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CHAPTER 2

Distance from a smooth boundary: preliminary version

This version is in progress: please, take this into account. All corrections and comments
are welcome.

In this chapter we collect some of the main properties of the distance function from a
smooth boundary.

We denote by {e1, . . . , en} the canonical basis of Rn. Coordinates of points z in Rn

are denoted as (z1, . . . , zn), and we write z = zkek = (z1, . . . , zn), where we adopt the
convention of summation on repeated indices. Rn is endowed with the euclidean norm | · |,
induced by the euclidean scalar product. The tangent space TzRn to Rn at z is a copy of
Rn which is independent of z. There is an identification between a point z ∈ Rn and the
position vector of z, which belongs to TzRn; we will use this identification in the sequel.

Let Y = (Y 1, . . . , Y m) : Rn → Rm be a smooth vector field. The Jacobian (m × n)
matrix representing the differential dY (z) of Y at z is indicated by JY (z). If i ∈ {1, . . . , m}
and j ∈ {1, . . . , n}, the ij-entry (JY (z))ij of JY (z) is ∂Y i

∂zj (z), so that the i-th column of
the transposed matrix JY (z)T is ∇Y i(z). We write ∇Y (z) = JY (z)T . If n = m, the
determinant of the linear map dY (z) is denoted by det(JY (z)) or by det(∇Y (z)).

We set
K(Rn) := {K ⊂ Rn : K compact} .

If F ⊆ Rn is a nonempty set and z ∈ Rn, we let

dist(z, F ) := inf
x∈F

|x − z|.

We also let dist(z, ∅) := +∞.

Remark 2.0.1. Note that

- dist(z, F ) = dist(z, F ) and dist (z, Rn \ F ) = dist (z, Rn \ int(F )), where F and
int(F ) denote the topological closure and the topological interior of F respectively;

- (dist(z, F ))2 = infy∈F |y − z|2;
- dist(·, F ) is Lipschitz continuous, and therefore almost everywhere differentiable

by Rademacher’s theorem. Moreover, if we indicate by ∇ = ( ∂
∂z1 , . . . ,

∂
∂zn ) the

gradient vector1, we have that |∇dist(·, F )| ≤ 1 almost everywhere.

In what follows we will use the notation ∇i = ∂
∂zi . If f : Rn → R is a function of

class C1, we identify the one-covector df(z) and the vector ∇f(z) in the usual way, i.e.,

1Vector fields defined on Rn are considered as columns; we omit the symbol of transpositon when we
write the vector fields in components.
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〈df(z), v〉 = ∇f(z) · v for any v ∈ Rn, where 〈·, ·〉 denotes the duality between Rn and its
dual space, and · is the euclidean scalar product between vectors. Consequently, the scalar
product will be also denoted as 〈·, ·〉.

Given z ∈ Rn, we set

prF (z) := {x ∈ F : |z − x| = dist(z, F )}. (2.1)

Remark 2.0.2. Let F ⊆ Rn be a nonempty closed set and z ∈ Rn \F . It is possible to
prove that dist(·, F ) is differentiable at z if and only if prF (z) consists of only one element,
namely prF (z) = {x}, x ∈ F . In this case ∇dist(z, F ) = z−x

|z−x| , so that

x = prF (z) = z − dist(z, F )∇dist(z, F );

moreover for any λ ∈ (0, 1] we have that prF (λz +(1−λ)x) = {x}. In particular, dist(·, F )
is differentiable at any point λz + (1 − λ)x. Furthermore, if prF (z) = {x}, then prF is
continuous at x, i.e., for any ε > 0 there exists δ > 0 such that prF (Bδ(z)) ⊂ Bε(x).

For any ρ > 0 we write

F+
ρ := {z ∈ Rn : dist(z, F ) < ρ}, F−

ρ := {z ∈ Rn : dist(z, Rn \ F ) > ρ}. (2.2)

Since Rn \ F = Rn \ int(F ), we have

F+
ρ =

(
F

)+

ρ
, F−

ρ = (int(F ))−ρ . (2.3)

2.1. First order properties of the distance function

Given a set E ⊆ Rn, we let

d(z, E) := dist(z, E) − dist(z, Rn \ E), z ∈ Rn (2.4)

be the oriented distance function from the topological boundary ∂E of E, negative inside
E. Note that d(·, E) = −d(·, Rn \ E).

