CHAPTER 2

Distance from a smooth boundary: preliminary version

This version is in progress: please, take this into account. All corrections and comments
are welcome.

In this chapter we collect some of the main properties of the distance function from a
smooth boundary.

We denote by {ej,...,e,} the canonical basis of R". Coordinates of points z in R"
are denoted as (z',...,2"), and we write 2 = 2%e;, = (2%,...,2"), where we adopt the
convention of summation on repeated indices. R" is endowed with the euclidean norm |- |,
induced by the euclidean scalar product. The tangent space T,R™ to R™ at z is a copy of
R™ which is independent of z. There is an identification between a point z € R™ and the
position vector of z, which belongs to T,R™; we will use this identification in the sequel.

Let Y = (Y!,...,Y™) : R" — R™ be a smooth vector field. The Jacobian (m X n)
matrix representing the differential dY (z) of Y at z is indicated by JY (z). Ifi € {1,...,m}

and j € {1,...,n}, the ij-entry (JY(2));; of JY (2) is ‘3’; (2), so that the i-th column of
the transposed matrix JY ()T is VY(2). We write VY (z) = JY(2)T. If n = m, the
determinant of the linear map dY(z) is denoted by det(JY (z)) or by det(VY'(z)).

We set

K(R") :={K C R": K compact}.
If FF C R™is a nonempty set and z € R", we let

dist(z, F') := inf |z — z|.
el
We also let dist(z, 0) := +o0.

REMARK 2.0.1. Note that
- dist(z, F) = dist(z, F) and dist (z, R" \ F') = dist (z, R" \ int(F)), where F and
int(F") denote the topological closure and the topological interior of F respectively;
- (dist(z, F))? = infyep [y — 2%
- dist(-, F') is Lipschitz continuous, and therefore almost everywhere differentiable
by Rademacher’s theorem. Moreover, if we indicate by V = (%, cee %) the
gradient vector!, we have that |Vdist(-, F)| < 1 almost everywhere.

In what follows we will use the notation V; = 86-. If f:R" — Ris a function of

ZZ

class C!, we identify the one-covector df(z) and the vector V f(z) in the usual way, i.e.,

Wector fields defined on R™ are considered as columns; we omit the symbol of transpositon when we
write the vector fields in components.
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(df (z),v) = Vf(z)-v for any v € R™, where (-, -) denotes the duality between R" and its
dual space, and - is the euclidean scalar product between vectors. Consequently, the scalar
product will be also denoted as (-, -).

Given z € R", we set

prp(z) ={x € F:|z—a| =dist(z, F)}. (2.1)

REMARK 2.0.2. Let F' C R" be a nonempty closed set and z € R™\ F. It is possible to
prove that dist(-, F') is differentiable at z if and only if pry(z) consists of only one element,
namely prp(z) = {z}, z € F. In this case Vdist(z, F') = Z=%, so that

o=zl
r =prp(z) =z — dist(z, F)Vdist(z, F);
moreover for any A € (0, 1] we have that prp(Az+(1—X)x) = {z}. In particular, dist(-, F')
is differentiable at any point Az + (1 — A\)z. Furthermore, if prp(z) = {z}, then pry is
continuous at z, i.e., for any £ > 0 there exists 0 > 0 such that prp(Bs(z)) C B:(x).

For any p > 0 we write
+ . n . J; - no. J; n
Fri={z e R" . dist(z, I) < p}, Fr o= {z € R" . dist(z,R"\ F) > p}. (2.2)
Since R \ F' = R™ \ int(F'), we have

Fy = (F);

p

F- = (int(F));

) p P

(2.3)

2.1. First order properties of the distance function

Given a set E C R"™, we let

d(z, FE) := dist(z, E) — dist(z, R" \ E), z e R" (2.4)
be the oriented distance function from the topological boundary OF of E, negative inside
E. Note that d(-, E) = —d(-,R" \ E).
Notation: when there is no ambiguity in the choice of the set F, for simplicity we use the
notation

d(-) = d(-, E).

