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CHAPTER 6

Short time existence and uniqueness: preliminary version

This version is in progress: please, take this into account. All corrections and comments
are welcome.

In this chapter we prove the existence and uniqueness of a smooth compact mean
curvature flow.

6.0.1. Preliminary lemmas. Let us begin with the inclusion principle between smooth
compact mean curvature flows. The following lemma compares the mean curvature of two
boundaries which are locally tangent, with a local inclusion between the sets.

Lemma 6.0.3. Let ∂E1, ∂E2 ∈ C∞, and assume that there exist x ∈ Rn and ρ > 0 with
the following properties:

x ∈ ∂E1 ∩ ∂E2, E1 ∩ Bρ(x) ⊆ E2 ∩ Bρ(x).

Then HE1(x) ≥ HE2(x).

Proof. We can assume that x is the origin of the coordinates. Since the mean curva-
ture is rotationally invariant, we can assume that nE1(x) = nE2(x) = −en, ∂E1 ∩ Bρ(x) =
graph(f1), ∂E2 ∩ Bρ(x) = graph(f2), where f1 and f2 are two smooth functions defined on
an open set of Rn−1 = span{e1, . . . , en−1} such that f1 ≥ f2 locally around 0. Then f1 − f2

has a local minimum at 0, so that ∇f1(0) = ∇f2(0) = 0 and ∆f1(0) ≥ ∆f2(0). Then

HE1(x) = ∆f1(0) ≥ ∆f2(0) = HE2(x).

!
We now need a preliminary useful result.

Lemma 6.0.4. Let h ≥ 1 and let M be an h-dimensional smooth compact orientable
manifold without boundary. Let u ∈ C1(M × [a, b]). Define, for any t ∈ [a, b],

umin(t) := min
p∈M

u(p, t), P u
min(t) := {m ∈ M : u(m, t) = umin(t)}, (6.1)

umax(t) := max
p∈M

u(p, t), P u
max(t) := {m ∈ M : u(m, t) = umax(t)}. (6.2)

Then for any t ∈ [a, b)

lim
τ→0+

1

τ

(
umin(t + τ) − umin(t)

)
= min

{
∂u

∂t
(m, t) : m ∈ P u

min(t)

}
, (6.3)

lim
τ→0+

1

τ

(
umax(t + τ) − umax(t)

)
= max

{
∂u

∂t
(m, t) : m ∈ P u

max(t)

}
. (6.4)

60



 D
ra

ft
6. SHORT TIME EXISTENCE AND UNIQUENESS: PRELIMINARY VERSION 61

Proof. Let us show (6.3). For any t ∈ [a, b), m ∈ P u
min(t), τ > 0 small enough so that

t + τ ≤ b, we have

umin(t + τ) ≤ u(m, t + τ) = u(m, t) + τ
∂u

∂t
(m, t) + o(τ)

= umin(t) + τ
∂u

∂t
(m, t) + o(τ).

Since τ > 0, the previous inequality can be rewritten as

1

τ
(umin(t + τ) − umin(t)) ≤ ∂u

∂t
(m, t) + o(1).

Therefore lim sup
τ→0+

1

τ
(umin(t + τ) − umin(t)) ≤ ∂u

∂t
(m, t). Since this inequality is valid for

any m ∈ P u
min(t) we deduce

lim sup
τ→0+

1

τ
(umin(t + τ) − umin(t)) ≤ min

{
∂u

∂t
(m, t) : m ∈ P u

min(t)

}
. (6.5)

To conclude the proof of the lemma, we need to show that

lim inf
τ→0+

1

τ
(umin(t + τ) − umin(t)) ≥ min

{
∂u

∂t
(m, t) : m ∈ P u

min(t)

}
. (6.6)

Fix ε > 0 and for t ∈ [a, b] define Pε(t) := {q ∈ M : u(q, t) < umin(t) + ε}. For any
t ∈ [a, b), q ∈ Pε(t) and τ > 0 small enough so that t + τ ≤ b, we have

u(q, t + τ) = u(q, t) + τ
∂u

∂t
(q, t) + o(τ)

≥ umin(t) + τ
∂u

∂t
(q, t) + o(τ)

≥ umin(t) + τ inf
q∈Pε(t)

∂u

∂t
(q, t) + o(τ).

(6.7)

On the other hand, if p ∈ M \ Pε(t) we have u(p, t) ≥ umin(t) + ε, and therefore

u(p, t + τ) = u(p, t) + τ
∂u

∂t
(p, t) + o(τ)

≥ umin(t) + ε+ τ
∂u

∂t
(p, t) + o(τ) (6.8)

(6.9)

≥ umin(t) + ε− τL + o(τ),

where L := max(p,t)∈M×[a,b] |∂u∂t (p, t)|. For t ∈ [a, b) and 0 < τ < ε
2L we have

umin(t) + ε− τL ≥ umin(t) + τL ≥ umin(t) + τ inf
q∈Pε(t)

∂u

∂t
(q, t). (6.10)
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From (6.7), (6.8) and (6.10) we deduce, for 0 < τ < ε
2L such that t + τ ≤ b, and for any

p ∈ M ,

u(p, t + τ) ≥ umin(t) + τ inf
q∈Pε(t)

∂u

∂t
(q, t) + o(τ). (6.11)

From (6.11) it follows, for the same values of t and τ ,

umin(t + τ) ≥ umin(t) + τ inf
q∈Pε(t)

∂u

∂t
(q, t) + o(τ).

Hence

lim inf
τ→0+

1

τ
(umin(t + τ) − umin(t)) ≥ inf

q∈Pε(t)

∂u

∂t
(q, t). (6.12)

Since (6.12) holds for any ε > 0, we deduce

lim inf
τ→0+

1

τ
(umin(t + τ) − umin(t)) ≥ sup

ε>0
inf

q∈Pε(t)

∂u

∂t
(q, t) = min

m∈P u
min(t)

∂u

∂t
(m, t),

where the last equality follows from the continuity of the function ∂u
∂t (·, t) and the fact that

the map ε > 0 → infq∈Pε(t)
∂u
∂t (q, t) is nonincreasing.

The assertion for umax follows by setting v := −u, so that umax = −vmin, P u
max(t) =

P v
min(t), and

lim
τ→0+

1

τ

(
umax(t + τ) − umax(t)

)
= − lim

τ→0+

1

τ

(
vmin(t + τ) − vmin(t)

)

= − min

{
∂v

∂t
(m, t) : m ∈ P v

min(t)

}
= max

{
∂u

∂t
(m, t) : m ∈ P u

max(t)

}
,

(6.13)

where we used (6.3). !
Remark 6.0.5. Conclusion (6.3) of Lemma 6.0.4 is still valid (with the same proof)

if we drop the assumption that M is compact, provided we assume that infp∈M u(p, t) =

minp∈M u(p, t), that P u
min(t) is compact for any t ∈ [a, b], and that sup(p,t)∈M×[a,b] |

∂u(p,t)
∂t | <

+∞. A similar comment applies for conclusion 6.4.

Example 6.0.6. Let M ⊂ R2 be the interval [−2, 2] with the two boundary points
identified. Let v ∈ C∞(M × [−1, 1]; (0, +∞)) be a function such that the graph of v(·, t)
has the form depicted in Figure 1, for t ∈ [−1, 0), t = 0, and t ∈ (0, 1] respectively. We
assume v(−1, t) ≡ 1 for any t ∈ [−1, 1], v(1, t) > 1 for any t ∈ [−1, 0), v(1, 0) = 1, and
∂v
∂t (1, 0) < 0. For any t ∈ [−1, 1] and x ∈ graph(v(·, t)), let u(x, t) be the distance between
x and the first axis, and let umin(t) := min{u(x, t) : x ∈ graph(v(·, t))}. Then the function
umin is not differentiable at t = 0.

6.1. Inclusion principle: the simplest case

We begin with the following weak form, where we assume that initially one sets is inside
the other one, and the boundary of the two sets do not intersect.
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Figure 1. ***

Theorem 6.1.1. Let f1 : [a, b] → P(Rn) be a smooth compact mean curvature flow,
and let f2 : [a, b] → P(Rn) be a smooth mean curvature flow. Define the function

δ(t) := dist(f1(t), Rn \ f2(t)), t ∈ [a, b]. (6.14)

Assume that
δ(a) > 0. (6.15)

Then

for any t ∈ [a, b) there exists lim
τ→0+

1

τ

(
δ(t + τ) − δ(t)

)
∈ [0, +∞). (6.16)

Hence δ is nondecreasing in [a, b]. In particular

f1(a) ⊆ f2(a), ∂f1(a) ∩ ∂f2(a) = ∅ ⇒ f1(t) ⊆ f2(t), t ∈ [a, b].

Proof. Since f1 and f2 are smooth flows, it follows that there exists a (n − 1)-
dimensional smooth compact manifold (resp. a smooth manifold) without boundary S1

(resp. S2) and there exist smooth maps ϕ1 : S1 × [a, b] → Rn and ϕ2 : S2 × [a, b] → Rn

with the following properties:

- ϕ1(·, t) is a bijection between S1 and ∂f1(t) and ϕ2(·, t) is a bijection between S2

and ∂f2(t) for any t ∈ [a, b];
- for any s ∈ S1 (resp. ŝ ∈ S2) and t ∈ [a, b] the differential dϕ1(s, t) (resp. dϕ2(ŝ, t))

with respect to s (resp. ŝ) is injective.