Notation: when there is no ambiguity in the choice of the set E, for simplicity we use the
notation

d(·) = d(·, E).

Moreover, if we want to remark that a quantity depends on ∂E rather than on E itself, we
will use the notation

Σ = ∂E.

Example 2.1.1. Let ρ > 0 and d(·) := d(·, Bρ(z0)) be the oriented distance from the
boundary of the open ball Bρ(z0) centered at z0 ∈ Rn with radius ρ. Then d(z) = |z−z0|−ρ,
and for z -= z0 we have ∇d(z) = z−z0

|z−z0| .

Definition 2.1.2. Let E ⊂ Rn be a set. We write ∂E ∈ C∞ if there exists an open set
U containing ∂E such that d(·, E) ∈ C∞(U).

When ∂E ∈ C∞ ∩ K(Rn) we can take U of the form U = (∂E)+
ρ for some ρ > 0.
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Remark 2.1.3. It is possible to show that ∂E ∈ C∞ ∩ K(Rn) if and only if ∂E is an
(n − 1)-dimensional compact manifold of class C∞.

We indicate by nE : ∂E → Rn the unit normal vector field to ∂E pointing toward
Rn \ E; when no confusion is possible, we write nE = eknk = n = (n1, . . . , nn), considered
as a column vector.

Theorem 2.1.4. Let ∂E ∈ C∞ ∩K(Rn) and let U be a tubular neighbourhood such that
d ∈ C∞(U). Then

(i) d satisfies the eikonal equation in U:

|∇d(z)|2 = 1, z ∈ U; (2.5)

(ii) prΣ(z) is a singleton for any z ∈ U, and

prΣ(z) = {z − d(z)∇d(z)}.

Moreover
∇d(z) = ∇d(prΣ(z)). (2.6)

In view of (2.5) we have

∇d(x) = nE(x), x ∈ ∂E.

Note that the ij-component of ∇prΣ(z) reads as

Idij −∇id∇j − d∇2
ijd in U, (2.7)

where Idij is the ij-component of the identity map Id in Rn, and ∇2 = (∇2
ij) is the Hessian

matrix2 in Rn, where we use the notation ∇2
ik = ∂2

∂zi∂zk .
In particular, if x ∈ Σ, ∇prΣ(x) coincides with the orthogonal projection PTxΣ : Rn →

TxΣ on the tangent space TxΣ ⊂ Rn to Σ at x,

∇prΣ(x) = PTxΣ.

We denote by NxΣ the normal line to ∂E at x, and by PNxΣ = Id − PTxΣ the orthogonal
projection on NxΣ.

2.1.1. Extensions. Let u ∈ C∞(∂E), and let ue ∈ C∞(U) be a smooth extension of u
on U. The vector field ∇ue−〈∇ue,∇d〉∇d restricted to ∂E is independent of the particular
extension of u; it is called the tangential gradient of u on ∂E and denoted by ∇Σu. Clearly
∇Σu(x) = PTxΣ(∇ue(x)) for x ∈ ∂E. The tangential gradient is sometimes denoted as
δ = ∇− 〈∇, n〉n = (δ1, . . . , δn), δi = ∇Σ

i .

Definition 2.1.5. We define u : U → R as u(z) := u(prΣ(z)) for any z ∈ U.

Then u ∈ C∞(U) is an extension of u on U, and

∇u = ∇Σu on ∂E. (2.8)

2Sometimes, to simplify notation, we will write ∇2d = B.
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Remark 2.1.6. For any k = 1, . . . , n let πk(z) := 〈z, ek〉 = zk, so that

Id = (π1, . . . , πn).

Then πj(z) = zj − d(z)∇jd(z),

〈ei,∇Σπj〉 = PTx ij, i, j = 1, . . . , n.