Moreover, if we want to remark that a quantity depends on OF rather than on E itself, we

will use the notation
Y =0F.

EXAMPLE 2.1.1. Let p > 0 and d(-) := d(-, B,(%0)) be the oriented distance from the
boundary of the open ball B,(z) centered at zp € R™ with radius p. Then d(z) = |z—z|—p,

and for z # z we have Vd(z) = Z=2.

DEFINITION 2.1.2. Let E C R™ be a set. We write OF € C* if there exists an open set
U containing OF such that d(-, E) € C*°(U).

When 0F € C* N K(R") we can take U of the form U = (OF)} for some p > 0.
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REMARK 2.1.3. It is possible to show that 0E € C* N K(R") if and only if OF is an
(n — 1)-dimensional compact manifold of class C*.

We indicate by n” : 9F — R" the unit normal vector field to OF pointing toward
R" \ E; when no confusion is possible, we write n” = ¢;n* =n = (n!,... ,n"), considered
as a column vector.

THEOREM 2.1.4. Let OF € C*NIK(R™) and let U be a tubular neighbourhood such that
d € C>(U). Then

(i) d satisfies the eikonal equation in U:
Vd(2)]? =1, z e (2.5)
(i) pry(z) is a singleton for any z € U, and
prs(z) = {z = d(2)Vd(2)}.
Moreover
Vd(z) = Vd(prs(2)). (2.6)
In view of (2.5) we have
Vd(z) = n” (), xr € OFL.
Note that the ij-component of Vpry(z) reads as
Id;; — VidV; —dV:d  in U, (2.7)
where Id;; is the ij-component of the identity map Id in R", and V?* = (V},) is the Hessian

. . 3 _2
matrix? in R™, where we use the notation V?k = az?azk'

In particular, if x € ¥, Vpry(x) coincides with the orthogonal projection Pr .y : R" —
T3 on the tangent space 1,3 C R” to X at z,

Vpry(z) = Pr,s.

We denote by N, the normal line to OF at z, and by Py, = Id — Pr,» the orthogonal
projection on N,X.

2.1.1. Extensions. Let u € C*(0F), and let u® € C*(U) be a smooth extension of u
on U. The vector field Vu®—(Vu®, Vd)Vd restricted to OF is independent of the particular
extension of u; it is called the tangential gradient of u on F and denoted by V*u. Clearly
VZu(x) = Pr,x(Vu®(z)) for x € OF. The tangential gradient is sometimes denoted as
6=V —(V,n)n=(6,...,8,), 6 = V3.

DEFINITION 2.1.5. We definew: U — R as u(z) := u(pry(z)) for any z € U.
Then @ € C*(U) is an extension of v on U, and

Vi = V>u on OF. (2.8)

2Sometimes, to simplify notation, we will write V2d = B.
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REMARK 2.1.6. For any k= 1,...,n let my(2) := (2, e;) = 2%, so that
Id = (m,..., 7).
Then 7;(2) = 27 — d(2)V,d(z),
{e;, V=) = Pr,;;, i,j=1,...,n.

Let X = (X',...,X") : OF — R"™ be a smooth vector field. The scalar quantity
(er, VEXF) is called the tangential divergence of X and denoted by divyX. If X¢ =

(X1 ..., X™) : U — R is any smooth extension of X on U we have
oxe .
divgy X = divX°® — (VX°n,n) = divX‘ — Wn’nj on %, (2.9)
2

where div is the divergence in R™. Note that divy X (z) = tr(Pr,xVX*(z)) for x € OF.
Also Pr,xVX°Pr,y is independent of the particular extension of X, and is denoted by
V=X, and we have divs X (z) = tr(V=X (z)).

DEFINITION 2.1.7. We define X : U — R" as X (2) := X (pryy(2)) for any z € U.

Then X € C*°(U;R") is an extension of X, and
divX = dive X on OF.

