CHAPTER 6

Short time existence and uniqueness: preliminary version

This version is in progress: please, take this into account. All corrections and comments are welcome.

In this chapter we prove the existence and uniqueness of a smooth compact mean curvature flow.
6.0.1. Preliminary lemmas. Let us begin with the inclusion principle between smooth compact mean curvature flows. The following lemma compares the mean curvature of two boundaries which are locally tangent, with a local inclusion between the sets.

Lemma 6.0.3. Let $\partial E_{1}, \partial E_{2} \in \mathcal{C}^{\infty}$, and assume that there exist $x \in \mathbb{R}^{n}$ and $\rho>0$ with the following properties:

$$
x \in \partial E_{1} \cap \partial E_{2}, \quad E_{1} \cap B_{\rho}(x) \subseteq E_{2} \cap B_{\rho}(x)
$$

Then $H^{E_{1}}(x) \geq H^{E_{2}}(x)$.
Proof. We can assume that x is the origin of the coordinates. Since the mean curvature is rotationally invariant, we can assume that $\mathrm{n}^{E_{1}}(x)=\mathrm{n}^{E_{2}}(x)=-e_{n}, \partial E_{1} \cap B_{\rho}(x)=$ $\operatorname{graph}\left(f_{1}\right), \partial E_{2} \cap B_{\rho}(x)=\operatorname{graph}\left(f_{2}\right)$, where f_{1} and f_{2} are two smooth functions defined on an open set of $\mathbb{R}^{n-1}=\operatorname{span}\left\{e_{1}, \ldots, e_{n-1}\right\}$ such that $f_{1} \geq f_{2}$ locally around 0 . Then $f_{1}-f_{2}$ has a local minimum at 0 , so that $\nabla f_{1}(0)=\nabla f_{2}(0)=0$ and $\Delta f_{1}(0) \geq \Delta f_{2}(0)$. Then

$$
H^{E_{1}}(x)=\Delta f_{1}(0) \geq \Delta f_{2}(0)=H^{E_{2}}(x)
$$

We now need a preliminary useful result.
LEMMA 6.0.4. Let $h \geq 1$ and let M be an h-dimensional smooth compact orientable manifold without boundary. Let $u \in \mathcal{C}^{1}(M \times[a, b])$. Define, for any $t \in[a, b]$,

$$
\begin{align*}
u_{\min }(t):=\min _{p \in M} u(p, t), & P_{\min }^{u}(t):=\left\{m \in M: u(m, t)=u_{\min }(t)\right\}, \tag{6.1}\\
u_{\max }(t):=\max _{p \in M} u(p, t), & P_{\max }^{u}(t):=\left\{m \in M: u(m, t)=u_{\max }(t)\right\} . \tag{6.2}
\end{align*}
$$

Then for any $t \in[a, b)$

$$
\begin{align*}
& \lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(u_{\min }(t+\tau)-u_{\min }(t)\right)=\min \left\{\frac{\partial u}{\partial t}(m, t): m \in P_{\min }^{u}(t)\right\} \tag{6.3}\\
& \lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(u_{\max }(t+\tau)-u_{\max }(t)\right)=\max \left\{\frac{\partial u}{\partial t}(m, t): m \in P_{\max }^{u}(t)\right\} \tag{6.4}
\end{align*}
$$

Proof. Let us show (6.3). For any $t \in[a, b), m \in P_{\text {min }}^{u}(t), \tau>0$ small enough so that $t+\tau \leq b$, we have

$$
\begin{aligned}
u_{\min }(t+\tau) & \leq u(m, t+\tau)=u(m, t)+\tau \frac{\partial u}{\partial t}(m, t)+o(\tau) \\
& =u_{\min }(t)+\tau \frac{\partial u}{\partial t}(m, t)+o(\tau)
\end{aligned}
$$

Since $\tau>0$, the previous inequality can be rewritten as

$$
\frac{1}{\tau}\left(u_{\min }(t+\tau)-u_{\min }(t)\right) \leq \frac{\partial u}{\partial t}(m, t)+o(1) .
$$