Let M := S1 × S2 and define the function u : M → [0, +∞) as

u(s, ŝ, t) := |ϕ1(s, t) − ϕ2(ŝ, t)|. (6.17)

Observe that
δ(t) = min {u(s, ŝ, t) : (s, ŝ) ∈ M} , t ∈ [a, b], (6.18)

and that δ ∈ Lip([a, b]). Define σ := inf{t ∈ [a, b] : δ(t) = 0}. Thanks to the smoothness
of the flows, we have that σ > a. Hence δ(t) > 0 in [a, σ), and therefore the function u is
smooth on M × [a, σ). Thus we can apply Lemma 6.0.4 and deduce

lim
τ→0+

δ(t + τ) − δ(t)
τ

(6.19)

= min

{
∂u

∂t
(s, ŝ, t) : (s, ŝ) ∈ M, u(s, ŝ, t) = δ(t)

}
, t ∈ [a, σ).

We claim that

lim
τ→0+

1

τ
(δ(t + τ) − δ(t)) ≥ 0 ∀t ∈ [a, σ). (6.20)
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Let t ∈ [a, σ), let (s(t), ŝ(t)) ∈ M be such that

∂u

∂t
(s(t), ŝ(t), t) = min

{
∂u

∂t
(s, ŝ, t) : (s, ŝ) ∈ M, u(s, ŝ, t) = δ(t)

}
, (6.21)

and set xt := ϕ1(s(t), t) ∈ ∂f1(t) and x̂t := ϕ2(ŝ(t), t) ∈ ∂f2(t). Note that the relations
u(s(t), ŝ(t), t) = |xt − x̂t| = δ(t) imply

x̂t − xt

|x̂t − xt|
= nf2(t)(x̂t) = nf1(t)(xt),

namely x̂t−xt
|x̂t−xt| coincides with outward unit normal vector to f2(t) at x̂t, which in turn

coincides with outward unit normal vector to f1(t) at xt. Denote such a unit vector by ν.
From (6.17) we compute

∂u

∂t
(s(t), ŝ(t), t) = 〈 x̂t − xt

|x̂t − xt|
,
∂ϕ2

∂t
(ŝ(t), t) − ∂ϕ1

∂t
(s(t), t)〉 = 〈ν, ∂ϕ2

∂t
(ŝ(t), t) − ∂ϕ1

∂t
(s(t), t)〉.

(6.22)
From Definition 4.0.14 we have

〈ν, ∂ϕ2

∂t
(ŝ(t), t)〉ν = Vf2(ŝ(t), t), 〈ν, ∂ϕ1

∂t
(s(t), t)〉ν = Vf1(s(t), t), (6.23)

where Vfi is given in (4.4), with f replaced by fi, i = 1, 2. On the other hand f1 and f2

are smooth mean curvature flows, so that

〈ν, ∂ϕ2

∂t
(ŝ(t), t)〉 = −Hf2(t)(x̂t), 〈ν, ∂ϕ1

∂t
(s(t), t)〉 = −Hf1(t)(xt). (6.24)

From (6.19), (6.21), (6.22), and (6.24) we get

lim
τ→0+

1

τ
(δ(t + τ) − δ(t)) = −Hf2(t)(x̂t) + Hf1(t)(xt). (6.25)

Let us now consider the translated set

f tr
1 (t) := f1(t) + δ(t)ν.

Then
f tr

1 (t) ⊆ f2(t) and x̂t ∈ ∂(f tr
1 (t)) ∩ ∂f2(t). (6.26)

Moreover
Hftr

1 (t)(x̂t) = Hf1(t)(xt). (6.27)

By (6.26), using Lemma 6.0.3 we deduce Hftr
1 (t)(x̂t) ≥ Hf2(t)(x̂t). From (6.27) we then get

Hf1(t)(xt) ≥ Hf2(t)(x̂t). (6.28)

The claim then follows from (6.25) and (6.28).

Let us now show that from (6.20) it follows that δ is nondecreasing in [a, σ]. Assume
by contradiction that there exist a ≤ t1 < t2 ≤ σ such that δ(t2) < δ(t1). Let P : R → R
be a linear decreasing function such that P (t1) = δ(t1) and P (t2) > δ(t2). Let

t∗ := sup{t ∈ [t1, σ] : δ(t) ≤ P (t)}.
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Then P (t∗) = δ(t∗), t∗ < σ, and δ(t∗+τ)−δ(t∗)
τ < P (t∗+τ)−P (t∗)

τ for τ > 0 small enough.
Therefore

lim
τ→0+

1

τ
(δ(t∗ + τ) − δ(t∗)) ≤ P ′(t∗) < 0,

a contradiction.
Hence δ is nondecreasing in [a, σ], and therefore δ(σ) ≥ δ(a) > 0. If σ = b the proof

is concluded. Assume now that σ ∈ [a, b), and assume by contradiction that δ is not
nondecreasing in [σ, b]. Set t := inf{t ∈ [a, b] : ∃{tn} ⊂ (t, b), δ(tn) < δ(t), limn→+∞ δ(tn) =
δ(t)}. Then t is a minimum, t ≥ a+σ, and δ(t) ≥ δ(a) > 0. If t < b, arguing as before with
t in place of a, we find σ > 0 such that δ is nondecreasing in [t, t + σ], which contradicts
the definition of t. !

Remark 6.1.2. We can state Theorem 7.3 in the following equivalent form. Assume
that f1(a) ∩ f2(a) = ∅. Define δ(t) := dist(f1(t), f2(t)) for any t ∈ [a, b]. δ is nondecreasing
in [a, b]. In particular, f1(t) ∩ f2(t) = ∅ for any t ∈ [a, b].

Remark 6.1.3. As we shall see in Section ??, under the (weaker) assumption f1(a) ⊆
f2(a) in place of (6.15), a conclusion even stronger than the one of Theorem 7.3 is valid in
[a, b], namely that δ is strictly increasing.

Corollary 6.1.4. Let f1, f2 ∈ KF be two smooth compact mean curvature flows in a
common time interval [a, b]. Assume that f1(a) ⊆ int(f2(a)). Then f1(t) ⊆ int(f2(t)) for
all t ∈ [a, b].

Observe that Theorem 7.3 is still valid if we assume that f2 is a smooth mean curvature
flow in [a, b], namely if we drop the compactness assumption on ∂f(t).

We conclude this section with another interesting property, that can be proved by
refining the arguments in the proof of Theorem 7.3 is described in the following remark1.

Remark 6.1.5. Let S be an (n − 1)-dimensional smooth compact manifold without
boundary and let ϕ ∈ C∞(S × [a, b], Rn). For any t ∈ [a, b] set Γ(t) := ϕ(S, t). Assume
that

(i) ϕ(·, a) is a bijection between S and Γ(a);
(ii) for any s ∈ S and any t ∈ [a, b] the differential dϕ(s, t) with respect to s is injective;
(iii) the orthogonal projection of ∂ϕ∂t (s, t) on Nϕ(s,t)(Γ(t)) equals the mean curvature of

Γ(t) at ϕ(s, t) for any s ∈ S and any t ∈ [a, b].

Then ϕ(·, t) is a bijection between S and Γ(t) for any t ∈ [a, b].

6.2. The approach of Evans-Spruck

Denote by Symn the set of all real symmetric (n × n)-matrices, and for X ∈ Symn let
{λ1(X), . . . , λn(X)} be the set of the eigenvalues of X. Set

D := {(u, X) ∈ R × Symn : 1 − uλi(X)) 3= 0, i = 1, . . . , n} ,

1The conclusion of Remark 6.1.5 is not valid in general for mean curvature flow with a forcing term.
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which we consider as a subspace of R×Rn2
, with the norm induced by the euclidean norm.

Let F : D → R be defined as

F (u, X) :=
n∑

i=1

λi(X)

1 − uλi(X)
, (u, X) ∈ D. (6.29)

In this chapter we prove the following theorem, due to Evans and Spruck.

Theorem 6.2.1. Let E ⊂ Rn be a bounded open set with boundary of class C2+α, for
some α ∈ (0, 1), and set u0(·) := d(·, E). Then there exist ρ0 > 0 and t0 > 0 such that,
setting U := (∂E)+

ρ0 , the problem





u ∈ C2+α,1+α/2(U × [0, t0]),

ut = F (u, ∇2u) in U × (0, t0),

|∇u|2 = 1 on ∂U × [0, t0],

u(·, 0) = u0(·) in U

(6.30)

has a unique solution.

The definitions of parabolic Hölder spaces and corresponding norms are given in Section
6.3. Observe that, from (2.5), it follows that the compatibility condition |∇u(·, 0)|2 = 1 is
satisfied.

6.2.1. Some properties of the function F . In order to prove Theorem 6.2.1 we
need some preparation. If (u, X) ∈ D the two matrices (Id − uX)−1 ∈ Symn and X(Id −
uX)−1 ∈ Symn commute with X; if X = diag(λ1(X), . . . , λn(X)) is diagonal in suitable
bases of Rn, then (Id − uX)−1 is diagonal in the same bases, and (Id − uX)−1 = diag((1 −
λ1(X))−1, . . . , (1 − λn(X))−1). Since the trace of a matrix is independent of the choice of
the basis, we have

F (u, X) = tr(X(Id − uX)−1), (u, X) ∈ D. (6.31)

Set
D̂ := {(u, X) ∈ R × Mn : Id − uX is invertible} ,

where Mn is the set of all (n × n) real matrices. Observe that D̂ is an open subset of
R × Rn2

. The function defined as

tr(X(Id − uX)−1), (u, X) ∈ D̂, (6.32)

coincides with F on D, and will be still denoted by the same symbol. From now on we
will denote the function F with the symbol F . From (6.31) it follows that F is analytic
on D̂, and being

(Id − uX)−1 =
∑

k≥0

ukXk, (u, X) ∈ D̂, (6.33)

we have

F (u, X) = tr

(
∑

k≥0

ukXk+1

)
, (u, X) ∈ D̂. (6.34)
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If ξ, η ∈ Rn we indicate by ξ ⊗ η the matrix whose ij-entry is given by ξiηj . Let us denote
by FXij the derivative of F with respect to the ij-th component of X, i.e., FXij (u, X) =
dF

dXij
(u, X) := limh→0

1
h(F (u, X +hei ⊗ej)−F (u, X)) where e1, . . . , en is the canonical basis

of Rn. We denote by FX(u, X) the matrix whose ij-entry is FXij (u, X).