Let X = (X1, . . . , Xn) : ∂E → Rn be a smooth vector field. The scalar quantity
〈ek,∇ΣXk〉 is called the tangential divergence of X and denoted by divΣX. If Xe =
(X1e

, . . . , Xne) : U → R is any smooth extension of X on U we have

divΣX = divXe − 〈∇Xen, n〉 = divXe − ∂X ie

∂zj
ninj on Σ, (2.9)

where div is the divergence in Rn. Note that divΣX(x) = tr(PTxΣ∇Xe(x)) for x ∈ ∂E.
Also PTxΣ∇XePTxΣ is independent of the particular extension of X, and is denoted by

∇ΣX, and we have divΣX(x) = tr(∇ΣX(x)).

Definition 2.1.7. We define X : U → Rn as X(z) := X(prΣ(z)) for any z ∈ U.

Then X ∈ C∞(U; Rn) is an extension of X, and

divX = divΣX on ∂E.

Note that
nE(z) = ∇d(z), z ∈ U.

nE is the natural extension of the vector field nE on the whole of U, in the sense that
nE ∈ C∞(U), nE = nE on ∂E, and nE keeps the constraint |nE(z)| = 1 for any z ∈ U.
When no confusion is possible, we will write nE = n = eknk = (n1, . . . , nn).

Observe that δku does not coincide, in general, with ∇ku in U, since

δku(z) = δku(pr(z)) = ∇ku(pr(z)), z ∈ U,

while from u(z) = u(pr(z)) it follows

∇ku(z) =∇ju(pr(z))(Idjk −∇kd(z)∇jd(z) − d(z)∇jkd(z))

=∇ju(pr(z))(Idjk − d(z)∇jkd(z)), z ∈ U,

so that ∇ku(pr(z)) = ∇ju(z)(Idjk − d(z)∇2
jkd(z))−1. **** check ****

Given u ∈ C∞(∂E), we denote by ∆Σu the tangential laplacian of u on ∂E, defined as

∆Σu := divΣ(∇Σu).

Remark 2.1.8. Note that

∆Σu = ∆u on ∂E, (2.10)

where ∆ = div∇ is the Laplacian in Rn. Indeed by definition

∆Σu = divΣ∇Σu = 〈ek,∇Σδku〉 on ∂E.

Since
δku = ∇ku on ∂E,
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we have

∆Σu = 〈ek,∇Σ∇ku〉 = 〈ek,∇∇ku〉 − 〈ek, n〉〈∇∇ku, n〉 on ∂E,

and (2.10) follows since 〈∇∇ku, n〉 = 03.

2.2. Second order properties of the distance function

Let ∂E ∈ C∞(Rn), and U be as in Definition 2.1.2. Differentiating the equality (2.5)
with respect to zi it follows

∇2
ikd∇kd = 0 in U, i ∈ {1, . . . , n}, (2.11)

i.e.,
∇d(z) ∈ ker(∇2d(z)), z ∈ U. (2.12)

Hence ∇d(z) is a unit zero eigenvector of ∇2d(z); therefore, given z ∈ U , it is possible to
choose an orthonormal basis of Rn which diagonalizes ∇2d(z) for which the last vector is
∇d(z)4.

From (2.12) it follows that

divΣ(∇d) = div(∇d) = ∆d on ∂E. (2.13)

Note that if we apply (2.10) to u = πk, for a given k ∈ {1, . . . , n}, where πk is defined in
Remark 2.1.6, we find, using (2.11),

∆Σπj = ∆πj = −∆d∇jd on ∂E. (2.14)

2.2.1. Mean curvature. Let us recall the definition of second fundamental form5.
and of mean curvature

Definition 2.2.1. Let ∂E ∈ C∞, i, j, k ∈ {1, . . . , n}, and x ∈ ∂E. The ijk-th compo-
nent of the second fundamental form of ∂E at x is defined as

∇ijd(z)∇kd(z).

The mean curvature vector of ∂E at x is defined as as ∆d(x)∇d(x), and the mean curvature
of ∂E at x as ∆d(x).

Note that ∆d∇d is unchanged if we substitute Rn \ E to E in (2.4). Moreover ∆d is
positive for a smooth uniformly convex set E, so that in this case ∆d∇d points toward
Rn \ E.

