CHAPTER 2

Distance from a smooth boundary: preliminary version

This version is in progress: please, take this into account. All corrections and comments are welcome.

In this chapter we collect some of the main properties of the distance function from a smooth boundary.

We denote by $\{e_1, \ldots, e_n\}$ the canonical basis of \mathbb{R}^n . Coordinates of points z in \mathbb{R}^n are denoted as (z^1, \ldots, z^n) , and we write $z = z^k e_k = (z^1, \ldots, z^n)$, where we adopt the convention of summation on repeated indices. \mathbb{R}^n is endowed with the euclidean norm $|\cdot|$, induced by the euclidean scalar product. The tangent space $T_z \mathbb{R}^n$ to \mathbb{R}^n at z is a copy of \mathbb{R}^n which is independent of z. There is an identification between a point $z \in \mathbb{R}^n$ and the position vector of z, which belongs to $T_z \mathbb{R}^n$; we will use this identification in the sequel.

Let $Y = (Y^1, \ldots, Y^m) : \mathbb{R}^n \to \mathbb{R}^m$ be a smooth vector field. The Jacobian $(m \times n)$ matrix representing the differential dY(z) of Y at z is indicated by JY(z). If $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n\}$, the *ij*-entry $(JY(z))_{ij}$ of JY(z) is $\frac{\partial Y^i}{\partial z^j}(z)$, so that the *i*-th column of the transposed matrix $JY(z)^T$ is $\nabla Y^i(z)$. We write $\nabla Y(z) = JY(z)^T$. If n = m, the determinant of the linear map dY(z) is denoted by $\det(JY(z))$ or by $\det(\nabla Y(z))$.

We set

$$\mathcal{K}(\mathbb{R}^n) := \{ K \subset \mathbb{R}^n : K \text{ compact} \}.$$

If $F \subseteq \mathbb{R}^n$ is a nonempty set and $z \in \mathbb{R}^n$, we let

$$\operatorname{dist}(z,F) := \inf_{x \in F} |x - z|.$$

We also let $dist(z, \emptyset) := +\infty$.

REMARK 2.0.1. Note that

- dist(z, F) = dist(z, F) and dist (z, ℝⁿ \ F) = dist (z, ℝⁿ \ int(F)), where F and int(F) denote the topological closure and the topological interior of F respectively;
 (dist(z, F))² = inf_{y∈F} |y z|²;
- dist (\cdot, F) is Lipschitz continuous, and therefore almost everywhere differentiable by Rademacher's theorem. Moreover, if we indicate by $\nabla = (\frac{\partial}{\partial z^1}, \ldots, \frac{\partial}{\partial z^n})$ the gradient vector¹, we have that $|\nabla \text{dist}(\cdot, F)| \leq 1$ almost everywhere.

In what follows we will use the notation $\nabla_i = \frac{\partial}{\partial z^i}$. If $f : \mathbb{R}^n \to \mathbb{R}$ is a function of class \mathcal{C}^1 , we identify the one-covector df(z) and the vector $\nabla f(z)$ in the usual way, i.e.,

¹Vector fields defined on \mathbb{R}^n are considered as columns; we omit the symbol of transpositon when we write the vector fields in components.

 $\langle df(z), v \rangle = \nabla f(z) \cdot v$ for any $v \in \mathbb{R}^n$, where $\langle \cdot, \cdot \rangle$ denotes the duality between \mathbb{R}^n and its dual space, and \cdot is the euclidean scalar product between vectors. Consequently, the scalar product will be also denoted as $\langle \cdot, \cdot \rangle$.

Given $z \in \mathbb{R}^n$, we set

$$pr_F(z) := \{ x \in F : |z - x| = dist(z, F) \}.$$
(2.1)

REMARK 2.0.2. Let $F \subseteq \mathbb{R}^n$ be a nonempty closed set and $z \in \mathbb{R}^n \setminus F$. It is possible to prove that dist (\cdot, F) is differentiable at z if and only if $\operatorname{pr}_F(z)$ consists of only one element, namely $\operatorname{pr}_F(z) = \{x\}, x \in F$. In this case $\nabla \operatorname{dist}(z, F) = \frac{z-x}{|z-x|}$, so that

$$x = \mathrm{pr}_F(z) = z - \mathrm{dist}(z, F) \nabla \mathrm{dist}(z, F);$$

moreover for any $\lambda \in (0, 1]$ we have that $\operatorname{pr}_F(\lambda z + (1 - \lambda)x) = \{x\}$. In particular, dist (\cdot, F) is differentiable at any point $\lambda z + (1 - \lambda)x$. Furthermore, if $\operatorname{pr}_F(z) = \{x\}$, then pr_F is continuous at x, i.e., for any $\varepsilon > 0$ there exists $\delta > 0$ such that $\operatorname{pr}_F(B_{\delta}(z)) \subset B_{\varepsilon}(x)$.

For any $\rho > 0$ we write

$$F_{\rho}^{+} := \{ z \in \mathbb{R}^{n} : \operatorname{dist}(z, F) < \rho \}, \qquad F_{\rho}^{-} := \{ z \in \mathbb{R}^{n} : \operatorname{dist}(z, \mathbb{R}^{n} \setminus F) > \rho \}.$$
(2.2)

Since $\overline{\mathbb{R}^n \setminus F} = \mathbb{R}^n \setminus \operatorname{int}(F)$, we have

$$F_{\rho}^{+} = (\overline{F})_{\rho}^{+}, \qquad F_{\rho}^{-} = (\operatorname{int}(F))_{\rho}^{-}.$$
 (2.3)

2.1. First order properties of the distance function

Given a set $E \subseteq \mathbb{R}^n$, we let

$$d(z, E) := \operatorname{dist}(z, E) - \operatorname{dist}(z, \mathbb{R}^n \setminus E), \qquad z \in \mathbb{R}^n$$
(2.4)

be the oriented distance function from the topological boundary ∂E of E, negative inside E. Note that $d(\cdot, E) = -d(\cdot, \mathbb{R}^n \setminus E)$.