Note that
n”(2) = Vd(2), z e U.
n” is the natural extension of the vector field n” on the whole of U, in the sense that

¥ € C>°(U), n¥ = n® on OF, and 1¥ keeps the constraint 1(z)| = 1 for any 2z € U.
k

When no confusion is possible, we will write nf =1 =en* = (W',...,0").
Observe that dyu does not coincide, in general, with V, @ in U, since
opu(2) = dpu(pr(2)) = Via(pr(z)),  2€7U,
while from @(z) = u(pr(z)) it follows
Vit(z) =V;a(pr(2) (di = Viad(2)Vd(2) — d(2)V0d(2))
=V;u(pr(z))(Id;, — d(2)Vjrd(2)),  z€U,
so that Viu(pr(z)) = V;u(2)(Idje — d(2)V3,d(2)) ! %% check %%
Given u € C*(0OF), we denote by Asu the tangential laplacian of u on JF, defined as
Asu = divs(VZu).
REMARK 2.1.8. Note that
Asu=Au  on JF, (2.10)
where A = divV is the Laplacian in R"”. Indeed by definition
Asu = divyV>u = (e, VZ0ru) on OF.

Since

Opu = Vi on OF,
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we have
Asu = (e, VEVi) = (e, VVitI) — (ex, n)(VViG,n)  on OF,
and (2.10) follows since (VV3u,n) = 0%,

2.2. Second order properties of the distance function

Let OF € C*(R"™), and U be as in Definition 2.1.2. Differentiating the equality (2.5)
with respect to 2 it follows

V3dVed=0 inU, de€{l,... n} (2.11)
ie.,
Vd(z) € ker(V3d(z)), z e U. (2.12)

Hence Vd(z) is a unit zero eigenvector of V2d(z); therefore, given z € U, it is possible to

choose an orthonormal basis of R"™ which diagonalizes V2d(z) for which the last vector is
Vd(z)*
From (2.12) it follows that

divy,(Vd) = div(Vd) = Ad  on OF. (2.13)

Note that if we apply (2.10) to u = 7y, for a given k € {1,...,n}, where 7, is defined in
Remark 2.1.6, we find, using (2.11),

Agﬂ'j = Aﬂ'_] = —Adv]d on OF. (214)

2.2.1. Mean curvature. Let us recall the definition of second fundamental form?®.
and of mean curvature

DEFINITION 2.2.1. Let OE € C*, i,j,k € {1,...,n}, and x € OE. The ijk-th compo-
nent of the second fundamental form of OF at x is defined as

The mean curvature vector of OF at x is defined as as Ad(x)Vd(x), and the mean curvature

of OF at x as Ad(x).

Note that AdVd is unchanged if we substitute R" \ E to E in (2.4). Moreover Ad is
positive for a smooth uniformly convex set F, so that in this case AdVd points toward
R™\ E.

In what follows we set

|V2d)? = tr(V?dV?d),
where tr is the trace operator in R".

3Note that, with the notation of Note 77, we have Ay = §,0.

4Note that, with the notation of Note ??, we have Vijd = §;n; on ¥. In particular, the (n x n)-matrix
0;n; is symmetric.

SWhat is usually called second fundamental form is the restriction of the concept given in Definition
2.2.1 to the tangent space to OF.
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The eigenvalues of V2d(zx) are denoted by kE(z),...,kE(z); if we take Vd(z) as the
last eigenvector, from (2.12) we have that kZ(z) = 0, and

n—1

VAR =3 (m)*

i=1

REMARK 2.2.2. The mean curvature can be expressed also using the squared distance
function as follows. Let 1 := d*/2. Then n € C*(U), n = 0 on OF, and

Vn=dVd=0 on OF. (2.15)
Moreover, if 7,5 € {1,...,n} we have VUU = V;dV;d + dV?jd in U, so that
Vin=VidVd  ondE. (2.16)
Hence V?(x) = Py,x. Finally, if 4, j,k € {1,...,n} we have
Vin = VidVid + V;dVid + Vi dVid + dV3,d (2.17)
o3

on U, where we use the notation VZ] k= B5psiaak
Therefore, recalling (2.12), we find

AVn = AdVd on OF. (2.18)
The mean curvature can be expressed by differentiating the projection as follows.
REMARK 2.2.3. Differentiating the rl-component of (2.7) with respect to z*, we obtain
Vipr, = -V dVid— V,dVid —VdVad —dvi,d  onU
In particular, using (2.11),
Apr; = —AdV,d on 0F.

