}{v}\right) \tag{2.30}\\
& =\left(\frac{v^{\prime}}{\left(1+\left(v^{\prime}\right)^{2}\right)^{1 / 2}}\right)^{\prime}-\frac{1}{v\left(1+\left(v^{\prime}\right)^{2}\right)^{1 / 2}} \tag{2.31}
\end{align*}
$$

where the right hand side is evaluated at z_{1}.

2.3. Expansion of the Hessian of the oriented distance function

Differentiating (2.11) with respect to z_{j} we get

$$
\begin{equation*}
\nabla_{i j k}^{3} d \nabla_{k} d=-\nabla_{j k}^{2} d \nabla_{i k}^{2} d \quad \text { in } \mathrm{U}, \quad i, j \in\{1, \ldots, n\} \tag{2.32}
\end{equation*}
$$

In particular, multiplying by $\nabla_{i j}^{2} d$ we get

$$
\begin{equation*}
\nabla_{k} d \nabla_{i j}^{2} d \nabla_{i j k}^{3} d=-\nabla_{i j}^{2} d \nabla_{j k}^{2} d \nabla_{i k}^{2} d \quad \text { in } \mathrm{U} . \tag{2.33}
\end{equation*}
$$

The following result describes the expansion of the eigenvalues of $\nabla^{2} d$ on the whole of U .
Theorem 2.3.1. Let $\Sigma=\partial E$, U and d be as in Theorem 2.1.4. Let $z \in \mathrm{U}$ and let $x:=\operatorname{pr}_{\Sigma}(z)$ be the orthogonal projection of z on Σ. Fix an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n} in which $\nabla^{2} d(x)$ is diagonal, such that $v_{n}=\nabla d(x)$ and

$$
\begin{equation*}
\nabla^{2} d(x) v_{i}=\kappa_{i}^{E}(x) v_{i}, \quad i=1, \ldots, n \tag{2.34}
\end{equation*}
$$

where we recall that $\kappa_{n}^{E}(x)=0$. Then $v_{n} \in \operatorname{Ker}\left(\nabla^{2} d(z)\right)$, the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ diagonalizes $\nabla^{2} d(z)$, and if we denote by $\mu_{i}(z)$ the eigenvalue corresponding to v_{i} for $i=1, \ldots, n$, then

$$
\begin{equation*}
\mu_{i}(z)=\frac{\kappa_{i}^{E}(x)}{1+d(z) \kappa_{i}^{E}(x)} \tag{2.35}
\end{equation*}
$$

Proof. Define

$$
B(\lambda):=\nabla^{2} d(x+\lambda \nabla d(x))
$$

for $\lambda \in \mathbb{R},|\lambda|$ small enough in such a way that $x+\lambda \nabla d(x) \in \mathrm{U}$. Fix $i, j \in\{1, \ldots, n\}$, and consider the $i j$-th entry $B_{i j}(\lambda)$ of $B(\lambda)$. Then, using (2.6) and (2.32) we get
$B_{i j}^{\prime}(\lambda)=\nabla_{i j k}^{3} d(x+\lambda \nabla d(x)) \nabla_{k} d(x)=\nabla_{i j k}^{3} d(x+\lambda \nabla d(x)) \nabla_{k} d(x+\lambda \nabla d(x))=-\left(B^{2}(\lambda)\right)_{i j}$, hence

$$
\begin{equation*}
B^{\prime}(\lambda)=-B^{2}(\lambda) \tag{2.36}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
B(0)=\kappa_{l}^{E}(x) v_{l} \otimes v_{l}, \tag{2.37}
\end{equation*}
$$

where, given two vectors $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$, the symbol $a \otimes b$ denotes the matrix whose $i j$-th entry is given by $a_{i} b_{j}$. The solution of the system (2.36) with initial condition (2.37) is $B(\lambda)=\frac{\kappa_{l}^{E}(x)}{1+\lambda \kappa_{l}^{E}(x)} v_{l} \otimes v_{l}$.

Note that if $z \in U$ is such that $d(z)=\lambda$, then the principal curvatures of $\{d=\lambda\}$ at z are given by $\mu_{i}(z), i=1, \ldots, n$.

Remark 2.3.2. In the statement of Theorem 2.1.4 the neighbourhood U is small enough in such a way that, in particular, $1+d(z) \kappa_{i}^{E}\left(\operatorname{pr}_{\Sigma}(z)\right)>0$ for any $z \in \mathrm{U}$.