Notation: when there is no ambiguity in the choice of the set E, for simplicity we use the notation

$$d(\cdot) = d(\cdot, E).$$

Moreover, if we want to remark that a quantity depends on ∂E rather than on E itself, we will use the notation

$$\Sigma = \partial E.$$

EXAMPLE 2.1.1. Let $\rho > 0$ and $d(\cdot) := d(\cdot, B_{\rho}(z_0))$ be the oriented distance from the boundary of the open ball $B_{\rho}(z_0)$ centered at $z_0 \in \mathbb{R}^n$ with radius ρ . Then $d(z) = |z - z_0| - \rho$, and for $z \neq z_0$ we have $\nabla d(z) = \frac{z - z_0}{|z - z_0|}$.

DEFINITION 2.1.2. Let $E \subset \mathbb{R}^n$ be a set. We write $\partial E \in \mathcal{C}^\infty$ if there exists an open set U containing ∂E such that $d(\cdot, E) \in \mathcal{C}^\infty(U)$.

When $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}(\mathbb{R}^n)$ we can take U of the form $U = (\partial E)^+_{\rho}$ for some $\rho > 0$.

REMARK 2.1.3. It is possible to show that $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}(\mathbb{R}^n)$ if and only if ∂E is an (n-1)-dimensional compact manifold of class \mathcal{C}^{∞} .

We indicate by $\mathbf{n}^E : \partial E \to \mathbb{R}^n$ the unit normal vector field to ∂E pointing toward $\mathbb{R}^n \setminus E$; when no confusion is possible, we write $\mathbf{n}^E = e_k \mathbf{n}^k = \mathbf{n} = (\mathbf{n}^1, \dots, \mathbf{n}^n)$, considered as a column vector.

THEOREM 2.1.4. Let $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}(\mathbb{R}^n)$ and let U be a tubular neighbourhood such that $d \in \mathcal{C}^{\infty}(U)$. Then

(i) d satisfies the eikonal equation in U:

$$|\nabla d(z)|^2 = 1, \qquad z \in \mathbf{U}; \tag{2.5}$$

(ii) $\operatorname{pr}_{\Sigma}(z)$ is a singleton for any $z \in U$, and

$$\operatorname{pr}_{\Sigma}(z) = \{ z - d(z) \nabla d(z) \}.$$

Moreover

$$\nabla d(z) = \nabla d(\mathrm{pr}_{\Sigma}(z)). \tag{2.6}$$

In view of (2.5) we have

$$\nabla d(x) = \mathbf{n}^E(x), \qquad x \in \partial E.$$

Note that the *ij*-component of $\nabla \operatorname{pr}_{\Sigma}(z)$ reads as

$$\mathrm{Id}_{ij} - \nabla_i d\nabla_j - d\nabla_{ij}^2 d \qquad \text{in U}, \tag{2.7}$$

where Id_{ij} is the *ij*-component of the identity map Id in \mathbb{R}^n , and $\nabla^2 = (\nabla^2_{ij})$ is the Hessian matrix² in \mathbb{R}^n , where we use the notation $\nabla^2_{ik} = \frac{\partial^2}{\partial z^i \partial z^k}$.

In particular, if $x \in \Sigma$, $\nabla \operatorname{pr}_{\Sigma}(x)$ coincides with the orthogonal projection $P_{T_{x\Sigma}} : \mathbb{R}^n \to T_x\Sigma$ on the tangent space $T_x\Sigma \subset \mathbb{R}^n$ to Σ at x,

$$\nabla \operatorname{pr}_{\Sigma}(x) = P_{T_x\Sigma}.$$

We denote by $N_x \Sigma$ the normal line to ∂E at x, and by $P_{N_x \Sigma} = \text{Id} - P_{T_x \Sigma}$ the orthogonal projection on $N_x \Sigma$.

2.1.1. Extensions. Let $u \in \mathcal{C}^{\infty}(\partial E)$, and let $u^e \in \mathcal{C}^{\infty}(\mathbf{U})$ be a smooth extension of uon U. The vector field $\nabla u^e - \langle \nabla u^e, \nabla d \rangle \nabla d$ restricted to ∂E is independent of the particular extension of u; it is called the tangential gradient of u on ∂E and denoted by $\nabla^{\Sigma} u$. Clearly $\nabla^{\Sigma} u(x) = P_{T_x \Sigma}(\nabla u^e(x))$ for $x \in \partial E$. The tangential gradient is sometimes denoted as $\delta = \nabla - \langle \nabla, \mathbf{n} \rangle \mathbf{n} = (\delta_1, \ldots, \delta_n), \ \delta_i = \nabla_i^{\Sigma}$.

DEFINITION 2.1.5. We define $\overline{u} : U \to \mathbb{R}$ as $\overline{u}(z) := u(\operatorname{pr}_{\Sigma}(z))$ for any $z \in U$.