In what follows we set
|∇2d|2 := tr(∇2d∇2d),

where tr is the trace operator in Rn.

3Note that, with the notation of Note ??, we have ∆Σ = δhδh.
4Note that, with the notation of Note ??, we have ∇ijd = δinj on Σ. In particular, the (n×n)-matrix

δinj is symmetric.
5What is usually called second fundamental form is the restriction of the concept given in Definition

2.2.1 to the tangent space to ∂E.
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The eigenvalues of ∇2d(x) are denoted by κE
1 (x), . . . , κE

n (x); if we take ∇d(x) as the
last eigenvector, from (2.12) we have that κE

n (x) = 0, and

|∇2d|2 =
n−1∑

i=1

(κi)
2.

Remark 2.2.2. The mean curvature can be expressed also using the squared distance
function as follows. Let η := d2/2. Then η ∈ C∞(U), η = 0 on ∂E, and

∇η = d∇d = 0 on ∂E. (2.15)

Moreover, if i, j ∈ {1, . . . , n} we have ∇2
ijη = ∇id∇jd + d∇2

ijd in U, so that

∇2
ijη = ∇id∇jd on ∂E. (2.16)

Hence ∇2η(x) = PNxΣ. Finally, if i, j, k ∈ {1, . . . , n} we have

∇3
ijkη = ∇id∇2

jkd + ∇jd∇2
ikd + ∇kd∇2

ijd + d∇3
ijkd (2.17)

on U , where we use the notation ∇3
ijk = ∂3

∂zi∂zj∂zk .
Therefore, recalling (2.12), we find

∆∇η = ∆d∇d on ∂E. (2.18)

The mean curvature can be expressed by differentiating the projection as follows.

Remark 2.2.3. Differentiating the rl-component of (2.7) with respect to zs, we obtain

∇2
srprl = −∇ld∇2

rsd −∇rd∇2
sld −∇sd∇2

rld − d∇3
slrd on U

In particular, using (2.11),

∆prl = −∆d∇ld on ∂E.

Remark 2.2.4. Let X ∈ C∞(∂E; Rn); split X as X = XΣ + X⊥, where XΣ := X −
〈X, n〉n is the orthogonal projection of X on the tangent space to Σ. Then, writing X⊥ =
ξn, where ξ := 〈X, n〉, we have

divΣX⊥ = divΣ(ξn) = 〈∇Σξ, n〉 + ξdivΣn = ξdivΣn = ξ∆d, (2.19)

so that
divΣX = divΣ(XΣ + X⊥) = divΣXΣ +∆d〈X, n〉,

The mean curvature can be expressed looking at ∂E as a level set of any smooth
function with nonvanishing gradient as follows.

Remark 2.2.5. Let ∂E ∈ C∞ ∩ K(Rn). If u : Rn → R is a smooth function with
E = {u < 0}, ∂E = {u = 0}, and ∇u -= 0 on ∂E, then nE = ∇u

|∇u| , and ijk-component of
the second fundamental form is

(PTxΣ∇2uPTxΣ)ij
∇ku

|∇u|
,
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where we recall that PTxΣij = Idij − ∇iu(x)
|∇u(x)|

∇ju(x)
|∇u(x)| . Then the mean curvature vector equals

div

(
∇u

|∇u|

)
∇u

|∇u|
, (2.20)

and the mean curvature equals

div

(
∇u

|∇u|

)
= tr(PTxΣ∇2u). (2.21)

If {u = 0} is, in a neighbourhood O of a point, the graph of a smooth function v defined
on an open set Ω ⊂ Rn−1, i.e., {u = 0} ∩ O = {(s, zn) ∈ Ω × R : zn = v(s)}, and
{u < 0} ∩ O = {(s, zn) ∈ Ω× R : v(s) < zn}, then the mean curvature vector equals

div

(
∇v√

1 + |∇v|2

)
(∇v,−1)√
1 + |∇v|2

, (2.22)

where in (2.22) the symbols div and ∇ are the gradient and the divergence with respect
to s, respectively. Note that if s ∈ Ω is such that ∇v(s) = 0 then the mean curvature of
the graph of v at (s, v(s)) equals ∆v(s).