REMARK 2.2.4. Let X € C®(0E;R"™); split X as X = X5 + X, where Xy := X —
(X, n)n is the orthogonal projection of X on the tangent space to 3. Then, writing X, =
&n, where £ := (X, n), we have

divg X, = divg(én) = (VZ¢,n) + &divegn = Ediven = €A, (2.19)
so that
dngX = diVE(XE -+ Xl) = dngXg + Ad<X, n),

The mean curvature can be expressed looking at OF as a level set of any smooth
function with nonvanishing gradient as follows.

REMARK 2.2.5. Let OF € C* N K(R"). If u : R* — R is a smooth function with

E ={u<0},9E = {u= 0}, and Vu # 0 on OF, then n¥ = %, and ¢jk-component of

the second fundamental form is

Vku
Pr,sV?uPrs)ij——,
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Viu(z) Vju(x)
[Vu(z)| [Vu(z)|

where we recall that Pr,x,; ;= Id;; — . Then the mean curvature vector equals

Vu \ Vu
div| — | = 2.20
s () war 220
and the mean curvature equals
dhf(%%ﬁ)::tth@Vﬂu) (2.21)

If {u = 0} is, in a neighbourhood O of a point, the graph of a smooth function v defined
on an open set Q C R*"™ ie, {u=0}N0 = {(s,2,) € QxR : 2, = v(s)}, and
{u<0}NO={(s,z,) € QxR :v(s) < z,}, then the mean curvature vector equals

. Vo (Vou, —1)
div <\/1+]Vv|2> V14 Vo2’ (2.22)

where in (2.22) the symbols div and V are the gradient and the divergence with respect
to s, respectively. Note that if s € €2 is such that Vu(s) = 0 then the mean curvature of
the graph of v at (s,v(s)) equals Av(s).

REMARK 2.2.6. If E € C>*°(R") note that
AdVd = divsn n on OF (2.23)

and
Ad = divyn on 0E. (2.24)

2.2.1.1. Mean curvature using parametrizations. Let S be a smooth (n—1)-dimensional
orientable manifold without boundary, let ¢ : & — R"™ be a smooth bijection between S
and
OE = ¢(S),

and such that for any s € S the differential de(s) is injective.
Let z = p(s) € OF and let s', ..., s""! be local coordinates on S. We set

v(s) :=n(x).
Let us define the map B, = (BL,...,B") : T,X x T,2 — N,%¥ C R" as follows: if
i,je{l,...,n—1}, ke {l,...,n}, and 7,(s) := %(s),

B (51, () 2= (), 200y i) = (s, 2200y i)

Then B is a symmetric bilinear form and, for z = ¢(s) one defines

ij ij Pp(s)
H(s) =g (5)Bo(m() (), Hls) = g () uls). 550, (2.26)
where ¢"(s) is the ij-component of the inverse matrix of g;;(s) := <8gs(f), 8‘8'05)}. It turns

out that
—H(s) = Ad(x)Vd(z), H(s) = Ad(x), x = p(s).
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If we define B, = (BL,...,B") : R" x R" — R" as B,(v,w) = By(Pr,(v), Pr,(w)) € N,X
for every pair v,w € R", where Pr,x := Id — Py, 5, then B’“ = <l§’(el,e]) er) = V?jdvkd.
Note that

|B)? = |Vd|>. (2.26)
Finally, another expression of the mean curvature vector at x = ¢(s) is given by

H(s) = Agip(s) = (Bgepr(s), -, Dgpn(s)),
where Ay = g9 (8221-?;“]- —FZ}-ng@TIZ) - \ﬁasz <\/_g”6g0’“) for any &k € {1,...,n}, and

Fk = 1gkh <8§;f + %5?]’1 — gi;j) and G := det(g;;).

Notation: if x = ¢(s), we sometimes will use the notation

H(s) = H(z) = H%(z).