Lemma 6.2.2. For any (u, X) ∈ D and any M ∈ Mn we have

tr(MFX(u, X)) = tr(M(Id − uX)−2). (6.35)

Proof. We first observe that

FXij (u, X) = tr

(
d

dXij

(
X

∑

k≥0

ukXk

))
,

where d
dXij

(
X

∑
k≥0 ukXk

)
:= limh→0

(X+hei⊗ej)
P

k≥0 uk(X+hei⊗ej)k−X
P

k≥0 ukXk

h . Then

FXij (u, X) = tr

(

ei ⊗ ej

(
∑

k≥0

ukXk + uX
∑

k≥0

(k + 1)ukXk

))

.

Since
(∑

k≥0 ukXk
) (∑

m≥0 umXm
)

=
∑

k≥0(k + 1)ukXk we deduce

FXij (u, X) = tr

(
ei ⊗ ej

(
∑

k≥0

ukXk + uX(
∑

k≥0

ukXk)2

))
.

Being (
∑

k≥0 ukXk)2(Id − uX) =
∑

k≥0 ukXk, we obtain

FXij (u, X) = tr

(

ei ⊗ ej

(

(
∑

k≥0

ukXk)2(Id − uX + uX)

))

= tr
(
ei ⊗ ej(Id − uX)−2

)
.

Then the assertion follows. !
Corollary 6.2.3. Let (u, X) ∈ D. Then

FXij (u, X)ξiξj ≥ C(u, X)|ξ|2, ξ = (ξ1, . . . , ξn) ∈ Rn, (6.36)

where C(u, X) := min {(1 − uλi(X))−2 : i = 1, . . . , n} > 0.

Proof. Let {v1, . . . , vn} be an orthonormal basis of Rn so that vi is an eigenvalue
of X with λi(X) as eigenvector; note that in the same basis (Id − uX)−2 = diag((1 −
λ1(X))−2, . . . , (1 − λn(X))−2). Let us apply (6.35) with M = ξ ⊗ ξ. We have

FXij (u, X)ξiξj =tr
(
ξ ⊗ ξ(Id − uX)−2

)
=

n∑

i=1

〈ξ, vi〉2

(1 − uλi(X))2

≥C(u, X)
n∑

i=1

〈ξ, vi〉2 = C(u, X)|ξ|2.

!
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If we denote by Fu the partial derivative of F with respect to u, with similar com-
putations made as in Lemma 6.2.2 we have that Fu(u, X) = tr(X2(Id − uX)−2) for any
(u, X) ∈ D.

6.2.2. Existence. We begin by proving the existence statement of Theorem 6.2.1.
Since the boundary of E is of class C2+α(Rn), for ρ > 0 small enough we have u0 ∈
C2+α((∂E)+

ρ ) and

|u0(z)λi(∇2u0(z))| ≤ 1

2
, z ∈ (∂E)+

ρ , i = 1, . . . , n.

In particular, (u0(z), ∇2u0(z)) ∈ D for any z ∈ (∂E)+
ρ .

We will reduce the problem to a linear one. Given t0 > 0 and w ∈ C2+α,1+α/2(U× [0, t0])
to be selected later, we look for solutions u of (6.30) of the form

u(z, t) = u0(z) + tF (u0(z), ∇2u0(z)) + w(z, t), (z, t) ∈ U × (0, t0). (6.37)

Inserting (6.37) into the first equation in (6.30) and adding and subtracting the quantity
Fu(u0, ∇2u0)w + FXij (u0, ∇2u0)∇ijw, we get

wt − A(z, w, ∇2w) = f(z, t, w, ∇2w), (z, t) ∈ U × (0, t0), (6.38)

where
A(z, u, X) := FXij (u0(z), ∇2u0(z))Xij + Fu(u0(z), ∇2u0(z))u

is linear with respect to X and u and where, setting for simplicity

-(z) := F (u0(z), ∇2u0(z)),

the function f is defined as

f(z, t, u, X) :=F
(
u0(z) + t-(z) + u, ∇2u0(z) + t∇2-(z) + X

)

− -(z) − Fu

(
u0(z), ∇2u0(z))u − FXij (u0(z), ∇2u0(z)

)
Xij.

(6.39)

Inserting (6.37) into the second equation in (6.30), setting as usual

d(·) := d(·, E),

and observing that, thanks to the eikonal equation (2.5),

1 = |∇d + t∇-+ ∇w|2 = 1 + |t∇-+ ∇w|2 + 2〈∇d, ∇w〉 + 2t〈∇d, ∇-〉,
we get 〈∇d, ∇w〉 = −1

2 |t∇-+ ∇w|2 − t〈∇d, ∇-〉. Hence

∂w

∂ν
= β(z, t, ∇w) on ∂U × [0, t0], (6.40)

where ν is the outer unit normal to ∂U, so that ν = ∇d(·) on {d(·) > 0}∩∂U and ν = −∇d
on {d(·) < 0} ∩ ∂U and β ∈ C2+α,1+α/2(U × (0, t0) × Rn) is defined as

β(z, t, q) :=






−1
2 |t∇-(z) + q|2 − t∂((z)

∂ν on ({d(·) > 0} ∩ ∂U) × (0, t0) × Rn,

1
2 |t∇-(z) + q|2 − t∂((z)

∂ν on ({d(·) < 0} ∩ ∂U) × (0, t0) × Rn.

(6.41)
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Finally, inserting (6.37) into the last equation of (6.30) we get

w(·, 0) = 0 on U. (6.42)

Collecting together the equations (6.38), (6.40) and (6.42) for w we have:





wt − A(z, w, ∇2w) = f(z, t, w, ∇2w) in U × (0, t0),
∂w
∂ν = b(z, t, ∇w) on ∂U × [0, t0],

w(·, 0) = 0 in U.

(6.43)

In Proposition 6.2.4 it is shown that problem (6.43) has a unique solution w ∈ C2+α,1+α/2(U×
[0, t0]): note that f depends nonlinearly on second derivatives of w and β depends nonlin-
early on first derivatives of w. We will make use of Theorem 6.3.1, that we will apply with
the choice

aij(z, t) = aij(z) := FXij (u0(z), ∇2u0(z)), i, j = 1, . . . , n, (6.44)

bi ≡ 0, i = 1, . . . , n

and
c(z, t) = c(z) := Fu(u0(z), ∇2u0(z)),

so that aij ∈ Cα,α/2(U) and c ∈ Cα,α/2(U), and with the choice βi(z, t) = βi(z) = νi(z),
γ ≡ 0, so that βi ∈ C1+α,(1+α)/2(∂U × [0, t0]). Recall that (6.36) implies that (6.70) is
satisfied, since the smoothness and compactness of ∂E imply that there exists a constant
C > 0 such that F(u0(x), ∇2u0(x))ξiξj ≥ C|ξ|2 for any x ∈ ∂E and ξ = (ξ1, . . . , ξn) ∈ Rn.

We also need the following expression of f, obtained by Taylor expanding f in (6.39) to
second order (with integral remainder):

f(z, t, u, X) = Fu(u0(z), ∇2u0(z)) t-(z) + FXij (u0(z), ∇2u0(z)) t∇ji-(z)

+

∫ 1

0

(1 − σ)FXijXkl
(u0 + σt- + σu, ∇2u0 + σt∇2-+ σX) u0σ (t∇ij-+ Xij) (t∇kl-+ Xkl)

(6.45)

+ 2

∫ 1

0

(1 − σ)FXiju(u0 + σt-+ σu, ∇2u0 + σt∇2-+ σX) u0σ (t∇ij-+ Xij)(t-+ u)

+

∫ 1

0

(1 − σ)Fuu(u0 + σt-+ σu, ∇2u0 + σt∇2- + σX) dσ (t-+ u)2,

where u0 and - are evaluated at z.

Proposition 6.2.4. There exists t0 > 0 such that problem (6.43) has a unique solution
w ∈ C2+α,1+α/2(U × [0, t0]).

Proof. The proof is based on Theorem 6.3.1 and on a fixed point argument. Define

Y :=
{
u ∈ C2+α,1+α/2(U × [0, t0]) : u(·, 0) = 0

}
.

Y turns out to be a Banach space. We define the map Γ : Y → Y as follows: given u ∈ Y ,
then

Γ(u) := w,
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where w is the solution of (6.73) given by Theorem 6.3.1, with the choices

f(z, t) := f(z, t, u(z, t), ∇2u(z, t)), g(z, t) := β(z, t, ∇u(z, t)), w0 ≡ 0; (6.46)

note that, as u ∈ C2+α,1+α/2(U × [0, t0]), it follows that

f ∈ Cα,α/2(U × [0, t0]), g ∈ C1+α,(1+α)/2(∂U × [0, t0]), (6.47)

and therefore the assumptions of Theorem 6.3.1 are satisfied.
Given R > 0 set

Yt0,R :=
{

u ∈ Y : ‖u‖C2+α,1+α/2(U×[0,t0]) ≤ R
}

.