Then $\overline{u} \in \mathcal{C}^{\infty}(U)$ is an extension of u on U, and

$$\nabla \overline{u} = \nabla^{\Sigma} u \qquad \text{on } \partial E. \tag{2.8}$$

²Sometimes, to simplify notation, we will write $\nabla^2 d = B$.

REMARK 2.1.6. For any k = 1, ..., n let $\pi_k(z) := \langle z, e_k \rangle = z^k$, so that

$$\mathrm{Id} = (\pi_1, \ldots, \pi_n).$$

Then $\overline{\pi_j}(z) = z^j - d(z)\nabla_j d(z),$

$$\langle e_i, \nabla^{\Sigma} \pi_j \rangle = P_{T_x i j}, \qquad i, j = 1, \dots, n.$$

Let $X = (X^1, \ldots, X^n) : \partial E \to \mathbb{R}^n$ be a smooth vector field. The scalar quantity $\langle e_k, \nabla^{\Sigma} X^k \rangle$ is called the tangential divergence of X and denoted by $\operatorname{div}_{\Sigma} X$. If $X^e = (X^{1^e}, \ldots, X^{n^e}) : U \to \mathbb{R}$ is any smooth extension of X on U we have

$$\operatorname{div}_{\Sigma} X = \operatorname{div} X^{e} - \langle \nabla X^{e} \mathbf{n}, \mathbf{n} \rangle = \operatorname{div} X^{e} - \frac{\partial X^{i^{e}}}{\partial z^{j}} \mathbf{n}^{i} \mathbf{n}^{j} \quad \text{on } \Sigma,$$
(2.9)

where div is the divergence in \mathbb{R}^n . Note that $\operatorname{div}_{\Sigma} X(x) = \operatorname{tr}(P_{T_x\Sigma} \nabla X^e(x))$ for $x \in \partial E$.

Also $P_{T_x\Sigma}\nabla X^e P_{T_x\Sigma}$ is independent of the particular extension of X, and is denoted by $\nabla^{\Sigma} X$, and we have $\operatorname{div}_{\Sigma} X(x) = \operatorname{tr}(\nabla^{\Sigma} X(x))$.

DEFINITION 2.1.7. We define $\overline{X} : U \to \mathbb{R}^n$ as $\overline{X}(z) := X(\operatorname{pr}_{\Sigma}(z))$ for any $z \in U$.

Then $\overline{X} \in \mathcal{C}^{\infty}(\mathbf{U}; \mathbb{R}^n)$ is an extension of X, and

$$\operatorname{div}\overline{X} = \operatorname{div}_{\Sigma}X$$
 on ∂E .

Note that

$$\overline{\mathbf{n}}^E(z) = \nabla d(z), \qquad z \in \mathbf{U}.$$

 $\overline{\mathbf{n}}^E$ is the natural extension of the vector field \mathbf{n}^E on the whole of U, in the sense that $\overline{\mathbf{n}}^E \in C^{\infty}(\mathbf{U}), \ \overline{\mathbf{n}}^E = \mathbf{n}^E$ on ∂E , and $\overline{\mathbf{n}}^E$ keeps the constraint $|\overline{\mathbf{n}}^E(z)| = 1$ for any $z \in \mathbf{U}$. When no confusion is possible, we will write $\overline{\mathbf{n}}^E = \overline{\mathbf{n}} = e_k \overline{\mathbf{n}}^k = (\overline{\mathbf{n}}^1, \dots, \overline{\mathbf{n}}^n)$.

Observe that $\overline{\delta_k u}$ does not coincide, in general, with $\nabla_k \overline{u}$ in U, since

$$\delta_k \overline{u}(z) = \delta_k u(\operatorname{pr}(z)) = \nabla_k \overline{u}(\operatorname{pr}(z)), \qquad z \in \mathcal{U}$$

while from $\overline{u}(z) = \overline{u}(\operatorname{pr}(z))$ it follows

$$\nabla_k \overline{u}(z) = \nabla_j \overline{u}(\operatorname{pr}(z))(\operatorname{Id}_{jk} - \nabla_k d(z)\nabla_j d(z) - d(z)\nabla_{jk} d(z))$$
$$= \nabla_j \overline{u}(\operatorname{pr}(z))(\operatorname{Id}_{jk} - d(z)\nabla_{jk} d(z)), \qquad z \in \mathrm{U},$$

so that $\nabla_k \overline{u}(\operatorname{pr}(z)) = \nabla_j \overline{u}(z) (\operatorname{Id}_{jk} - d(z) \nabla_{jk}^2 d(z))^{-1}$. **** check ****

Given $u \in \mathcal{C}^{\infty}(\partial E)$, we denote by $\Delta_{\Sigma} u$ the tangential laplacian of u on ∂E , defined as

$$\Delta_{\Sigma} u := \operatorname{div}_{\Sigma}(\nabla^{\Sigma} u)$$

REMARK 2.1.8. Note that

$$\Delta_{\Sigma} u = \Delta \overline{u} \qquad \text{on } \partial E, \tag{2.10}$$

where $\Delta = \operatorname{div} \nabla$ is the Laplacian in \mathbb{R}^n . Indeed by definition

$$\Delta_{\Sigma} u = \operatorname{div}_{\Sigma} \nabla^{\Sigma} u = \langle e_k, \nabla^{\Sigma} \overline{\delta_k u} \rangle \quad \text{on } \partial E.$$

Since

$$\overline{\delta_k u} = \nabla_k \overline{u} \qquad \text{on } \partial E,$$

we have

$$\Delta_{\Sigma} u = \langle e_k, \nabla^{\Sigma} \nabla_k \overline{u} \rangle = \langle e_k, \nabla \nabla_k \overline{u} \rangle - \langle e_k, \mathbf{n} \rangle \langle \nabla \nabla_k \overline{u}, \mathbf{n} \rangle \quad \text{on } \partial E,$$

and (2.10) follows since $\langle \nabla \nabla_k \overline{u}, \mathbf{n} \rangle = 0^3$.