ExXAMPLE 2.2.7. Let n = 1, E C R be a finite union of intervals. Then d is linear
around the boundary points of the intervals, and hence Ad = 0 on OF.

EXAMPLE 2.2.8. Let n = 2 and OF = ¥(S'), where S" is the unit circle and v : S' — R?
is a smooth embedding of S! in R?. Then the (mean) curvature vector of OF at x = v(s)

is given ﬁ <’y” -y, |'YWII‘2>’7/>'
EXAMPLE 2.2.9. In Example 2.1.1 we have Ad(z) =
<Id (' —2}) (zjfzg))
lz—z0| zo| |z—z0| |z—20| )
EXAMPLE 2.2.10. Let n = 2 and 0F € C* N K(R?). Then V?d = Ad(Vd™*);(Vdr);,
where Vd* is the 7/2-counterclockwise rotation of Vd.

EXAMPLE 2.2.11. Let v € O%°(R, (0, +c0)), and let E := {(21, 22, 23) € R? : (v(21))* <
25 + 22}, which is a solid of revolution, having as boundary the rotation of the graph of v
around the z-axis, 9E = {u(z) = 0}, u(z) := 3((v(21))? — 23 — 23). Direct computations
give, for points of R3,

div < P ) (V*(V')* + 25 + z%)_g/2 {((v’)2 + 0" = 2)(V (V) + 25 + 23) (2.27)

me and, for z # 2, Vid(z) =

[Vl
~ [P+ o) - 4 - 2] (2.28)
so that, if (v(z1))? = 25 + 22,
HP (21,29, 23) = (v*(v')* + 02)73/2 v* [ov” = ((v')* +1)] (2.29)

—_

v 1
~trom (e s) 20
1

(2.31)

:(u+§%wm)‘vu+wwﬁﬂ
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where the right hand side is evaluated at z;.

2.3. Expansion of the Hessian of the oriented distance function
Differentiating (2.11) with respect to z; we get
VipdVid = =V3,dVad iU, ije{l,... ,n} (2.32)
In particular, multiplying by V?jd we get

The following result describes the expansion of the eigenvalues of V2d on the whole of U.

THEOREM 2.3.1. Let X = OF, U and d be as in Theorem 2.1.4. Let z € U and let

x = pry(z) be the orthogonal projection of z on .. Fiz an orthonormal basis {vy, ..., v,}
of R™ in which V?d(x) is diagonal, such that v, = Vd(z) and
V3d(z)v; = kF (2)v;, i=1,...,n, (2.34)
where we recall that kZ(x) = 0. Then v, € Ker(V?d(z)), the basis {vy,...,v,} diagonalizes
V2d(z), and if we denote by p;(z) the eigenvalue corresponding to v; fori=1,...,n, then
kE(z
o) 2 2.5

~ 1+ d(2)RP ()
PROOF. Define
B(\) := V?d (z + \Vd(z))

for A € R, |A| small enough in such a way that x + A\Vd(z) € U. Fixi,j € {1,...,n}, and
consider the ij-th entry B;;(A) of B(\). Then, using (2.6) and (2.32) we get

Bi;(\) = Vid(z + AVd(2))Vid(z) = Vid(z + AVd(2))Vid(z + AVd(z)) = —(B*(\))4,

ijk ijk
hence
B'(\) = —B*(\). (2.36)
Observe that
B(0) = xf (z)v @ vy, (2.37)
where, given two vectors a = (ay,...,a,), b = (b1,...,b,) € R", the symbol a ® b denotes

the matrix whose ij-th entry is given by a;b;. The solution of the system (2.36) with initial

condition (2.37) is B(\) = Hﬂi(;zx) vy ®u. O
1

Note that if z € U is such that d(z) = A, then the principal curvatures of {d = A} at z
are given by u;(z), i=1,...,n.

REMARK 2.3.2. In the statement of Theorem 2.1.4 the neighbourhood U is small enough
in such a way that, in particular, 1 + d(z)x¥(pry(z)) > 0 for any 2 € U.