Since Yt0,R is closed in Y , also Yt0,R is a Banach space. We will prove the following two
properties:

(i) there exist t0 > 0 and R > 0 such that Γ : Yt0,R → Yt0,R;
(ii) there exist t0 > 0 and R > 0 such that

‖Γ(u) − Γ(v)‖C2+α,1+α/2(U×[0,t0]) ≤ 1

2
‖u − v‖C2+α,1+α/2(U×[0,t0]), u, v ∈ Yt0,R.

Let us prove (i). Let u ∈ Yt0,r0 , so that

‖u‖Cα,α/2(U×[0,t0]) ≤ r0. (6.48)

Observe that
‖t‖Cα,α/2(U×[0,t0]) = ‖t‖Cα/2([0,t0]) = t1−α/2

0 . (6.49)

and recall that ‖uv‖Cα,α/2(U×[0,t0]) ≤ C‖u‖Cα,α/2(U×[0,t0])‖v‖Cα,α/2(U×[0,t0]).
2 Then, from

(6.49), (6.45), (6.48) it follows that there exists C1 > 0 such that

‖f(z, t, u(z, t), ∇2u(z, t))‖Cα,α/2(U×[0,t0]) ≤ C1(r
2
0 + t1−α/2

0 ). (6.50)

Similarly,

‖t‖C1+α,(1+α)/2(∂U×[0,t0]) = t(1−α)/2
0 . (6.51)

Hence, using (6.41), (6.51), (6.48),

‖β(z, t, u(z, t))‖C1+α,(1+α)/2(∂U×[0,t0]) ≤ C2(r
2
0 + t(1−α)/2

0 ) (6.52)

2We have |u(z, t)v(z, t)−u(y, s)v(y, s)| ≤ |u(x, t)−u(y, s)||v(x, t)|+|v(x, t)−v(y, s)||u(y, s)| ‖u‖Cα,α/2 =
2‖u‖∞+[u]Cα,0 +[u]C0,α/2. Le seminorme holderiane del prodotto si maggiorano, aggiungendo e togliendo,
con

[uv]Cα,0 ≤ ‖u‖∞[v]Cα,0 + [u]Cα,0‖v‖∞,

[uv]C0,α/2 ≤ ‖u‖∞[v]C0,α/2 + [u]C0,α/2‖v‖∞
e quindi

‖uv‖Cα,α/2 = 2‖uv‖∞ + [uv]Cα,0 + [uv]C0,α/2 ≤
≤ 2‖u‖∞‖v‖∞ + ‖u‖∞([v]Cα,0 + [v]C0,α/2) + ‖v‖∞([u]Cα,0 + [u]C0,α/2)

≤ ‖u‖Cα,α/2‖v‖Cα,α/2.
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for some C2 > 0. From (6.50), (6.52), (6.46), 1 − α/2 > (1 − α)/2, the definition of w and
(6.74) we have

‖w‖Cα,α/2(U×[0,t0]) ≤ C3(r
2
0 + t(1−α)/2

0 ),

where C3 := C(C1 + C2). Taking r2
0 ≤ 1/C3 we have C3r2

0 ≤ r0/2, so that

‖w‖Cα,α/2(U×[0,t0]) ≤ r0

2
+ C3t

(1−α)/2
0 .

Taking t0 ≤ r0

(2C3)1/(1−α/2) we get r0
2 + C3t

(1−α)/2
0 ≤ r0, so that

‖w‖Cα,α/2(U×[0,t0]) ≤ r0,

and assertion (i) follows.
To prove (ii), set Bu(z, t) := f(z, t, u(z, t), ∇2u(z, t)), gu(z, t) := β(z, t, ∇u(z, t)), Bv(z, t) :=

f(z, t, v(z, t), ∇2v(z, t)), gv(z, t) := β(z, t, ∇v(z, t)). From (6.74) and the linearity of the
equation in (6.73) we have

‖Γ(u)−Γ(v)‖C2+α,1+α/2(U×[0,t0]) ≤ C(‖Bu −Bv‖Cα,α/2(U×[0,t0]) +‖gu −gv‖C1+α,(1+α)/2(∂U×[0,t0])).

From properties (i) and (ii) and the fixed point theorem it follows that there exist t0 > 0
and R > 0 such that Γ has a unique fixed point in Yt0,R. This concludes the proof of
Proposition 6.2.4. !

6.2.3. Uniqueness. Let us now show uniqueness of solutions to (6.30). Let u, v ∈
C2+α,1+α/2(U × [0, t0]) be two solutions of (6.30), and set ω := u − v. Then ω satisfies






ωt = aij∇ijω + cω in U × (0, t0),

bi(z, t)∇iω(z, t) = 0 on ∂U × [0, t0],

ω(·, 0) = 0 on U

(6.53)

where

aij(z, t) :=

∫ 1

0

FXij (σu(z, t) + (1 − σ)v(z, t), σ∇2u(z, t) + (1 − σ)∇2v(z, t)) dσ

c(z, t) :=

∫ 1

0

Fu(σu(z, t) + (1 − σ)v(z, t), σ∇2u(z, t) + (1 − σ)∇2v(z, t)) dσ

and, setting g(p) := |p|2 − 1,

bi(z, t) :=

∫ 1

0

∇ig(σ∇u(z, t) + (1 − σ)∇v(z, t)) dσ =
1

2
∇iu(z, t) +

1

2
∇iv(z, t).

From (6.36) we have that aij satisfy (6.70), and bi satisfies (6.71). Moreover aij ∈ Cα,α/2(U×
[0, t0]), and c ∈ Cα,α/2(U × [0, t0]). Then ω solves a uniformly parabolic linear problem, so
that by the classical maximum principle it follows that ω ≡ 0. !

The solution u given by Theorem 6.2.1 can be continued on a larger time interval,
taking u(·, t0 + δ) as initial datum. Repeating the argument, in this way one can find
T > 0 and a solution u : U × [0, T ) → R such that u ∈ C2+α,1+α/2(U × [0, τ ]), for any
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τ ∈ (0, T ), and such that, if T < +∞, then there does not exist any solution of (6.30)
belonging to C2+α,1+α/2(U × [0, T ]).

Looking at the linear evolution equation3 satisfied by u(z+hek,t)−u(z,t)
h and passing to the

limit as h → 0 it is the possible to show the following result.

Proposition 6.2.5. Assume that the boundary of E is of class C3+α. Let u be the
solution given by Theorem 6.2.1. Then ∇u ∈ C2+α,1+α/2(Ω× [0, t0]).

****check (krylov?) la regolarita’ C∞ all’interno se ∂E e’ C∞: vedere la u come
soluzione di una eq. lineare del tipo

ut = tr(A(x, t)D2(u))

dove la matrice A(x) e’ l’inversa di (Id − uD2(u)), ma pensata come matrice di coefficienti
in funzione della sola x e del tempo. A questo punto usare la massima regolarita‘ della
u, per dedurne la massima regolarita‘ sulla A(x), e da questa, usando l’equazione pensata
come eq. lineare, dedurre ulteriore regolarita‘ della u, quindi ulteriore regolarita‘ della
A(x), e cosi‘ via. servirebbe la regolarita’ fino al tempo zero.***

Theorem 6.2.6. Let E ∈ C∞
b (Rn) and let t0 > 0 be as in Theorem 6.2.1. Then there

exists a unique smooth compact mean curvature flow f : [0, t0] → P(Rn) starting from E
at time 0.

Proof. Let U and u ∈ C∗∗∗(U× [0, t0]) be given by Theorem 6.2.1. We first show that

|∇u|2 = 1 in U × [0, t0]. (6.54)

We set v := |∇u|2 − 1; by Proposition 6.2.5 we have v ∈ C2+α,1+α/2(U × [0, t0]). By (6.30)
we have

v = 0 on ∂U × [0, t0] (6.55)

and by the properties of d(·, E) also

v = 0 on U × {t = 0}. (6.56)

In addition ∇ijv = 2∇ku∇ijku + 2∇iku∇kju. Differentiating the equation in (6.30) with
respect to zk,

vt = 2∇ku∇kut = 2∇ku
[
FXij (u, ∇2u)∇ijku + Fu(u, ∇2u)∇ku

]

= FXij (u, ∇2u)∇ijv − 2FXij(u, ∇2u)∇iku∇kju + 2Fu(u, ∇2u)|∇u|2.
Observe now that

Fu(u, ∇2u) = FXij (u, ∇2u)∇iku∇kju. (6.57)

Indeed, by (6.35) applied with M = ∇2u∇2u we have

FXij (u, ∇2u)∇iku∇kju = tr
(
∇2u∇2u(Id − u∇2u)−2

)
=

n∑

i=1

(λi(∇2u))2

(1 − uλi(∇2u))2
. (6.58)

3which turns out to be uniformly parabolic
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On the other hand it is immediate to check that Fu(u, ∇2u) coincides with the right hand
side of (6.58).

From (6.57) we then have

vt = FXij (u, ∇2u)∇ijv + 2Fu(u, ∇2u)v. (6.59)

Equation (6.59) is a linear partial differential equation in the unknown w, which is uniformly
parabolic thanks to Lemma 6.2.3. Hence, from (6.55), (6.56), it follows that v ≡ 0 in
U × [0, t0].