2.2. Second order properties of the distance function

Let $\partial E \in \mathcal{C}^{\infty}(\mathbb{R}^n)$, and U be as in Definition 2.1.2. Differentiating the equality (2.5) with respect to z^i it follows

$$\nabla_{ik}^2 d\nabla_k d = 0 \quad \text{in U}, \quad i \in \{1, \dots, n\},$$
(2.11)

i.e.,

$$\nabla d(z) \in \ker(\nabla^2 d(z)), \qquad z \in \mathbf{U}.$$
 (2.12)

Hence $\nabla d(z)$ is a unit zero eigenvector of $\nabla^2 d(z)$; therefore, given $z \in U$, it is possible to choose an orthonormal basis of \mathbb{R}^n which diagonalizes $\nabla^2 d(z)$ for which the last vector is $\nabla d(z)^4$.

From (2.12) it follows that

$$\operatorname{div}_{\Sigma}(\nabla d) = \operatorname{div}(\nabla d) = \Delta d \quad \text{on } \partial E.$$
(2.13)

Note that if we apply (2.10) to $u = \pi_k$, for a given $k \in \{1, \ldots, n\}$, where π_k is defined in Remark 2.1.6, we find, using (2.11),

$$\Delta_{\Sigma} \pi_j = \Delta \overline{\pi_j} = -\Delta d \nabla_j d \qquad \text{on } \partial E.$$
(2.14)

2.2.1. Mean curvature. Let us recall the definition of second fundamental form⁵. and of mean curvature

DEFINITION 2.2.1. Let $\partial E \in C^{\infty}$, $i, j, k \in \{1, \dots, n\}$, and $x \in \partial E$. The *ijk*-th component of the second fundamental form of ∂E at x is defined as

 $\nabla_{ij} d(z) \nabla_k d(z).$

The mean curvature vector of ∂E at x is defined as as $\Delta d(x)\nabla d(x)$, and the mean curvature of ∂E at x as $\Delta d(x)$.

Note that $\Delta d\nabla d$ is unchanged if we substitute $\mathbb{R}^n \setminus E$ to E in (2.4). Moreover Δd is positive for a smooth uniformly convex set E, so that in this case $\Delta d\nabla d$ points toward $\mathbb{R}^n \setminus E$.

In what follows we set

$$|\nabla^2 d|^2 := \operatorname{tr}(\nabla^2 d\nabla^2 d),$$

where tr is the trace operator in \mathbb{R}^n .

³Note that, with the notation of Note ??, we have $\Delta_{\Sigma} = \delta_h \delta_h$.

⁴Note that, with the notation of Note ??, we have $\nabla_{ij}d = \delta_i \mathbf{n}_j$ on Σ . In particular, the $(n \times n)$ -matrix $\delta_i \mathbf{n}_j$ is symmetric.

⁵What is usually called second fundamental form is the restriction of the concept given in Definition 2.2.1 to the tangent space to ∂E .

The eigenvalues of $\nabla^2 d(x)$ are denoted by $\kappa_1^E(x), \ldots, \kappa_n^E(x)$; if we take $\nabla d(x)$ as the last eigenvector, from (2.12) we have that $\kappa_n^E(x) = 0$, and

$$|\nabla^2 d|^2 = \sum_{i=1}^{n-1} (\kappa_i)^2.$$

REMARK 2.2.2. The mean curvature can be expressed also using the squared distance function as follows. Let $\eta := d^2/2$. Then $\eta \in C^{\infty}(\mathbf{U}), \eta = 0$ on ∂E , and

$$\nabla \eta = d\nabla d = 0 \quad \text{on } \partial E. \tag{2.15}$$

Moreover, if $i, j \in \{1, ..., n\}$ we have $\nabla_{ij}^2 \eta = \nabla_i d \nabla_j d + d \nabla_{ij}^2 d$ in U, so that

$$\nabla_{ij}^2 \eta = \nabla_i d \nabla_j d \qquad \text{on } \partial E. \tag{2.16}$$

Hence $\nabla^2 \eta(x) = P_{N_x \Sigma}$. Finally, if $i, j, k \in \{1, \ldots, n\}$ we have

$$\nabla^3_{ijk}\eta = \nabla_i d\nabla^2_{jk}d + \nabla_j d\nabla^2_{ik}d + \nabla_k d\nabla^2_{ij}d + d\nabla^3_{ijk}d$$
(2.17)

on U, where we use the notation $\nabla^3_{ijk} = \frac{\partial^3}{\partial z^i \partial z^j \partial z^k}$. Therefore, recalling (2.12), we find

$$\Delta \nabla \eta = \Delta d \nabla d \qquad \text{on } \partial E. \tag{2.18}$$

The mean curvature can be expressed by differentiating the projection as follows.