Therefore $\limsup _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(u_{\min }(t+\tau)-u_{\min }(t)\right) \leq \frac{\partial u}{\partial t}(m, t)$. Since this inequality is valid for any $m \in P_{\min }^{u_{\text {in }}^{\tau \rightarrow 0^{+}}(t)}$ we deduce

$$
\begin{equation*}
\limsup _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(u_{\min }(t+\tau)-u_{\min }(t)\right) \leq \min \left\{\frac{\partial u}{\partial t}(m, t): m \in P_{\min }^{u}(t)\right\} \tag{6.5}
\end{equation*}
$$

To conclude the proof of the lemma, we need to show that

$$
\begin{equation*}
\liminf _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(u_{\min }(t+\tau)-u_{\min }(t)\right) \geq \min \left\{\frac{\partial u}{\partial t}(m, t): m \in P_{\min }^{u}(t)\right\} \tag{6.6}
\end{equation*}
$$

Fix $\varepsilon>0$ and for $t \in[a, b]$ define $P_{\varepsilon}(t):=\left\{q \in M: u(q, t)<u_{\min }(t)+\varepsilon\right\}$. For any $t \in[a, b), q \in P_{\varepsilon}(t)$ and $\tau>0$ small enough so that $t+\tau \leq b$, we have

$$
\begin{align*}
u(q, t+\tau) & =u(q, t)+\tau \frac{\partial u}{\partial t}(q, t)+o(\tau) \\
& \geq u_{\min }(t)+\tau \frac{\partial u}{\partial t}(q, t)+o(\tau) \tag{6.7}\\
& \geq u_{\min }(t)+\tau \inf _{q \in P_{\varepsilon}(t)} \frac{\partial u}{\partial t}(q, t)+o(\tau)
\end{align*}
$$

On the other hand, if $p \in M \backslash P_{\varepsilon}(t)$ we have $u(p, t) \geq u_{\min }(t)+\varepsilon$, and therefore

$$
\begin{align*}
u(p, t+\tau) & =u(p, t)+\tau \frac{\partial u}{\partial t}(p, t)+o(\tau) \\
& \geq u_{\min }(t)+\varepsilon+\tau \frac{\partial u}{\partial t}(p, t)+o(\tau) \tag{6.8}\\
& \geq u_{\min }(t)+\varepsilon-\tau L+o(\tau) \tag{6.9}
\end{align*}
$$

where $L:=\max _{(p, t) \in M \times[a, b]}\left|\frac{\partial u}{\partial t}(p, t)\right|$. For $t \in[a, b)$ and $0<\tau<\frac{\varepsilon}{2 L}$ we have

$$
\begin{equation*}
u_{\min }(t)+\varepsilon-\tau L \geq u_{\min }(t)+\tau L \geq u_{\min }(t)+\tau \inf _{q \in P_{\varepsilon}(t)} \frac{\partial u}{\partial t}(q, t) \tag{6.10}
\end{equation*}
$$

From (6.7), (6.8) and (6.10) we deduce, for $0<\tau<\frac{\varepsilon}{2 L}$ such that $t+\tau \leq b$, and for any $p \in M$,

$$
\begin{equation*}
u(p, t+\tau) \geq u_{\min }(t)+\tau \inf _{q \in P_{\varepsilon}(t)} \frac{\partial u}{\partial t}(q, t)+o(\tau) \tag{6.11}
\end{equation*}
$$

From (6.11) it follows, for the same values of t and τ,

$$
u_{\min }(t+\tau) \geq u_{\min }(t)+\tau \inf _{q \in P_{\varepsilon}(t)} \frac{\partial u}{\partial t}(q, t)+o(\tau)
$$

Hence

$$
\begin{equation*}
\liminf _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(u_{\min }(t+\tau)-u_{\min }(t)\right) \geq \inf _{q \in P_{\varepsilon}(t)} \frac{\partial u}{\partial t}(q, t) \tag{6.12}
\end{equation*}
$$