Remark 2.2.6. If E ∈ C∞(Rn) note that

∆d∇d = divΣn n on ∂E (2.23)

and
∆d = divΣn on ∂E. (2.24)

2.2.1.1. Mean curvature using parametrizations. Let S be a smooth (n−1)-dimensional
orientable manifold without boundary, let ϕ : S → Rn be a smooth bijection between S
and

∂E = ϕ(S),

and such that for any s ∈ S the differential dϕ(s) is injective.
Let x = ϕ(s) ∈ ∂E and let s1, . . . , sn−1 be local coordinates on S. We set

ν(s) := n(x).

Let us define the map Bx = (B1
x, . . . ,Bn

x) : TxΣ × TxΣ → NxΣ ⊂ Rn as follows: if
i, j ∈ {1, . . . , n − 1}, k ∈ {1, . . . , n}, and τi(s) := ∂ϕ

∂si (s),

Bk
x(τi(s), τj(s)) := 〈ν(s), ∂τj(s)

∂si
〉 νk(s) = 〈ν(s), ∂

2ϕ(s)

∂si∂sj
〉 νk(s).

Then B is a symmetric bilinear form and, for x = ϕ(s) one defines

H(s) := gij(s)Bx(τi(s), τj(s)), H(s) := gij(s)〈ν(s), ∂
2ϕ(s)

∂si∂sj
〉, (2.25)

where gij(s) is the ij-component of the inverse matrix of gij(s) := 〈∂ϕ(s)
∂si , ∂ϕ(s)

∂sj 〉. It turns
out that

−H(s) = ∆d(x)∇d(x), H(s) = ∆d(x), x = ϕ(s).
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If we define B̂x = (B̂1
x, . . . , B̂n

x) : Rn × Rn → Rn as B̂x(v, w) = Bx(PTx(v), PTx(w)) ∈ NxΣ
for every pair v, w ∈ Rn, where PTxΣ := Id − PNxΣ, then Bk

ij = 〈B̂(ei, ej), ek〉 = ∇2
ijd∇kd.

Note that
|B|2 = |∇2d|2. (2.26)

Finally, another expression of the mean curvature vector at x = ϕ(s) is given by

H(s) = ∆gϕ(s) = (∆gϕ1(s), . . . ,∆gϕn(s)),

where ∆gϕk := gij
(

∂2ϕk
∂si∂sj − Γh

ij
ϕk

∂sh

)
= 1√

G
∂
∂si

(√
Ggij ∂ϕk

∂sj

)
for any k ∈ {1, . . . , n}, and

Γk
ij := 1

2g
kh

(
∂gjh

∂si + ∂gih
∂sj − ∂gij

∂sk

)
and G := det(gij).

Notation: if x = ϕ(s), we sometimes will use the notation

H(s) = H(x) = HE(x).

Example 2.2.7. Let n = 1, E ⊂ R be a finite union of intervals. Then d is linear
around the boundary points of the intervals, and hence ∆d = 0 on ∂E.

Example 2.2.8. Let n = 2 and ∂E = γ(S1), where S1 is the unit circle and γ : S1 → R2

is a smooth embedding of S1 in R2. Then the (mean) curvature vector of ∂E at x = γ(s)

is given 1
|γ′|2

(
γ′′ − 〈γ′′, γ′

|γ′|2 〉γ
′
)
.

Example 2.2.9. In Example 2.1.1 we have ∆d(z) = n−1
|z−z0| and, for z -= z0, ∇2

ijd(z) =

1
|z−z0|

(
Idij − (zi−zi

0)
|z−z0|

(zj−zj
0)

|z−z0|

)
.

Example 2.2.10. Let n = 2 and ∂E ∈ C∞ ∩ K(R2). Then ∇2d = ∆d(∇d⊥)i(∇d⊥)j ,
where ∇d⊥ is the π/2-counterclockwise rotation of ∇d.