REMARK 2.2.3. Differentiating the *rl*-component of (2.7) with respect to z^s , we obtain

$$\nabla_{sr}^2 \operatorname{pr}_l = -\nabla_l d\nabla_{rs}^2 d - \nabla_r d\nabla_{sl}^2 d - \nabla_s d\nabla_{rl}^2 d - d\nabla_{slr}^3 d \quad \text{on } U$$

In particular, using (2.11),

$$\Delta \mathrm{pr}_l = -\Delta d \nabla_l d \qquad \text{on } \partial E.$$

REMARK 2.2.4. Let $X \in \mathcal{C}^{\infty}(\partial E; \mathbb{R}^n)$; split X as $X = X_{\Sigma} + X_{\perp}$, where $X_{\Sigma} := X - X_{\perp}$ $\langle X, n \rangle$ n is the orthogonal projection of X on the tangent space to Σ . Then, writing $X_{\perp} =$ ξ n, where $\xi := \langle X, n \rangle$, we have

$$\operatorname{div}_{\Sigma} X_{\perp} = \operatorname{div}_{\Sigma}(\xi \mathbf{n}) = \langle \nabla^{\Sigma} \xi, \mathbf{n} \rangle + \xi \operatorname{div}_{\Sigma} \mathbf{n} = \xi \operatorname{div}_{\Sigma} \mathbf{n} = \xi \Delta d, \qquad (2.19)$$

so that

$$\operatorname{div}_{\Sigma} X = \operatorname{div}_{\Sigma} (X_{\Sigma} + X_{\perp}) = \operatorname{div}_{\Sigma} X_{\Sigma} + \Delta d \langle X, n \rangle,$$

The mean curvature can be expressed looking at ∂E as a level set of any smooth function with nonvanishing gradient as follows.

REMARK 2.2.5. Let $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}(\mathbb{R}^n)$. If $u : \mathbb{R}^n \to \mathbb{R}$ is a smooth function with $E = \{u < 0\}, \ \partial E = \{u = 0\}, \ \text{and} \ \nabla u \neq 0 \ \text{on} \ \partial E, \ \text{then} \ n^E = \frac{\nabla u}{|\nabla u|}, \ \text{and} \ ijk$ -component of the second fundamental form is

$$(P_{T_x\Sigma}\nabla^2 u P_{T_x\Sigma})_{ij} \frac{\nabla_k u}{|\nabla u|},$$

where we recall that $P_{T_x \Sigma_{ij}} = \mathrm{Id}_{ij} - \frac{\nabla_i u(x)}{|\nabla u(x)|} \frac{\nabla_j u(x)}{|\nabla u(x)|}$. Then the mean curvature vector equals

$$\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)\frac{\nabla u}{|\nabla u|},\tag{2.20}$$

and the mean curvature equals

$$\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) = \operatorname{tr}(P_{T_{x\Sigma}}\nabla^2 u).$$
(2.21)

If $\{u = 0\}$ is, in a neighbourhood O of a point, the graph of a smooth function v defined on an open set $\Omega \subset \mathbb{R}^{n-1}$, i.e., $\{u = 0\} \cap O = \{(s, z_n) \in \Omega \times \mathbb{R} : z_n = v(s)\}$, and $\{u < 0\} \cap O = \{(s, z_n) \in \Omega \times \mathbb{R} : v(s) < z_n\}$, then the mean curvature vector equals

div
$$\left(\frac{\nabla v}{\sqrt{1+|\nabla v|^2}}\right) \frac{(\nabla v, -1)}{\sqrt{1+|\nabla v|^2}},$$
 (2.22)

where in (2.22) the symbols div and ∇ are the gradient and the divergence with respect to s, respectively. Note that if $s \in \Omega$ is such that $\nabla v(s) = 0$ then the mean curvature of the graph of v at (s, v(s)) equals $\Delta v(s)$.

REMARK 2.2.6. If
$$E \in \mathcal{C}^{\infty}(\mathbb{R}^n)$$
 note that

$$\Delta d\nabla d = \operatorname{div}_{\Sigma} \mathbf{n} \quad \text{on } \partial E \tag{2.23}$$

and

$$\Delta d = \operatorname{div}_{\Sigma} n \qquad \text{on } \partial E. \tag{2.24}$$

2.2.1.1. Mean curvature using parametrizations. Let \mathcal{S} be a smooth (n-1)-dimensional orientable manifold without boundary, let $\varphi : \mathcal{S} \to \mathbb{R}^n$ be a smooth bijection between \mathcal{S} and

$$\partial E = \varphi(\mathcal{S})$$

and such that for any $s \in \mathcal{S}$ the differential $d\varphi(s)$ is injective.

Let $x = \varphi(s) \in \partial E$ and let s^1, \ldots, s^{n-1} be local coordinates on \mathcal{S} . We set

 $\nu(s) := \mathbf{n}(x).$

Let us define the map $\mathcal{B}_x = (\mathcal{B}^1_x, \dots, \mathcal{B}^n_x) : T_x \Sigma \times T_x \Sigma \to N_x \Sigma \subset \mathbb{R}^n$ as follows: if $i, j \in \{1, \dots, n-1\}, k \in \{1, \dots, n\}$, and $\tau_i(s) := \frac{\partial \varphi}{\partial s^i}(s)$,

$$\mathcal{B}_x^k(\tau_i(s),\tau_j(s)) := \langle \nu(s), \frac{\partial \tau_j(s)}{\partial s^i} \rangle \ \nu^k(s) = \langle \nu(s), \frac{\partial^2 \varphi(s)}{\partial s^i \partial s^j} \rangle \ \nu^k(s)$$