In particular, for any t ∈ [0, t0] the boundary of the set E(t) := {u(·, t) ≤ 0} is a
hypersurface of class C3+α without boundary in U4. ***in realta’ C∞ *** Using (6.54) it is
possible to prove that

u(z, t) = dist(z, E(t)) − dist(z, Rn \ E(t)), (z, t) ∈ U × [0, t0].

Then, recalling also Proposition ??, it follows that t ∈ [0, t0] → {u(·, t) ≤ 0} is the smooth
mean curvature flow starting from E. !

6.2.4. Improvements of the inclusion principle. Let E1, E2 ∈ C∞. We say that
∂E1 and ∂E2 are close if there exists an open set A ⊂ Rn such that ∂E1 ⊂ A, ∂E2 ⊂ A,
and the oriented distance functions from ∂E1 and from ∂E2 belong to C∞(A).

Theorem 6.2.7. Let f1, f2 : [a, b] → P(Rn) be two smooth compact mean curvature
flows. Assume that

f1(a) ⊆ f2(a), ∂f1(a) and ∂f2(a) are close.

Then
f1(t) ⊆ f2(t), t ∈ [a, b]. (6.60)

If moreover ∂fi(a) are connected for i = 1, 2 and f1(a) 3= f2(a), then

∂f1(t) ∩ ∂f2(t) = ∅, t ∈ (a, b]. (6.61)

Proof. We can suppose that each ∂fi(a) is connected, since the argument can be
repeated separately for each connected component. Without loss of generality, assume that
f1(a) 3= f2(a). Let di(·, t) be the oriented distance function from ∂fi(t). By assumption
there exists an open set A ⊂ Rn such that di(·, 0) ∈ C∞(A). Recalling Theorem (6.2.6) we
have that there exists τ > 0 such that d1 and d2 are two solutions of equation (6.30) in
A × [a, a + τ ]. Define w := d1 − d2. Since f1(a) ⊆ f2(a), it follows that

w(·, a) ≥ 0. (6.62)

Then, from the maximum principle applied to the uniformly parabolic equation (6.53), it
follows that w(z, t) ≥ 0 for any (z, t) ∈ Q, so that (6.103) holds for any t ∈ [a, a+ τ ]. From
the strong maximum principle applied to (6.53), observing that w(·, a) 3= 0, we deduce
that f1(t) ⊂ f2(t) and ∂f1(t) ∩ ∂f2(t) = ∅ for any t ∈ (a, a + τ ]. Then (6.103) and (6.104)
follow from Theorem 7.3. !

4Hence the second fundamental form of ∂E(t) is of class C1+α.
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6.3. Definitions of parabolic Hölder spaces and linear theory

Let Ω ⊂ Rn be a bounded open set of class C2 and T > 0. We recall the definition of
the following parabolic Hölder spaces: for α > 0

C0,α(Ω× [0, T ]) :=
{
u ∈ C(Ω× [0, T ]) : u(z, ·) ∈ Cα([0, T ]) ∀z ∈ Ω, (6.63)

‖u‖C0,α(Ω×[0,T ]) := sup
z∈Ω

‖u(z, ·)‖Cα([0,T ]) < +∞
}

(6.64)

Cα,0(Ω× [0, T ]) :=
{
u ∈ C(Ω× [0, T ]) : u(·, t) ∈ Cα(Ω) ∀t ∈ [0, T ], (6.65)

‖u‖Cα,0(Ω×[0,T ]) := sup
t∈[0,T ]

‖u(·, t)‖Cα(Ω) < +∞
}

(6.66)

where, if 0 < θ < 1 and O is a bounded open subset of Rm, m ≥ 1,

Cθ(O) :=

{
u ∈ C(O) : [u]Cθ := sup

x,y∈O,x *=y

|u(x) − u(y)|
|x − y|θ

< +∞
}

‖u‖Cθ(O) := ‖u‖∞ + [u]Cθ ,

and for k ∈ N, k ≥ 1,

Ck+θ(O) :=
{
u ∈ Ck(O) : ∇i1...iku ∈ Cθ(O), i1, . . . , ik ∈ {1, . . . , n}

}

with
‖u‖Ck+θ(O) := ‖u‖Ck(O) +

∑

i1,...,ik∈{1,...,n}

[∇i1...iku]Cθ(O).

For 0 < α < 2

Cα,α/2(Ω× [0, T ]) := C0,α/2(Ω× [0, T ]) ∩ Cα,0(Ω× [a, b]), (6.67)

endowed with the norm 5 ,6

‖u‖Cα,α/2(Ω×[0,T ]) :=‖u‖C0,α/2(Ω×[0,T ]) + ‖u‖Cα,0(Ω×[0,T ]) (6.68)

In addition

C2,1(Ω× [0, T ]) :=
{
u ∈ C(Ω× [0, T ]) :

∃ut, ∇iju ∈ C(Ω× [0, T ]), i, j ∈ {1, . . . , n}
}
,

(6.69)

endowed with the norm

‖u‖C2,1(Ω×[0,T ]) := ‖u‖L∞(Ω×[0,T ]) +
n∑

i=1

‖∇iu‖∞ + ‖ut‖L∞(Ω×[0,T ]) +
n∑

i,j=1

‖∇iju‖L∞(Ω×[0,T ])

5Since 0 < α < 2, definition (6.67) includes the definition of the space C1+β,(1+β)/2(Ω × [0, T ])
for 0 < β < 1: from (6.67) it follows ‖u‖C1+β,(1+β)/2 = 2‖u‖L∞(Ω×[0,T ]) + supx∈Ω[u(x, ·)]C(1+β)/2([0,T ]) +∑n

i=1 ‖∇iu‖L∞(Ω×[0,T ];Rn) +
∑n

i=1 supt∈[0,T ][∇iu(·, t)]Cβ . Note that a term of the form [∇iu]C(1+β)/2 does

not explicitely appear, but it is recovered using the inequality ‖ϕ‖C1 ≤ C‖ϕ‖1/(2+β)
C2+β ‖ϕ‖1+β

∞ applied to
ϕ(x) = u(x, t) + u(x, s) − 2u(x, (s + t)/2), where C is a constant independent of x.

6Another slightly different norm **** is defined as ‖u‖∞ + supx,y∈Ω, x $=y, t,s∈[0,t0],t$=s
|u(x,t)−u(y,t)|

|x−y|α+|t−s|α/2 .
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and for 0 < α < 2

C2+α,1+α/2(Ω× [0, T ]) :=
{
u ∈ C2,1(Ω× [0, T ]) :

ut, ∇iju ∈ Cα,α/2(Ω× [0, T ]), i, j ∈ {1, . . . , n}
}
,

endowed with the norm

‖u‖C2+α,1+α/2(Ω×[0,T ]) =‖u‖L∞(Ω×[0,T ]) +
n∑

i=1

‖∇iu‖L∞(Ω×[0,T ])

+ ‖ut‖Cα,α/2(Ω×[0,T ]) +
n∑

i,j=1

‖∇iju‖Cα,α/2(Ω×[0,T ])

‖u‖C1+α,(1+α)/2(Ω×[a,b]) := ‖u‖∞ +
n∑

i=1

‖∇iu‖∞ + ‖ut‖Cα,α/2(Ω×[a,b]) +
n∑

i,j=1

‖∇iju‖Cα,α/2(Ω×[a,b])

Finally, we set

‖f‖C(1+α)/2,1+α([a,b]×∂Ω) := inf{‖v‖C(1+α)/2,1+α([a,b]×Ω) : v = f su [a, b] × ∂Ω}.

6.3.1. Remarks on the linear theory. It is possible to prove the following theorem
on second order linear parabolic partial differential equations.

Theorem 6.3.1. Let Ω ⊂ Rn be a bounded open set which is uniformly C2+α, 0 < α < 1,
and let T > 0. Let aij , bi, c, f ∈ Cα,α/2(Ω× [0, T ]), and βi, γ, g ∈ C1+α,(1+α)/2(∂Ω× [0, T ]),
w0 ∈ C2+α(Ω). Assume that there exists a constant C > 0 such that

aij(z, t)ξiξj ≥ C|ξ|2, t ∈ [0, T ], z ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ Rn, (6.70)

and the nontangentiality condition
∣∣∣∣

n∑

i=1

βi(z, t)νi(z)

∣∣∣∣ ≥ ν0, 0 ≤ t ≤ T, z ∈ ∂Ω, (6.71)

Set
A(z, t)ϕ = aij(z, t)∇ijϕ+ bi(z, t)∇iϕ+ c(z, t)ϕ,

B(z, t)ϕ = βi(z, t)Diϕ+ γ(z, t)ϕ.

Moreover, assume that the following compatibility condition holds:

B(0, z)u0(z) = g(0, z), z ∈ ∂Ω. (6.72)

Then the problem 




wt = A(z, t)w + f in Ω× (0, T )

B(z, t)u(z, t) = g(z, t), on ∂Ω × (0, T ],

w = w0 on Ω× {t = 0}
(6.73)
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6.3. DEFINITIONS OF PARABOLIC HÖLDER SPACES AND LINEAR THEORY 76

has a unique solution w ∈ C2+α,1+α/2(Ω × [0, T ]), and there exists a constant C > 0 such
that

‖w‖C2+α,1+α/2(Ω×[0,T ]) ≤ C
(

‖w0‖C2+α(Ω) + ‖f‖Cα,α/2(Ω×[0,T ]) + ‖g‖C1+α,(1+α)/2(∂Ω×[0,T ])

)
.