REMARK 2.3.3. From (2.35) we have the following assertions.
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(i) Forany it =1,...,n

kE (1) = LZ); 2.38
) = T d ) (238)
Hence
Vid(z) = V2d(2)G(z), G(2) = (Id — d(2)V3d(z)) " (2.39)
In particular
H(2) = tr (V2d(2)(1d — d(2)V2d(2)) ") . (2.40)
(ii) For any ¢ = 1,...,n we have #()’Z)i(z) < pi(z) in U N E| hence
—_ < Wiz in UN{d <0}.
2 T S G =0y
Similarly #()ZM)(Z) > 1i(z) in UN (R™\ E), hence
- pi(2) - -
_ > 1A inUN{d=>0}.
;1—d(z)ui(z) > ;u( ) {d =0}
(iii) As a consequence of (2.35) and the expansion (1 + Ax)™' =1 — A + O(A\?), we
deduce
n—1
Ad(z) = Ad(z) —d(2) Y (kP (x))* + O(d(2)?) (2.41)
i=1
Notes

Remark 2.0.2 is proved in [34], see also [65, Theorem 4.8, item (4)]. General properties of
the distance function from a smooth compact boundary can be found for instance in [72], [5],
[103], [51]. The if part in the statement of Remark 2.1.3 is proved for instance in [5, Theorem 2
statement (i)]%. The converse statement follows from [5, Theorem 9].

THEOREM 2.3.4. Let E € C*°NK(R™) and let u : R™ — R be a Lipschitz function, so that {u <
0} = int(E), and {u =0} = OE. Assume that |Vu|> =1 in R"\ E. Then u(z) = dist(z, {u = 0})
for any z € R"\ E.

Theorem 2.1.4 is proved in [5]. See also [72, Appendix B].

Theorem 2.3.1 is proved in [5].

Let k > 2 be an integer; similarly to Definition 2.1.2, we say that a closed set £ C R" with
compact boundary belongs to C(’fb(R") if there exists an open set U containing OF such that
d(-, E) € C*(U).

THEOREM 2.3.5. F € C(’fb(R") if and only if E has boundary of class C*.
PROOF. See [49, Section 5.4], [50, Theorems 5.1, 5.2], [103, Section 11, Proposition 13.8]. O

OIn statement (i) the author considers the case E bounded. In statement (ii) he proves a far more
general result, valid in any codimension, which contains in particular the case E bounded.
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Formula (2.10) is proven for instance in [50, Chap. 4, Section 1.3], [98, Proposition 2.68]
The extension of the distance function approach to manifolds with arbitrary codimension is
through the square distance function, as observed in [47]. We refer the reader to the papers [10],
[9], [58], [21].
The tangential gradient § on ¥ is used in [?], [86], [72], [87]. We recall (see for instance [86])
that, given h,k € {1,...,n}, the following commutation rule holds:
5h5k — 5k5h = (yhdkz/j u dehyj)éj' (2.42)
Indeed, let u € C*°(X), and let w € C>°(U) be its extension as in Definition 2.1.5. Then, setting
¢ = (Vu,Vd), we have
Oporu = 5h(VkU - kad) = Vh(Vkﬂ — kad) - <V(V}€U - kad), Vd)Vhd on X. (2.43)
On the other hand in U we have
V3T — Vid Vil — IV3,.d — Vpd(NV il — Vi dVE — IV Vd, Vd)
=V, — Vid Vil — V3,4,
where we used (2.11), the orthogonality between V¢ and Vd and the orthogonality between V'V,
and Vd in U. Observing that V¢ = (Vii, VV;d) in U, Then from (2.43) and (2.44) we deduce
00kt — Ox0p = Vypd({Vu, VVid) — Vi ,d{Vu, VVd),

(2.44)

which is (2.42).
***bellettini novaga j. convex anal. (citare de giorgi)
*** da sistemare: orientabilita’ di S forse e’ conseguenza della richiesta di avere un embedding
quando scrivo Vd = n, gli indici di Vd sono in basso, gli indici di n sono in alto
check la affermazione sulla restrizione dell’hessiano al tangente