Then \mathcal{B} is a symmetric bilinear form and, for $x = \varphi(s)$ one defines

$$\mathbf{H}(s) := g^{ij}(s)\mathcal{B}_x(\tau_i(s), \tau_j(s)), \qquad \mathbf{H}(s) := g^{ij}(s)\langle\nu(s), \frac{\partial^2\varphi(s)}{\partial s^i\partial s^j}\rangle, \tag{2.25}$$

where $g^{ij}(s)$ is the *ij*-component of the inverse matrix of $g_{ij}(s) := \langle \frac{\partial \varphi(s)}{\partial s^i}, \frac{\partial \varphi(s)}{\partial s^j} \rangle$. It turns out that

$$-\mathbf{H}(s) = \Delta d(x) \nabla d(x), \qquad \mathbf{H}(s) = \Delta d(x), \qquad x = \varphi(s).$$

If we define $\hat{\mathcal{B}}_x = (\hat{\mathcal{B}}_x^1, \dots, \hat{\mathcal{B}}_x^n) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ as $\hat{\mathcal{B}}_x(v, w) = \mathcal{B}_x(P_{T_x}(v), P_{T_x}(w)) \in N_x\Sigma$ for every pair $v, w \in \mathbb{R}^n$, where $P_{T_x\Sigma} := \mathrm{Id} - P_{N_x\Sigma}$, then $\mathcal{B}_{ij}^k = \langle \hat{\mathcal{B}}(e_i, e_j), e_k \rangle = \nabla_{ij}^2 d\nabla_k d$. Note that

$$|\mathcal{B}|^2 = |\nabla^2 d|^2. \tag{2.26}$$

Finally, another expression of the mean curvature vector at $x = \varphi(s)$ is given by

 $\mathbf{H}(s) = \Delta_g \varphi(s) = (\Delta_g \varphi_1(s), \dots, \Delta_g \varphi_n(s)),$

where $\Delta_g \varphi_k := g^{ij} \left(\frac{\partial^2 \varphi_k}{\partial s^i \partial s^j} - \Gamma_{ij}^h \frac{\varphi_k}{\partial s^h} \right) = \frac{1}{\sqrt{G}} \frac{\partial}{\partial s^i} \left(\sqrt{G} g^{ij} \frac{\partial \varphi_k}{\partial s^j} \right)$ for any $k \in \{1, \dots, n\}$, and $\Gamma_{ij}^k := \frac{1}{2} g^{kh} \left(\frac{\partial g_{jh}}{\partial s^i} + \frac{\partial g_{ih}}{\partial s^j} - \frac{\partial g_{ij}}{\partial s^k} \right)$ and $G := \det(g_{ij})$.

Notation: if $x = \varphi(s)$, we sometimes will use the notation

$$\mathbf{H}(s) = H(x) = H^E(x).$$

EXAMPLE 2.2.7. Let n = 1, $E \subset \mathbb{R}$ be a finite union of intervals. Then d is linear around the boundary points of the intervals, and hence $\Delta d = 0$ on ∂E .

EXAMPLE 2.2.8. Let n = 2 and $\partial E = \gamma(\mathbb{S}^1)$, where \mathbb{S}^1 is the unit circle and $\gamma : \mathbb{S}^1 \to \mathbb{R}^2$ is a smooth embedding of \mathbb{S}^1 in \mathbb{R}^2 . Then the (mean) curvature vector of ∂E at $x = \gamma(s)$ is given $\frac{1}{|\gamma'|^2} \left(\gamma'' - \langle \gamma'', \frac{\gamma'}{|\gamma'|^2} \rangle \gamma'\right)$.

EXAMPLE 2.2.9. In Example 2.1.1 we have $\Delta d(z) = \frac{n-1}{|z-z_0|}$ and, for $z \neq z_0$, $\nabla_{ij}^2 d(z) = \frac{1}{|z-z_0|} \left(\operatorname{Id}_{ij} - \frac{(z^i - z_0^i)}{|z-z_0|} \frac{(z^j - z_0^j)}{|z-z_0|} \right).$

EXAMPLE 2.2.10. Let n = 2 and $\partial E \in \mathcal{C}^{\infty} \cap \mathcal{K}(\mathbb{R}^2)$. Then $\nabla^2 d = \Delta d(\nabla d^{\perp})_i (\nabla d^{\perp})_j$, where ∇d^{\perp} is the $\pi/2$ -counterclockwise rotation of ∇d .

EXAMPLE 2.2.11. Let $v \in C^{\infty}(\mathbb{R}, (0, +\infty))$, and let $E := \{(z_1, z_2, z_3) \in \mathbb{R}^3 : (v(z_1))^2 \le z_2^2 + z_3^2\}$, which is a solid of revolution, having as boundary the rotation of the graph of v around the z_1 -axis, $\partial E = \{u(z) = 0\}$, $u(z) := \frac{1}{2}((v(z_1))^2 - z_2^2 - z_3^2)$. Direct computations give, for points of \mathbb{R}^3 ,

$$\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) = \left(v^2(v')^2 + z_2^2 + z_3^2\right)^{-3/2} \left\{ ((v')^2 + vv'' - 2)(v^2(v')^2 + z_2^2 + z_3^2) \right\}$$
(2.27)

$$-\left[v^{2}(v')^{2}((v')^{2}+vv'')-z_{2}^{2}-z_{3}^{2}\right]\right\}$$
(2.28)

so that, if $(v(z_1))^2 = z_2^2 + z_3^2$,

$$H^{E}(z_{1}, z_{2}, z_{3}) = \left(v^{2}(v')^{2} + v^{2}\right)^{-3/2} v^{2} \left[vv'' - \left((v')^{2} + 1\right)\right]$$
(2.29)

$$= \frac{1}{(1+(v')^2)^{1/2}} \left(\frac{v''}{1+(v')^2} - \frac{1}{v} \right)$$
(2.30)

$$= \left(\frac{v'}{(1+(v')^2)^{1/2}}\right)' - \frac{1}{v(1+(v')^2)^{1/2}}$$
(2.31)

where the right hand side is evaluated at z_1 .