(6.74)
The constant C depends on Ω, on the Cα,α/2-norm of aij, bi, c, on the C1+α,(1+α)/2-norm
of βi, γ, o n the constants ν, ν0, on the space dimension n, and on T , and it is increasing
with respect to T .

In view of the role played by Theorem 6.3.1 in the proof of Theorem 6.2.1, we give
here some ideas on how to prove that w ∈ C2+α,1+α/2(Ω × [0, T ]), following the approach
described in [83, Theorem 5.1.22]. In our application (see (6.43)) we have w0 = 0, bi = 0,
and the coefficients aij and c are independent of t; therefore the statement of Theorem 6.3.1
covers a case which is more general than the one required to prove Proposition 6.2.4. The
proof of Theorem 6.3.1 can be reduced to the case in which the coefficients are independent
of time (see the proof of [83, Theorem 5.1.21]). Therefore, let us assume that

aij , bi and c do not depend on t :

this is the case considered in [83, Theorems 5.1.19, 5.1.20]. Observe that f ∈ Cα,α/2(Ω ×
[0, T ]) implies that

the map t → f(t, ·) belongs to Cα/2([0, T ]; X) ∩ B([0, T ]; Cα(Ω)), (6.75)

where the Banach space X is defined as

X := C(Ω),

and B([0, T ]; Cα(Ω)) denotes the space of bounded functions from [0, T ] into Cα/2(Ω).
The strategy of the proof now is the following.
Case 1. Assume g = 0.
We recall that the interpolation space DA(α/2, ∞) as defined in [83, Section 2.2.1]

satisfies

DA(α/2, ∞) = Cα(Ω), (6.76)

see [83, Theorem 3.1.30].
The equation (6.73) is viewed as an ordinary differential equation in X

{
w′(t) = Aw(t) + f(t), t ∈ [0, T ],

w(0) = w0,
(6.77)

where the domain D(A) of A is, thanks to the assumption g = 0, the linear space given by

D(A) = {ϕ ∈ ∩p≥1W
2,p(Ω) : ϕ, Aϕ ∈ X,

∂ϕ

∂ν
= 0 on ∂Ω}.

We recall (see [83, pag. 50]) that, using also (6.76), the interpolation space DA(α/2 +
1, ∞) has the following expression:
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DA(α/2 + 1, ∞) = {ϕ ∈ D(A) : Aϕ ∈ Cα(Ω)} = {ϕ ∈ C2+α(Ω) :
∂ϕ

∂ν
= 0 on ∂Ω}, (6.78)

where the last equality is a consequence of the Schauder estimates [81], [67].
From (6.75) and (6.76) we have in particular f ∈ C([0, T ]; X) ∩ B([0, T ]; DA(α/2, ∞)).

From (6.78) we also have w0 ∈ DA(α/2 + 1, ∞). Hence we can apply [83, Corollary 4.3.9],
and we obtain that (6.77) has a unique strict solution v which has the expression

v(t) = etAw0 + (etA 2 f)(t) = etAw0 +

∫ t

0

e(t−s)Af(s) ds,

with
u′, Au ∈ C([0, T ]; X) ∩ B([0, T ]; Cα/2(Ω)), (6.79)

and
Au ∈ Cα/2([0, T ]; X) (6.80)

Inclusions (6.79) imply the more delicate conclusion, namely that

v ∈ C2+α,1(Ω× [0, T ]), (6.81)

where for 0 < α < 1

C2+α,1(Ω× [0, T ]) := {u ∈ C2,1(Ω× [0, T ]) : ut, ∇iju ∈ Cα,0(Ω× [0, T ]) ∀i, j}
and ‖u‖C2+α,1(Ω×[0,T ]) := ‖u‖∞+

∑n
i=1 ‖∇iu‖∞+‖ut‖Cα,0 +

∑n
i=1 ‖∇iju‖Cα,0. Formula (6.75)

and (6.80) imply that u = Au + f ∈ Cα/2([0, T ]; X). Hence, from (6.81) we get v ∈
C2+α,1+α/2(Ω× [0, T ]).

Case 2. Assume that g 3= 0. We want to solve the problem





u′(t) = Au(t) + f(t), t ∈ [0, T ],
∂u
∂ν = g on ∂Ω× [0, T ],

u(0) = u0.

(6.82)

We use the extension operator N with respect to the variable x, as defined in [83, Theorem
0.3.2]. It follows that we can construct a function B := N g ∈ C2+α,1/2+α/2(Ω× [0, T ]) such
that B = g on ∂Ω × [0, T ]. Note that 1/2 + α/2 < 1, so that B is not differentiable in
time. Let us define

v := u − B

Formally, it follows that v satisfies





vt = Av + f(t) + AB − Bt, t ∈ [0, T ],
∂v
∂ν = 0 on ∂Ω× [0, T ],

v(0) = u0 − B(0, x), x ∈ ∂Ω.

(6.83)

Again at the formal level, the function v has one of the expressions on [83, pag. 200],
which gives

u = u1 + u2, (6.84)
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where

u1 := −A

∫ t

0

e(t−s)A[B(s, ·) − B(0, ·)]ds + B(0, ·),

u2 := etA(u0 − B(0, ·)) +

∫ t

0

e(t−s)A[f(s, ·) + AB(s, ·)]ds

(6.85)

The point is now to show that u in (6.84) has the required regularity (in particular
that u1, u2 ∈ C2+α,1(Ω × [0, T ])), and it is the solution of (6.82). The most delicate
part is to prove that u1 has the required regularity (see [83, pagg. 201-203]) and that
∂u1
∂ν = g on ∂Ω × [0, T ]: one shows that B(s, ·) − B(0, ·) ∈ C(1+α)/2([0, T ]; C1(Ω)) ⊂
C(1+α)/2([0, T ]; DA(1/2, ∞) and then applies [83, Theorem 4.3.16] with θ = 1+α

2 , β = 1
2 .

Concerning u2, one shows that f(s, ·) + AB(s, ·) ∈ C([0, T ]; X) ∩ B([0, T ]; Cα(Ω)) so that
f(s, ·) + AB(s, ·) ∈ B([0, T ]; DA(α/2, ∞)); since u0 − B(0, ·) ∈ C2+α(Ω) and has vanishing
Neumann boundary condition, it follows that u0 − B(0, ·) ∈ DA(α/2 + 1, ∞). One then
applies [83, Corollary 4.3.9 (iii)] to gain the required regularity of u2 and the fact that
∂u2
∂ν = 0 on ∂Ω × [0, T ].

Notes

6.3.2. Inclusion principles in the presence of the forcing term. A version of Theorem
7.3 can be proved also in presence of the forcing term.

Theorem 6.3.2. Let f1, f2 ∈ KFg be two smooth compact mean curvature flows with forcing
term g in a common time interval [a, b]. Define the function

δ(t) := dist(f1(t), Rn \ f2(t)), t ∈ [a, b]. (6.86)

Assume that
δ(a) > 0. (6.87)

Then for any t ∈ [a, b]

there exists lim
τ→0+

1
τ

(
δ(t + τ) − δ(t)

)
≥ −Lgδ(t). (6.88)

Hence the function t ∈ [a, b] → δ(t)eLg(t−a) is nondecreasing.

Proof. We can repeat the proof of Theorem 7.3 up to formula (6.19) included. Let us
now show (6.88) for t ∈ [a, σ). We can repeat the computations in (6.22), (6.23) and use that
f1, f2 ∈ KFg to obtain

〈ν, ∂ϕ2

∂t
(ŝ(t), t)〉 = −Hf2(t)(x̂t) + g(x̂t, t) 〈ν, ∂ϕ1

∂t
(s(t), t)〉 = −Hf1(t)(xt) + g(xt, t). (6.89)

Therefore

lim
τ→0+

1
τ
(δ(t + τ) − δ(t)) = −Hf2(t)(x̂t) + g(x̂t, t) + Hf1(t)(xt) − g(xt, t). (6.90)

Since (6.28) is still valid we obtain

lim
τ→0+

1
τ
(δ(t + τ) − δ(t)) ≥ g(x̂t, t) − g(xt, t) ≥ −G|x̂t − xt| = −Gδ(t). (6.91)
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Let us now show that from (6.90) it follows that δeLg(t−a) is nondecreasing in [a, b]. Indeed,
suppose by contradiction that we can find a time t1 ∈ ]a, b] such that δ(t1) < δ(a) exp(−Lg(t1−a)).
Let µ(s) = P (s) exp(−Lg(s−a)), where P is a linear decreasing polynomial such that µ(a) = δ(a)
and µ(t1) > δ(t1). Define

s+ = inf{s ∈ [a, b] : δ(s) ≤ µ(s)}.
Then µ(s+) = δ(s+), hence s+ < b, and by definition of s+

lim inf
τ→0+

δ(s+ + τ) − δ(s+)
τ

≤ µ′(s+) < −Gδ(s+),

a contradiction. !

Again, the conclusion of Theorem ?? is equivalent to δ(t) ≥ δ(a)e−Lg(t−a) for any t ∈ [a, b].
In presence of the forcing term the distance between f1(t) and Rn \ f2(t) can decrease, as

shown by the following example.

Example 6.3.3. Fix 0 < λ < 1 sufficiently close to 1, in such a way that Ṙλ(0) = −1/2,
Ṙλ(τ) < −1, for a suitable τ ∈ ]0, T [, where T = tλ. We have R̈λ ≤ −σ on [0, τ ] for a suitable
σ > 0. Choose µ > 1 large enough in such a way that Ṙµ(0) ≥ 3/4, and R̈µ < σ on [0, τ ]. Setting
f = Rλ + Rµ, we have ḟ(0) > 0, ḟ(τ) < 0, and f̈ < 0 on [0, τ ].