Since (6.12) holds for any $\varepsilon>0$, we deduce

$$
\liminf _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(u_{\min }(t+\tau)-u_{\min }(t)\right) \geq \sup _{\varepsilon>0} \inf _{q \in P_{\varepsilon}(t)} \frac{\partial u}{\partial t}(q, t)=\min _{m \in P_{\min }^{u}(t)} \frac{\partial u}{\partial t}(m, t)
$$

where the last equality follows from the continuity of the function $\frac{\partial u}{\partial t}(\cdot, t)$ and the fact that the map $\varepsilon>0 \rightarrow \inf _{q \in P_{\varepsilon}(t)} \frac{\partial u}{\partial t}(q, t)$ is nonincreasing.

The assertion for $u_{\max }$ follows by setting $v:=-u$, so that $u_{\max }=-v_{\min }, P_{\max }^{u}(t)=$ $P_{\text {min }}^{v}(t)$, and

$$
\begin{align*}
& \lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(u_{\max }(t+\tau)-u_{\max }(t)\right)=-\lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(v_{\min }(t+\tau)-v_{\min }(t)\right) \\
= & -\min \left\{\frac{\partial v}{\partial t}(m, t): m \in P_{\min }^{v}(t)\right\}=\max \left\{\frac{\partial u}{\partial t}(m, t): m \in P_{\max }^{u}(t)\right\}, \tag{6.13}
\end{align*}
$$

where we used (6.3).
Remark 6.0.5. Conclusion (6.3) of Lemma 6.0.4 is still valid (with the same proof) if we drop the assumption that M is compact, provided we assume that $\inf _{p \in M} u(p, t)=$ $\min _{p \in M} u(p, t)$, that $P_{\text {min }}^{u}(t)$ is compact for any $t \in[a, b]$, and that $\sup _{(p, t) \in M \times[a, b]}\left|\frac{\partial u(p, t)}{\partial t}\right|<$ $+\infty$. A similar comment applies for conclusion 6.4.

Example 6.0.6. Let $M \subset \mathbb{R}^{2}$ be the interval $[-2,2]$ with the two boundary points identified. Let $v \in \mathcal{C}^{\infty}(M \times[-1,1] ;(0,+\infty))$ be a function such that the graph of $v(\cdot, t)$ has the form depicted in Figure 1, for $t \in[-1,0), t=0$, and $t \in(0,1]$ respectively. We assume $v(-1, t) \equiv 1$ for any $t \in[-1,1], v(1, t)>1$ for any $t \in[-1,0), v(1,0)=1$, and $\frac{\partial v}{\partial t}(1,0)<0$. For any $t \in[-1,1]$ and $x \in \operatorname{graph}(v(\cdot, t))$, let $u(x, t)$ be the distance between x and the first axis, and let $u_{\min }(t):=\min \{u(x, t): x \in \operatorname{graph}(v(\cdot, t))\}$. Then the function $u_{\text {min }}$ is not differentiable at $t=0$.

6.1. Inclusion principle: the simplest case

We begin with the following weak form, where we assume that initially one sets is inside the other one, and the boundary of the two sets do not intersect.

Figure 1. ${ }^{* * *}$

Theorem 6.1.1. Let $f_{1}:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth compact mean curvature flow, and let $f_{2}:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth mean curvature flow. Define the function

$$
\begin{equation*}
\delta(t):=\operatorname{dist}\left(f_{1}(t), \mathbb{R}^{n} \backslash f_{2}(t)\right), \quad t \in[a, b] . \tag{6.14}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
\delta(a)>0 \tag{6.15}
\end{equation*}
$$

Then

$$
\begin{equation*}
\text { for any } t \in[a, b) \text { there exists } \lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}(\delta(t+\tau)-\delta(t)) \in[0,+\infty) \tag{6.16}
\end{equation*}
$$