2.3. Expansion of the Hessian of the oriented distance function

Differentiating (2.11) with respect to z_i we get

$$\nabla_{ijk}^3 d\nabla_k d = -\nabla_{jk}^2 d\nabla_{ik}^2 d \quad \text{in U}, \quad i, j \in \{1, \dots, n\}.$$

$$(2.32)$$

In particular, multiplying by $\nabla_{ij}^2 d$ we get

$$\nabla_k d\nabla_{ij}^2 d\nabla_{ijk}^3 d = -\nabla_{ij}^2 d\nabla_{jk}^2 d\nabla_{ik}^2 d \quad \text{in U.}$$
(2.33)

The following result describes the expansion of the eigenvalues of $\nabla^2 d$ on the whole of U.

THEOREM 2.3.1. Let $\Sigma = \partial E$, U and d be as in Theorem 2.1.4. Let $z \in U$ and let $x := \operatorname{pr}_{\Sigma}(z)$ be the orthogonal projection of z on Σ . Fix an orthonormal basis $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n in which $\nabla^2 d(x)$ is diagonal, such that $v_n = \nabla d(x)$ and

$$\nabla^2 d(x)v_i = \kappa_i^E(x)v_i, \qquad i = 1, \dots, n,$$
(2.34)

where we recall that $\kappa_n^E(x) = 0$. Then $v_n \in \text{Ker}(\nabla^2 d(z))$, the basis $\{v_1, \ldots, v_n\}$ diagonalizes $\nabla^2 d(z)$, and if we denote by $\mu_i(z)$ the eigenvalue corresponding to v_i for $i = 1, \ldots, n$, then

$$\mu_i(z) = \frac{\kappa_i^E(x)}{1 + d(z)\kappa_i^E(x)}.$$
(2.35)

PROOF. Define

$$B(\lambda) := \nabla^2 d\left(x + \lambda \nabla d(x)\right)$$

for $\lambda \in \mathbb{R}$, $|\lambda|$ small enough in such a way that $x + \lambda \nabla d(x) \in U$. Fix $i, j \in \{1, \ldots, n\}$, and consider the *ij*-th entry $B_{ij}(\lambda)$ of $B(\lambda)$. Then, using (2.6) and (2.32) we get

 $B'_{ij}(\lambda) = \nabla^3_{ijk} d(x + \lambda \nabla d(x)) \nabla_k d(x) = \nabla^3_{ijk} d(x + \lambda \nabla d(x)) \nabla_k d(x + \lambda \nabla d(x)) = -(B^2(\lambda))_{ij},$ hence

$$B'(\lambda) = -B^2(\lambda). \tag{2.36}$$

Observe that

$$B(0) = \kappa_l^E(x) v_l \otimes v_l, \tag{2.37}$$

where, given two vectors $a = (a_1, \ldots, a_n)$, $b = (b_1, \ldots, b_n) \in \mathbb{R}^n$, the symbol $a \otimes b$ denotes the matrix whose *ij*-th entry is given by $a_i b_j$. The solution of the system (2.36) with initial condition (2.37) is $B(\lambda) = \frac{\kappa_l^E(x)}{1+\lambda\kappa_l^E(x)} v_l \otimes v_l$. \Box

Note that if $z \in U$ is such that $d(z) = \lambda$, then the principal curvatures of $\{d = \lambda\}$ at z are given by $\mu_i(z), i = 1, ..., n$.

REMARK 2.3.2. In the statement of Theorem 2.1.4 the neighbourhood U is small enough in such a way that, in particular, $1 + d(z)\kappa_i^E(\operatorname{pr}_{\Sigma}(z)) > 0$ for any $z \in U$.

REMARK 2.3.3. From (2.35) we have the following assertions.

(i) For any $i = 1, \ldots, n$

$$\kappa_i^E(x) = \frac{\mu_i(z)}{1 - d(z)\mu_i(z)};$$
(2.38)

Hence

$$\nabla^2 d(x) = \nabla^2 d(z)G(z), \qquad G(z) := (\mathrm{Id} - d(z)\nabla^2 d(z))^{-1}.$$
(2.39)

In particular

$$\overline{H}^{\Sigma}(z) = \operatorname{tr}\left(\nabla^2 d(z)(\operatorname{Id} - d(z)\nabla^2 d(z))^{-1}\right).$$
(2.40)

(ii) For any i = 1, ..., n we have $\frac{\mu_i(z)}{1 - d(z)\mu_i(z)} \le \mu_i(z)$ in $U \cap E$, hence $\sum_{i=1}^n \frac{\mu_i(z)}{1 - d(z)\mu_i(z)} \le \sum_{i=1}^n \mu_i(z) \quad \text{in } U \cap \{d \le 0\}.$

$$\sum_{i=1}^{n} \frac{\mu_i(z)}{1 - d(z)\mu_i(z)} \le \sum_{i=1}^{n} \mu_i(z) \quad \text{in } \mathbf{U} \cap \{d \le 0\}.$$