Example 2.2.11. Let v ∈ C∞(R, (0, +∞)), and let E := {(z1, z2, z3) ∈ R3 : (v(z1))2 ≤
z2
2 + z2

3}, which is a solid of revolution, having as boundary the rotation of the graph of v
around the z1-axis, ∂E = {u(z) = 0}, u(z) := 1

2((v(z1))2 − z2
2 − z2

3). Direct computations
give, for points of R3,

div

(
∇u

|∇u|

)
=

(
v2(v′)2 + z2

2 + z2
3

)−3/2
{

((v′)2 + vv′′ − 2)(v2(v′)2 + z2
2 + z2

3) (2.27)

−
[
v2(v′)2((v′)2 + vv′′) − z2

2 − z2
3

]}
(2.28)

so that, if (v(z1))2 = z2
2 + z2

3 ,

HE(z1, z2, z3) =
(
v2(v′)2 + v2

)−3/2
v2

[
vv′′ − ((v′)2 + 1)

]
(2.29)

=
1

(1 + (v′)2)1/2

(
v′′

1 + (v′)2
− 1

v

)
(2.30)

=

(
v′

(1 + (v′)2)1/2

)′

− 1

v(1 + (v′)2)1/2
(2.31)
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where the right hand side is evaluated at z1.

2.3. Expansion of the Hessian of the oriented distance function

Differentiating (2.11) with respect to zj we get

∇3
ijkd∇kd = −∇2

jkd∇2
ikd in U, i, j ∈ {1, . . . , n}. (2.32)

In particular, multiplying by ∇2
ijd we get

∇kd∇2
ijd∇3

ijkd = −∇2
ijd∇2

jkd∇2
ikd in U. (2.33)

The following result describes the expansion of the eigenvalues of ∇2d on the whole of U.

Theorem 2.3.1. Let Σ = ∂E, U and d be as in Theorem 2.1.4. Let z ∈ U and let
x := prΣ(z) be the orthogonal projection of z on Σ. Fix an orthonormal basis {v1, . . . , vn}
of Rn in which ∇2d(x) is diagonal, such that vn = ∇d(x) and

∇2d(x)vi = κE
i (x)vi, i = 1, . . . , n, (2.34)

where we recall that κE
n (x) = 0. Then vn ∈ Ker(∇2d(z)), the basis {v1, . . . , vn} diagonalizes

∇2d(z), and if we denote by µi(z) the eigenvalue corresponding to vi for i = 1, . . . , n, then

µi(z) =
κE

i (x)

1 + d(z)κE
i (x)

. (2.35)

Proof. Define

B(λ) := ∇2d (x + λ∇d(x))

for λ ∈ R, |λ| small enough in such a way that x + λ∇d(x) ∈ U. Fix i, j ∈ {1, . . . , n}, and
consider the ij-th entry Bij(λ) of B(λ). Then, using (2.6) and (2.32) we get

B′
ij(λ) = ∇3

ijkd(x + λ∇d(x))∇kd(x) = ∇3
ijkd(x + λ∇d(x))∇kd(x + λ∇d(x)) = −(B2(λ))ij,

hence

B′(λ) = −B2(λ). (2.36)

Observe that

B(0) = κE
l (x)vl ⊗ vl, (2.37)

where, given two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, the symbol a ⊗ b denotes
the matrix whose ij-th entry is given by aibj . The solution of the system (2.36) with initial

condition (2.37) is B(λ) =
κE

l (x)

1+λκE
l (x)

vl ⊗ vl. !

Note that if z ∈ U is such that d(z) = λ, then the principal curvatures of {d = λ} at z
are given by µi(z), i = 1, . . . , n.

Remark 2.3.2. In the statement of Theorem 2.1.4 the neighbourhood U is small enough
in such a way that, in particular, 1 + d(z)κE

i (prΣ(z)) > 0 for any z ∈ U.

Remark 2.3.3. From (2.35) we have the following assertions.
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(i) For any i = 1, . . . , n

κE
i (x) =

µi(z)

1 − d(z)µi(z)
; (2.38)

Hence

∇2d(x) = ∇2d(z)G(z), G(z) := (Id − d(z)∇2d(z))−1. (2.39)

In particular

H
Σ
(z) = tr

(
∇2d(z)(Id − d(z)∇2d(z))−1

)
. (2.40)

(ii) For any i = 1, . . . , n we have µi(z)
1−d(z)µi(z) ≤ µi(z) in U ∩ E, hence

n∑

i=1

µi(z)

1 − d(z)µi(z)
≤

n∑

i=1

µi(z) in U ∩ {d ≤ 0}.