Hence f has a unique strict local maximum t+ ∈ ]0, τ [ on [0, τ ].
Set R+ = Rµ(t+), r+ = Rλ(t

+), and F = BRµ(0)(−R+, 0)∪ BRλ(0)(r+, 0). Observe that F is the
union of two disjoint balls.

6.3.3. Continuity with respect to the initial data. We discuss here the local well-
posedness, in particular the continuity with respect to initial data, of the initial value problem for
a second order fully nonlinear parabolic equation with first order nonlinear boundary condition.
Let Ω ⊂ Rn be a bounded open set with boundary of class C2+α and let u0 ∈ C2+α(Ω). Consider
the problem 





ut = F (z, t, u, ∇u, ∇2u) in Ω× (0, t0),
g(z, t, u, ∇u) = 0 on ∂Ω × [0, t0]
u(·, 0) = u0(·) in Ω

(6.92)

where
- F : Q := Ω× [0, t0]×BR0((u, p, q)) → R, (u, p,X) ∈ R×Rn ×Symn is differentiable with

respect to ζ = (u, p,X), F , Fpi , FXij are locally Lipschitz continuous with respect to ζ
and locally Cα,α/2 with respect to (z, t), uniformly with respect to the other variables:
i.e., for every t ∈ [0, t0] and β ∈ {0, 1}

sup{‖∇βζF (·, ·, ζ)‖Cα,α/2(Ω×[0,t]) : ζ ∈ BR0((u, p,X))} < +∞, (6.93)

and
∃L > 0 : |∇βζF (z, t, ζ1) − ∇βζF (z, t, ζ2)| ≤ L|ζ1 − ζ2|, (6.94)

for (z, t) ∈ Ω× [0, t], ζ1, ζ2 ∈ BR0((u, p, q)), an the following ellipticity condition holds:
n∑

i,j=1

∂F

∂Xij
(z, t,u, p,X)ξiξj > 0, (z, t,u, p,X) ∈ Q, (ξ1, . . . , ξn) ∈ Rn \ {0}, (6.95)
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- g : S := Ω× [0, t0] × BR0((u, p)) satisfies the nontangentiality condition

∂g

∂pi
(z, t,u, p)νi(x) 3= 0, (z, t,u, p) ∈ S, z ∈ ∂Ω, (6.96)

it is twice differentiable with respect to (u, p), each derivative up to the second order is
locally Lipschitz continuous with respect to (u, p) and locally C(1+α)/2,1+α with respect
to z, t, uniformly with respect to the other variables: i.e., for every t ≥ 0 we have

sup{‖Dβ(u,p)g(·, ·, w)‖C(1+α)/2,1+α([0,t]×Ω) : (u, p) ∈ B((u, p), R0), |β| = 0, 1, 2} < +∞ (6.97)

and there exists M > 0 such that

|Dβ(u,p)g(z, t,u1, p1) − Dβ(u,p)g(z, t,u2, p2)| ≤ M |(u1, p1) − (u2, p2)|,

∀(z, t) ∈ [0, t] × Ω, (u1, p1), (u2, p2) ∈ BR0((u, p)), |β| = 0, 1, 2.
(6.98)

Assumptions (6.93) and (6.94) are satisfied if f is twice continuously differentiable with respect
to all its arguments, and assumptions (6.97), (6.98) are satisfied if g is thrice continuously differ-
entiable with respect to all its arguments.

Theorem 6.3.4. Assume tuat u0 verifies the compatibility condition

g(0, z, u0(z), ∇u0(z)) = 0, z ∈ ∂Ω, (6.99)

and that the range of (u0, ∇u0, ∇2u0) is contained in BR0/2(u, p,X). Then there exist t0 > 0 and
a unique u ∈ C2+α,1+α/2(Ω× [0, t0]) satisfying (6.92). Moreover, for any ρ > 0, there exist δ0 > 0
and K0 > 0 such that for every u1, u2 ∈ C2+α(Ω) satisfying

g(0, z, u1(z), ∇u1(z)) = g(0, z, u2(z), ∇u2(z)) = 0, z ∈ ∂Ω (6.100)

and

‖ui − u0‖C2+α(Ω) ≤ ρ, (6.101)

the solutions u(·, ui) of problems (6.92) with initial data ui satisfy

‖u(·, u1) − u(·, u2)‖C2+α,1+α/2(Ω×[0,δ0]) ≤ K0‖u1 − u2‖C2+α(Ω). (6.102)

Proof. The proof of the existence and uniqueness part of the statement is given in [83,
Theorem 8.5.4]. Let us show (6.102). We first check that for every u1 ∈ C2+α(Ω) satisfying
(6.100) and (6.101) the solution of problem (6.92) is defined in a common time interval [0, δ0].
This is done revisiting the proof of [83, Theorem 8.5.4], taking u1 instead of u0 as initial datum.
We have to check *** that C(R) in [83, formula 8.5.18] may be taken independent of u1. We
have C(R) = C(C7(R) + C8(R)), where C is the constant in (6.74), and C7(R), C8(R) appear in
the two estimates on [83, pag. 325]. Looking at the proof of the estimate involving C7(R), we
see that C7(R) is bounded by a(R) + b(R)‖u1‖C2+α(Ω) where a(R), b(R) do not depend on u1.
So, C7(R) ≤ a(R)+ b(R)(‖u0‖C2+α +ρ), and a similar estimate holds for C8(R). Therefore, C(R)
can be taken independent of u1.
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It follows that for every u1 as above, the map Γ (see [83, pag. 321]) defined as Γ(u) := w,
where w is the solution7 of





wt(z, t) − Aw = F (z, t, u, ∇u, ∇2u) − Au,
0 ≤ t ≤ δ, z ∈ Ω,

Bw(z, t) = −g(z, t, u(z, t), ∇u(z, t)) + Bu(z, t), 0 ≤ t ≤ δ, z ∈ ∂Ω,
w(0, z) = u1(z), z ∈ Ω.

is a 1/2-contraction in the set

Yu1 := {u ∈ C2+α,1+α/2(Ω× [0, δ]) : u(0, ·) = u1, ‖u − u1‖C2+α,1+α/2 ≤ R}

provided that C(R)δα/2 ≤ 1/2. Moreover, Γ maps Yu1 into itself, provided that the constant C ′

defined by

C ′ := C(‖F (·, ·, u1, ∇u1, ∇2u1)‖Cα/2,α + ‖g(·, ·, u1, ∇u1)‖C(1+α)/2,1+α)

(C is still the constant in (6.74)) satisfies C ′ ≤ R/2. The sum of the norms ‖F (·, ·, u1,Du1,D2u1)‖Cα/2,α

and ‖g(·, ·, u1,Du1)‖C(1+α)/2,1+α does not exceed a + b‖u1‖C2+α for suitable constants a, b > 0.
Therefore,

C ′ ≤ C(a + b(‖u0‖C2+α + ρ)).
In turn, C depends on u1 through the Cα/2,α-norm of the coefficients of A and through the
C(1+α)/2,1+α-norm of the coefficients of B. The coefficients of A are the derivatives of F with
respect to Xij , pi, u, evaluated at (0, z, u1(z), ∇u1(z), ∇2u1(z)). Their Cα/2,α-norm (which coin-
cides with their C0,α-norm, since they do not depend on time) does not exceed a1 + b1‖u1‖C2+α

for suitable constants a1, b1 > 0, hence it does not exceed a1 + b1(‖u0‖C2+α + ρ). Similarly, the
C(1+α)/2,1+α-norm of the coefficients of B does not exceed a2 + b1(‖u0‖C2+α + ρ), for suitable a2,
b2 > 0. Therefore, C is bounded by a constant independent of u1. Hence we can choose R large
enough, in such a way that C ′ ≤ R/2, and then δ ≤ δ0 := (2C(R))−2/α. For this choice, Γ is a
1/2-contraction that maps Yu1 into itself, for every u1 as above.

Let now u1, u2 be two initial data as in the statement, and set w(·) = u(·, u1)−u(·, u2). Then
w satisfies 





wt = aij∇ijw + bi∇iw + cw on Ω× [0, δ0]
0 = βiDiw + γw, on ∂Ω × [0, δ0]
w(0, z) = u1(z) − u2(z) z ∈ Ω,

where

aij(z, t) :=
∫ 1

0
FXij (z, t, ξσ(z, t)) dσ, bi(z, t) :=

∫ 1

0
Fpi(z, t, ξσ(z, t)) dσ,

c(z, t) :=
∫ 1

0
Fu(z, t, ξσ(z, t)) dσ,

ξσ(z, t) := σ(u(z, t, u1), ∇u(z, t, u1), ∇2u(z, t, u1)) + (1 − σ)(u(z, t, u2), ∇u(z, t, u2), ∇2u(z, t, u2)),

βi(z, t) :=
∫ 1

0
gpi(z, t, ησ(z, t)) dσ, γ(z, t) =

∫ 1

0
gu(z, t, ησ(z, t))dσ,

7Av := FXij ∇ijv + Fpi∇iv + Fuv, Bv =
∑n

i=1 gpiDiv + guv where the derivatives of F are evaluated
at (z, 0, u1(z), ∇u1(z), ∇2u1(z)) **c’e’ il solito problema dell’estensione di F fuori dalle simmetriche***,
and the derivatives of g are evaluated at (0, z, u1(z), ∇u1(z)). *** corretto? ***
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ησ(z, t) = σ(u(z, t, u1), ∇u(z, t, u1)) + (1 − σ)(u(z, t, u2), ∇u(z, t, u2))