Similarly $\frac{\mu_i(z)}{1-d(z)\mu_i(z)} \ge \mu_i(z)$ in $U \cap (\mathbb{R}^n \setminus E)$, hence

$$\sum_{i=1}^{n} \frac{\mu_i(z)}{1 - d(z)\mu_i(z)} \ge \sum_{i=1}^{n} \mu_i(z) \quad \text{in } \mathbf{U} \cap \{d \ge 0\}.$$

(iii) As a consequence of (2.35) and the expansion $(1 + \lambda \kappa)^{-1} = 1 - \lambda \kappa + \mathcal{O}(\lambda^2)$, we deduce

$$\Delta d(z) = \Delta d(x) - d(z) \sum_{i=1}^{n-1} (\kappa_i^E(x))^2 + \mathcal{O}(d(z)^2)$$
Notes
$$(2.41)$$

Remark 2.0.2 is proved in [34], see also [65, Theorem 4.8, item (4)]. General properties of the distance function from a smooth compact boundary can be found for instance in [72], [5], [103], [51]. The if part in the statement of Remark 2.1.3 is proved for instance in [5, Theorem 2 statement (i)]⁶. The converse statement follows from [5, Theorem 9].

THEOREM 2.3.4. Let $E \in \mathcal{C}^{\infty} \cap \mathcal{K}(\mathbb{R}^n)$ and let $u : \mathbb{R}^n \to \mathbb{R}$ be a Lipschitz function, so that $\{u < v\}$ $0\} = \operatorname{int}(E), \text{ and } \{u = 0\} = \partial E. \text{ Assume that } |\nabla u|^2 = 1 \text{ in } \mathbb{R}^n \setminus E. \text{ Then } u(z) = \operatorname{dist}(z, \{u = 0\})$ for any $z \in \mathbb{R}^n \setminus E$.

Theorem 2.1.4 is proved in [5]. See also [72, Appendix B].

Theorem 2.3.1 is proved in [5].

Let $k \geq 2$ be an integer; similarly to Definition 2.1.2, we say that a closed set $E \subseteq \mathbb{R}^n$ with compact boundary belongs to $\mathcal{C}^k_{cb}(\mathbb{R}^n)$ if there exists an open set U containing ∂E such that $d(\cdot, E) \in \mathcal{C}^k(\mathbf{U}).$

THEOREM 2.3.5. $E \in \mathcal{C}^k_{cb}(\mathbb{R}^n)$ if and only if E has boundary of class \mathcal{C}^k .

PROOF. See [49, Section 5.4], [50, Theorems 5.1, 5.2], [103, Section 11, Proposition 13.8].

⁶In statement (i) the author considers the case E bounded. In statement (ii) he proves a far more general result, valid in any codimension, which contains in particular the case ∂E bounded.

Formula (2.10) is proven for instance in [50, Chap. 4, Section 1.3], [98, Proposition 2.68]

The extension of the distance function approach to manifolds with arbitrary codimension is through the square distance function, as observed in [47]. We refer the reader to the papers [10], [9], [58], [21].

The tangential gradient δ on Σ is used in [?], [86], [72], [87]. We recall (see for instance [86]) that, given $h, k \in \{1, ..., n\}$, the following commutation rule holds:

$$\delta_h \delta_k - \delta_k \delta_h = (\nu_h \delta_k \nu_j - \nu_k \delta_h \nu_j) \delta_j.$$
(2.42)

Indeed, let $u \in \mathcal{C}^{\infty}(\Sigma)$, and let $\overline{u} \in \mathcal{C}^{\infty}(U)$ be its extension as in Definition 2.1.5. Then, setting $\overline{\ell} := \langle \nabla \overline{u}, \nabla d \rangle$, we have

$$\delta_h \delta_k \overline{u} = \delta_h (\nabla_k \overline{u} - \overline{\ell} \nabla_k d) = \nabla_h (\nabla_k \overline{u} - \overline{\ell} \nabla_k d) - \langle \nabla (\nabla_k \overline{u} - \overline{\ell} \nabla_k d), \nabla d \rangle \nabla_h d \quad \text{on } \Sigma.$$
(2.43)

On the other hand in U we have

$$\nabla_{hk}^{2}\overline{u} - \nabla_{k}d \nabla_{h}\overline{\ell} - \overline{\ell}\nabla_{hk}^{2}d - \nabla_{h}d\langle\nabla\nabla_{k}\overline{u} - \nabla_{k}d\nabla\overline{\ell} - \overline{\ell}\nabla\nabla_{k}d, \nabla d\rangle$$

$$= \nabla_{hk}^{2}\overline{u} - \nabla_{k}d \nabla_{h}\overline{\ell} - \overline{\ell}\nabla_{hk}^{2}d,$$
(2.44)

where we used (2.11), the orthogonality between $\nabla \overline{\ell}$ and ∇d and the orthogonality between $\nabla \nabla_k \overline{u}$ and ∇d in U. Observing that $\nabla_h \overline{\ell} = \langle \nabla \overline{u}, \nabla \nabla_h d \rangle$ in U, Then from (2.43) and (2.44) we deduce

$$\delta_h \delta_k \overline{u} - \delta_k \delta_h \overline{u} = \nabla_h d \langle \nabla \overline{u}, \nabla \nabla_k d \rangle - \nabla_k d \langle \nabla \overline{u}, \nabla \nabla_h d \rangle,$$

which is (2.42).

***bellettini novaga j. convex anal. (citare de giorgi)

*** da sistemare: orientabilita' di S forse e' conseguenza della richiesta di avere un embedding quando scrivo $\nabla d = n$, gli indici di ∇d sono in basso, gli indici di n sono in alto check la affermazione sulla restrizione dell'hessiano al tangente