Similarly µi(z)
1−d(z)µi(z) ≥ µi(z) in U ∩ (Rn \ E), hence

n∑

i=1

µi(z)

1 − d(z)µi(z)
≥

n∑

i=1

µi(z) in U ∩ {d ≥ 0}.

(iii) As a consequence of (2.35) and the expansion (1 + λκ)−1 = 1 − λκ + O(λ2), we
deduce

∆d(z) = ∆d(x) − d(z)
n−1∑

i=1

(κE
i (x))2 + O(d(z)2) (2.41)

Notes

Remark 2.0.2 is proved in [34], see also [65, Theorem 4.8, item (4)]. General properties of
the distance function from a smooth compact boundary can be found for instance in [72], [5],
[103], [51]. The if part in the statement of Remark 2.1.3 is proved for instance in [5, Theorem 2
statement (i)]6. The converse statement follows from [5, Theorem 9].

Theorem 2.3.4. Let E ∈ C∞∩K(Rn) and let u : Rn → R be a Lipschitz function, so that {u <
0} = int(E), and {u = 0} = ∂E. Assume that |∇u|2 = 1 in Rn \E. Then u(z) = dist(z, {u = 0})
for any z ∈ Rn \ E.

Theorem 2.1.4 is proved in [5]. See also [72, Appendix B].
Theorem 2.3.1 is proved in [5].
Let k ≥ 2 be an integer; similarly to Definition 2.1.2, we say that a closed set E ⊆ Rn with

compact boundary belongs to Ck
cb(Rn) if there exists an open set U containing ∂E such that

d(·, E) ∈ Ck(U).

Theorem 2.3.5. E ∈ Ck
cb(Rn) if and only if E has boundary of class Ck.

Proof. See [49, Section 5.4], [50, Theorems 5.1, 5.2], [103, Section 11, Proposition 13.8]. !
6In statement (i) the author considers the case E bounded. In statement (ii) he proves a far more

general result, valid in any codimension, which contains in particular the case ∂E bounded.
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Formula (2.10) is proven for instance in [50, Chap. 4, Section 1.3], [98, Proposition 2.68]
The extension of the distance function approach to manifolds with arbitrary codimension is

through the square distance function, as observed in [47]. We refer the reader to the papers [10],
[9], [58], [21].

The tangential gradient δ on Σ is used in [?], [86], [72], [87]. We recall (see for instance [86])
that, given h, k ∈ {1, . . . , n}, the following commutation rule holds:

δhδk − δkδh = (νhδkνj − νkδhνj)δj . (2.42)

Indeed, let u ∈ C∞(Σ), and let u ∈ C∞(U) be its extension as in Definition 2.1.5. Then, setting
$ := 〈∇u,∇d〉, we have

δhδku = δh(∇ku − $∇kd) = ∇h(∇ku − $∇kd) − 〈∇(∇ku − $∇kd),∇d〉∇hd on Σ. (2.43)

On the other hand in U we have
∇2

hku −∇kd ∇h$ − $∇2
hkd −∇hd〈∇∇ku −∇kd∇$ − $∇∇kd,∇d〉

=∇2
hku −∇kd ∇h$ − $∇2

hkd,
(2.44)

where we used (2.11), the orthogonality between ∇$ and ∇d and the orthogonality between ∇∇ku
and ∇d in U. Observing that ∇h$ = 〈∇u,∇∇hd〉 in U, Then from (2.43) and (2.44) we deduce

δhδku − δkδhu = ∇hd〈∇u,∇∇kd〉 −∇kd〈∇u,∇∇hd〉,
which is (2.42).

***bellettini novaga j. convex anal. (citare de giorgi)
*** da sistemare: orientabilita’ di S forse e’ conseguenza della richiesta di avere un embedding
quando scrivo ∇d = n, gli indici di ∇d sono in basso, gli indici di n sono in alto
check la affermazione sulla restrizione dell’hessiano al tangente