Hence δ is nondecreasing in $[a, b]$. In particular

$$
f_{1}(a) \subseteq f_{2}(a), \quad \partial f_{1}(a) \cap \partial f_{2}(a)=\emptyset \quad \Rightarrow \quad f_{1}(t) \subseteq f_{2}(t), \quad t \in[a, b] .
$$

Proof. Since f_{1} and f_{2} are smooth flows, it follows that there exists a $(n-1)$ dimensional smooth compact manifold (resp. a smooth manifold) without boundary \mathcal{S}_{1} (resp. \mathcal{S}_{2}) and there exist smooth maps $\varphi_{1}: \mathcal{S}_{1} \times[a, b] \rightarrow \mathbb{R}^{n}$ and $\varphi_{2}: \mathcal{S}_{2} \times[a, b] \rightarrow \mathbb{R}^{n}$ with the following properties:

- $\varphi_{1}(\cdot, t)$ is a bijection between \mathcal{S}_{1} and $\partial f_{1}(t)$ and $\varphi_{2}(\cdot, t)$ is a bijection between \mathcal{S}_{2} and $\partial f_{2}(t)$ for any $t \in[a, b]$;
- for any $s \in \mathcal{S}_{1}$ (resp. $\hat{s} \in \mathcal{S}_{2}$) and $t \in[a, b]$ the differential $d \varphi_{1}(s, t)$ (resp. $d \varphi_{2}(\hat{s}, t)$) with respect to s (resp. \hat{s}) is injective.
Let $M:=\mathcal{S}_{1} \times \mathcal{S}_{2}$ and define the function $u: M \rightarrow[0,+\infty)$ as

$$
\begin{equation*}
u(s, \hat{s}, t):=\left|\varphi_{1}(s, t)-\varphi_{2}(\hat{s}, t)\right| . \tag{6.17}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\delta(t)=\min \{u(s, \hat{s}, t):(s, \hat{s}) \in M\}, \quad t \in[a, b], \tag{6.18}
\end{equation*}
$$

and that $\delta \in \operatorname{Lip}([a, b])$. Define $\sigma:=\inf \{t \in[a, b]: \delta(t)=0\}$. Thanks to the smoothness of the flows, we have that $\sigma>a$. Hence $\delta(t)>0$ in $[a, \sigma)$, and therefore the function u is smooth on $M \times[a, \sigma)$. Thus we can apply Lemma 6.0.4 and deduce

$$
\begin{align*}
& \lim _{\tau \rightarrow 0^{+}} \frac{\delta(t+\tau)-\delta(t)}{\tau} \tag{6.19}\\
= & \min \left\{\frac{\partial u}{\partial t}(s, \hat{s}, t):(s, \hat{s}) \in M, u(s, \hat{s}, t)=\delta(t)\right\}, \quad t \in[a, \sigma) .
\end{align*}
$$

We claim that

$$
\begin{equation*}
\lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}(\delta(t+\tau)-\delta(t)) \geq 0 \quad \forall t \in[a, \sigma) \tag{6.20}
\end{equation*}
$$

Let $t \in[a, \sigma)$, let $(s(t), \hat{s}(t)) \in M$ be such that

$$
\begin{equation*}
\frac{\partial u}{\partial t}(s(t), \hat{s}(t), t)=\min \left\{\frac{\partial u}{\partial t}(s, \hat{s}, t):(s, \hat{s}) \in M, u(s, \hat{s}, t)=\delta(t)\right\} \tag{6.21}
\end{equation*}
$$

and set $x_{t}:=\varphi_{1}(s(t), t) \in \partial f_{1}(t)$ and $\hat{x}_{t}:=\varphi_{2}(\hat{s}(t), t) \in \partial f_{2}(t)$. Note that the relations $u(s(t), \hat{s}(t), t)=\left|x_{t}-\hat{x}_{t}\right|=\delta(t)$ imply

$$
\frac{\hat{x}_{t}-x_{t}}{\left|\hat{x}_{t}-x_{t}\right|}=\mathrm{n}^{f_{2}(t)}\left(\hat{x}_{t}\right)=\mathrm{n}^{f_{1}(t)}\left(x_{t}\right)
$$

namely $\frac{\hat{x}_{t}-x_{t}}{\left|\hat{x}_{t}-x_{t}\right|}$ coincides with outward unit normal vector to $f_{2}(t)$ at \hat{x}_{t}, which in turn coincides with outward unit normal vector to $f_{1}(t)$ at x_{t}. Denote such a unit vector by ν.