Remark 2.3.3. From (2.35) we have the following assertions.
(i) For any $i=1, \ldots, n$

$$
\begin{equation*}
\kappa_{i}^{E}(x)=\frac{\mu_{i}(z)}{1-d(z) \mu_{i}(z)} \tag{2.38}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\nabla^{2} d(x)=\nabla^{2} d(z) G(z), \quad G(z):=\left(\operatorname{Id}-d(z) \nabla^{2} d(z)\right)^{-1} \tag{2.39}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\bar{H}^{\Sigma}(z)=\operatorname{tr}\left(\nabla^{2} d(z)\left(\operatorname{Id}-d(z) \nabla^{2} d(z)\right)^{-1}\right) \tag{2.40}
\end{equation*}
$$

(ii) For any $i=1, \ldots, n$ we have $\frac{\mu_{i}(z)}{1-d(z) \mu_{i}(z)} \leq \mu_{i}(z)$ in $\mathrm{U} \cap E$, hence

$$
\sum_{i=1}^{n} \frac{\mu_{i}(z)}{1-d(z) \mu_{i}(z)} \leq \sum_{i=1}^{n} \mu_{i}(z) \quad \text { in } \mathrm{U} \cap\{d \leq 0\}
$$

Similarly $\frac{\mu_{i}(z)}{1-d(z) \mu_{i}(z)} \geq \mu_{i}(z)$ in $\mathrm{U} \cap\left(\mathbb{R}^{n} \backslash E\right)$, hence

$$
\sum_{i=1}^{n} \frac{\mu_{i}(z)}{1-d(z) \mu_{i}(z)} \geq \sum_{i=1}^{n} \mu_{i}(z) \quad \text { in } \mathrm{U} \cap\{d \geq 0\}
$$

(iii) As a consequence of (2.35) and the expansion $(1+\lambda \kappa)^{-1}=1-\lambda \kappa+\mathcal{O}\left(\lambda^{2}\right)$, we deduce

$$
\begin{equation*}
\Delta d(z)=\Delta d(x)-d(z) \sum_{i=1}^{n-1}\left(\kappa_{i}^{E}(x)\right)^{2}+\mathcal{O}\left(d(z)^{2}\right) \tag{2.41}
\end{equation*}
$$

Notes

Remark 2.0.2 is proved in [34], see also [65, Theorem 4.8, item (4)]. General properties of the distance function from a smooth compact boundary can be found for instance in $[\mathbf{7 2}],[\mathbf{5}]$, [103], [51]. The if part in the statement of Remark 2.1.3 is proved for instance in [5, Theorem 2 statement (i)] ${ }^{6}$. The converse statement follows from [$\mathbf{5}$, Theorem 9].

Theorem 2.3.4. Let $E \in \mathcal{C}^{\infty} \cap \mathcal{K}\left(\mathbb{R}^{n}\right)$ and let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a Lipschitz function, so that $\{u<$ $0\}=\operatorname{int}(E)$, and $\{u=0\}=\partial E$. Assume that $|\nabla u|^{2}=1$ in $\mathbb{R}^{n} \backslash E$. Then $u(z)=\operatorname{dist}(z,\{u=0\})$ for any $z \in \mathbb{R}^{n} \backslash E$.

Theorem 2.1.4 is proved in [5]. See also [72, Appendix B].
Theorem 2.3.1 is proved in [5].
Let $k \geq 2$ be an integer; similarly to Definition 2.1.2, we say that a closed set $E \subseteq \mathbb{R}^{n}$ with compact boundary belongs to $\mathcal{C}_{\mathrm{cb}}^{k}\left(\mathbb{R}^{n}\right)$ if there exists an open set U containing ∂E such that $d(\cdot, E) \in \mathcal{C}^{k}(\mathrm{U})$.

Theorem 2.3.5. $E \in \mathcal{C}_{\mathrm{cb}}^{k}\left(\mathbb{R}^{n}\right)$ if and only if E has boundary of class \mathcal{C}^{k}.
Proof. See [49, Section 5.4], [50, Theorems 5.1, 5.2], [103, Section 11, Proposition 13.8].

[^3]Formula (2.10) is proven for instance in [50, Chap. 4, Section 1.3], [98, Proposition 2.68]
The extension of the distance function approach to manifolds with arbitrary codimension is through the square distance function, as observed in $[\mathbf{4 7}]$. We refer the reader to the papers $[\mathbf{1 0}]$, [9], [58], [21].