Since the ranges of (u(·, u1),Du(·, u1), ∇2u(·, u1)) and of (u(·, u2), ∇u(·, u2), ∇2u(·, u2)) are con-
tained (see [83, pag. 321]) in BR0((u, p,X)), then ξσ(z, t) ∈ BR0((u, p,X)) and ησ(z, t) ∈
BR0((u, p)) for every t and x. Therefore, the ellipticity condition (6.70) and the nontangen-
tiality condition (6.71) are satisfied by constants C, ν0 independent of u1 and u2. If we prove
that the Cα,α/2-norm of the coefficients aij , bi, c and the C1+α,(1+α)/2-norm of the coefficients βi,
γ are bounded by constants independent of u1, u2 we may apply Theorem 6.3.1 to obtain

‖w‖C1+α/2,2+α([0,δ0]×Ω) ≤ C‖u1 − u2‖C2+α(Ω)

and (6.102) follows.
Let us consider the coefficients aij . For every t ∈ [0, δ0] and x ∈ Ω, |aij(z, t)| ≤ supQ |fqij |,

and assumptions (6.93) and (6.94) imply that

|aij(z, t) − aij(y, s)|

≤
∫ 1

0
|FXij (z, t, ξσ(z, t)) − FXij (y, s, ξσ(z, t))|dσ +

∫ 1

0
|FXij (y, s, ξσ(z, t)) − FXij (y, s, ξσ(y, s))| dσ

≤K(|t − s|α/2 + |x − y|α) + L

∫ 1

0
|ξσ(z, t) − ξσ(y, s)|dσ ≤ K(|t − s|α/2 + |x − y|α)

+
L

2

(
[u(·, u1)]Cα/2,α + [u(·, u2)]Cα/2,α + [Du(·, u1)]Cα/2,α

+ [Du(·, u2)]Cα/2,α + [D2u(·, u1)]Cα/2,α + [D2u(·, u2)]Cα/2,α

)
(|t − s|α/2 + |x − y|α).

Therefore,

[aij ]Cα,α/2 ≤ K + C(‖u(·, u1)‖C2+α,1+α/2 + ‖u(·, u2)‖C1+α/2,2+α) ≤ K + 2C0(R + ‖u0‖C2+α + ρ).

Similar estimates are satisfied by the coefficients bi and c.
Let us consider now the coefficients βi. For every t ∈ [0, δ0] and z ∈ ∂Ω we have |βi(z, t)| ≤

supS |gpi | and, arguing as above, with estimates (6.93) and (6.94) replaced by (6.97) and (6.98),

|βi(z, t) − βi(x, s)|

≤
∫ 1

0
|gpi(z, t, ησ(z, t)) − gpi(x, s, ησ(z, t))| dσ +

∫ 1

0
|gpi(x, s, ησ(z, t)) − gpi(x, s, ησ(x, s))|dσ

≤H(|t − s|(1+α)/2) + M

∫ 1

0
|ξσ(z, t) − ησ(x, s)| dσ

≤H(|t − s|(1+α)/2) +
M

2

(
[u(·, u1)]C(1+α)/2,0 + [u(·, u2)]C(1+α)/2,0 + [Du(·, u1)]C(1+α)/2,0 + [Du(·, u2)]C(1+α)/2,0

Therefore,

[βi]C(1+α)/2,0 ≤ H + C1(‖u(·, u1)‖C1+α/2,2+α + ‖u(·, u2)‖C1+α/2,2+α) ≤ H + 2C1(R + ‖u0‖C2+α + ρ).

Moreover, for each k we have

∂βi

∂xk
(z, t) =

∫ 1

0

∂

∂xk
(gpi(z, t, ησ(z, t)))dσ
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where
∂

∂xk
(gpi(z, t, ησ(z, t))) = gpixk(z, t, ησ(z, t)) + gpiu(z, t, ησ(z, t))(σuxk (z, t, u1) + (1 − σ)uxk(z, t, u2))

+
n∑

j=1

gpipj(z, t, ησ(z, t))(σuxkxj (z, t, u1) + (1 − σ)uxkxj (z, t, u2)).

Therefore,

| ∂βi

∂xk
(z, t)| ≤ sup

S
|gpixk | +

1
2

sup
S

|gpiu|( sup
0≤t≤δ0

‖u(t, ·, u1)‖C1(Ω) + sup
0≤t≤δ0

‖u(t, ·, u2)‖C1(Ω))

+
1
2

n∑

j=1

sup
S

|gpipj |( sup
0≤t≤δ0

‖u(t, ·, u1)‖C2(Ω) + sup
0≤t≤δ0

‖u(t, ·, u2)‖C2(Ω))

≤ C2(R + ‖u0‖C2+α + ρ).
In a similar manner one estimates [ ∂βi

∂xk
]C0,α . !

Proposition 6.2.5 is proven in [83, Proposition 8.5.6]. The regularity of w in Theorem ?? is
proven in [83, Theorem 8.5.6]. Theorem 6.3.1 is proven in [83, Corollary 5.1.22]. Proposition
6.2.5 is taken from [83, Proposition 8.5.6]. In [69, Section 2] the authors prove a short-time
existence and uniqueness theorem for a manifold evolving by mean curvature inside another
ambient manifold.

In [11] the author proves a short-time existence theorem for curves on surfaces evolving by a
suitable geometric law (including curvature flow), allowing singular initial curves, namely curves
with p-integrable curvature, and also curves that are locally graph of a Lipschitz function. See
also [12, Theorem 3.2]. We also note a comment concerning the continuity of the curve solution
with respect to parameters given in [11, p. 460].

A general short-time existence theorem for a large class of geometric evolution problems,
including evolutions of higher order, can be found in [75, Theorem 7.17]: this theorem covers
evolutions of the form (4.13), once one observes that an initially embedded hypersurface evolving
under (4.13) remains embedded for short times 8. An existence and uniqueness theorem for an
evolution equation which is nonlocal, similarly to (5.5) where the nonlocality is due to the fact
that g is evaluated on prΣ(t)(z), has been proved in [33, Theorem 3.1].

In [57, Section 4] the authors prove a short time existence result of a smooth solution of mean
curvature flow starting from a locally Lipschitz initial manifold.

6.3.4. More on the inclusion principle. Using the continuity result with respect to initial
data proved in Theorem ??, we now want to improve the inclusion principles described in Sections
??.

Proposition 6.3.5. Let E ∈ C∞∩K, and let f : [0, t0] → P(Rn) be the smooth compact mean
curvature flow given by Theorem ??. Then there exist ρ > 0 and t1 ∈ (0, t0] such that

- for any ρ ∈ [0, ρ] we have E−
ρ ∈ C∞

b ∩ K (resp. E+
ρ ∈ C∞

b ∩ K)
- for any ρ ∈ [0, ρ] the set E−

ρ (resp. E+
ρ ) has a unique smooth mean curvature flow

f−
ρ : [0, t1] → P(Rn) (resp. f+

ρ : [0, t1] → P(Rn)).

8See Section ??
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Proof. The first assertion follows from the results in Chapter ??. It remains to show that
the existence time of the smooth flow starting from E−

ρ does not tend to zero as ρ → 0+. This
assertion can be proved as follows: it is possible to show that the maximal existence time of the
smooth mean curvature flow starting from E is bounded from below by a constant times the L∞

norm of the second fundamental form of ∂E9. Using Theorem 2.3.1, it is then enough to observe
that the L∞ norm of the second fundamental form of ∂E−

ρ is uniformly bounded from above with
respect to ρ, provided ρ is sufficiently small. !

Proposition 6.3.6. Let E, f, t0, ρ, t1, E±
ρ and f±

ρ be as in Proposition 6.3.5. Then for any
t ∈ [a, a + t0], we have ∪ρ∈[0,ρ]f

−
ρ (t) = f(t) and ∩ρ∈[0,ρ]f

+
ρ (t) = f(t).

Proof. From Theorem 6.2.7 it follows that ∪ρ∈[0,ρ]f
−
ρ (t) ⊆ f(t). The opposite inclusion

follows from (6.102). The proof of the assertion concerning f+
ρ is similar. !

Theorem 6.3.7. Let f1, f2 : [a, b] → P(Rn) be two smooth compact mean curvature flows.
Assume that

f1(a) ⊆ f2(a).
Then

f1(t) ⊆ f2(t), t ∈ [a, b]. (6.103)
If moreover ∂fi(a) are connected for i = 1, 2 and f1(a) 3= f2(a), then

∂f1(t) ∩ ∂f2(t) = ∅, t ∈ (a, b]. (6.104)

Proof. Using the notation of Proposition 6.3.5 (with f1 in place of f), we have that f1
−
ρ (t) ⊆

f1(t) for any t ∈ [a, a + t0], and ∂f1
−
ρ (t) ∩ ∂f1(t) = ∅ for any t ∈ [a, a + t0]. ***ecc. ecc. From

Proposition ?? !
Concerning the short time existence of E ∈ C∞(Rn), in the paper [] it is considered the case

when ∂E is an entire graph; see also ***chiedere referenze a cardaliaguet ***
Remark ??: the maximal time of existence depends only on a bound of the second fundamental

form of initial set ∂E: see i[57, Section 4], Ilmanen [], and Theorem ??.

9This is shown, in the case of curves, in Chapter ??. For the general case, see ??.