The tangential gradient δ on Σ is used in [?], [86], [72], [87]. We recall (see for instance [86]) that, given $h, k \in\{1, \ldots, n\}$, the following commutation rule holds:

$$
\begin{equation*}
\delta_{h} \delta_{k}-\delta_{k} \delta_{h}=\left(\nu_{h} \delta_{k} \nu_{j}-\nu_{k} \delta_{h} \nu_{j}\right) \delta_{j} . \tag{2.42}
\end{equation*}
$$

Indeed, let $u \in \mathcal{C}^{\infty}(\Sigma)$, and let $\bar{u} \in \mathcal{C}^{\infty}(\mathrm{U})$ be its extension as in Definition 2.1.5. Then, setting $\bar{\ell}:=\langle\nabla \bar{u}, \nabla d\rangle$, we have

$$
\begin{equation*}
\delta_{h} \delta_{k} \bar{u}=\delta_{h}\left(\nabla_{k} \bar{u}-\bar{\ell} \nabla_{k} d\right)=\nabla_{h}\left(\nabla_{k} \bar{u}-\bar{\ell} \nabla_{k} d\right)-\left\langle\nabla\left(\nabla_{k} \bar{u}-\bar{\ell} \nabla_{k} d\right), \nabla d\right\rangle \nabla_{h} d \quad \text { on } \Sigma . \tag{2.43}
\end{equation*}
$$

On the other hand in U we have

$$
\begin{align*}
& \nabla_{h k}^{2} \bar{u}-\nabla_{k} d \nabla_{h} \bar{\ell}-\bar{\ell} \nabla_{h k}^{2} d-\nabla_{h} d\left\langle\nabla \nabla_{k} \bar{u}-\nabla_{k} d \nabla \bar{\ell}-\bar{\ell} \nabla \nabla_{k} d, \nabla d\right\rangle \\
= & \nabla_{h k}^{2} \bar{u}-\nabla_{k} d \nabla_{h} \bar{\ell}-\bar{\ell} \nabla_{h k}^{2} d, \tag{2.44}
\end{align*}
$$

where we used (2.11), the orthogonality between $\nabla \bar{\ell}$ and ∇d and the orthogonality between $\nabla \nabla_{k} \bar{u}$ and ∇d in U. Observing that $\nabla_{h} \bar{\ell}=\left\langle\nabla \bar{u}, \nabla \nabla_{h} d\right\rangle$ in U, Then from (2.43) and (2.44) we deduce

$$
\delta_{h} \delta_{k} \bar{u}-\delta_{k} \delta_{h} \bar{u}=\nabla_{h} d\left\langle\nabla \bar{u}, \nabla \nabla_{k} d\right\rangle-\nabla_{k} d\left\langle\nabla \bar{u}, \nabla \nabla_{h} d\right\rangle,
$$

which is (2.42).
*** bellettini novaga j. convex anal. (citare de giorgi)
*** da sistemare: orientabilita' di \mathcal{S} forse e' conseguenza della richiesta di avere un embedding quando scrivo $\nabla d=\mathrm{n}$, gli indici di ∇d sono in basso, gli indici di n sono in alto
check la affermazione sulla restrizione dell'hessiano al tangente

[^0]: ${ }^{1}$ Vector fields defined on \mathbb{R}^{n} are considered as columns; we omit the symbol of transpositon when we write the vector fields in components.

[^1]: ${ }^{2}$ Sometimes, to simplify notation, we will write $\nabla^{2} d=B$.

[^2]: ${ }^{3}$ Note that, with the notation of Note ??, we have $\Delta_{\Sigma}=\delta_{h} \delta_{h}$.
 ${ }^{4}$ Note that, with the notation of Note ??, we have $\nabla_{i j} d=\delta_{i} \mathrm{n}_{j}$ on Σ. In particular, the $(n \times n)$-matrix $\delta_{i} \mathrm{n}_{j}$ is symmetric.
 ${ }^{5}$ What is usually called second fundamental form is the restriction of the concept given in Definition 2.2.1 to the tangent space to ∂E.

[^3]: ${ }^{6}$ In statement (i) the author considers the case E bounded. In statement (ii) he proves a far more general result, valid in any codimension, which contains in particular the case ∂E bounded.