From (6.17) we compute

$$
\begin{equation*}
\frac{\partial u}{\partial t}(s(t), \hat{s}(t), t)=\left\langle\frac{\hat{x}_{t}-x_{t}}{\left|\hat{x}_{t}-x_{t}\right|}, \frac{\partial \varphi_{2}}{\partial t}(\hat{s}(t), t)-\frac{\partial \varphi_{1}}{\partial t}(s(t), t)\right\rangle=\left\langle\nu, \frac{\partial \varphi_{2}}{\partial t}(\hat{s}(t), t)-\frac{\partial \varphi_{1}}{\partial t}(s(t), t)\right\rangle \tag{6.22}
\end{equation*}
$$

From Definition 4.0.14 we have

$$
\begin{equation*}
\left\langle\nu, \frac{\partial \varphi_{2}}{\partial t}(\hat{s}(t), t)\right\rangle \nu=\mathbf{V}_{f_{2}}(\hat{s}(t), t), \quad\left\langle\nu, \frac{\partial \varphi_{1}}{\partial t}(s(t), t)\right\rangle \nu=\mathbf{V}_{f_{1}}(s(t), t), \tag{6.23}
\end{equation*}
$$

where $\mathbf{V}_{f_{i}}$ is given in (4.4), with f replaced by $f_{i}, i=1,2$. On the other hand f_{1} and f_{2} are smooth mean curvature flows, so that

$$
\begin{equation*}
\left\langle\nu, \frac{\partial \varphi_{2}}{\partial t}(\hat{s}(t), t)\right\rangle=-H^{f_{2}(t)}\left(\hat{x}_{t}\right), \quad\left\langle\nu, \frac{\partial \varphi_{1}}{\partial t}(s(t), t)\right\rangle=-H^{f_{1}(t)}\left(x_{t}\right) \tag{6.24}
\end{equation*}
$$

From (6.19), (6.21), (6.22), and (6.24) we get

$$
\begin{equation*}
\lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}(\delta(t+\tau)-\delta(t))=-H^{f_{2}(t)}\left(\hat{x}_{t}\right)+H^{f_{1}(t)}\left(x_{t}\right) \tag{6.25}
\end{equation*}
$$

Let us now consider the translated set

$$
f_{1}^{\operatorname{tr}}(t):=f_{1}(t)+\delta(t) \nu
$$

Then

$$
\begin{equation*}
f_{1}^{\operatorname{tr}}(t) \subseteq f_{2}(t) \quad \text { and } \quad \hat{x}_{t} \in \partial\left(f_{1}^{\operatorname{tr}}(t)\right) \cap \partial f_{2}(t) \tag{6.26}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
H^{f_{1}^{\operatorname{tr}}(t)}\left(\hat{x}_{t}\right)=H^{f_{1}(t)}\left(x_{t}\right) . \tag{6.27}
\end{equation*}
$$

By (6.26), using Lemma 6.0.3 we deduce $H^{f_{1}^{\mathrm{tr}}(t)}\left(\hat{x}_{t}\right) \geq H^{f_{2}(t)}\left(\hat{x}_{t}\right)$. From (6.27) we then get

$$
\begin{equation*}
H^{f_{1}(t)}\left(x_{t}\right) \geq H^{f_{2}(t)}\left(\hat{x}_{t}\right) \tag{6.28}
\end{equation*}
$$

The claim then follows from (6.25) and (6.28).
Let us now show that from (6.20) it follows that δ is nondecreasing in $[a, \sigma]$. Assume by contradiction that there exist $a \leq t_{1}<t_{2} \leq \sigma$ such that $\delta\left(t_{2}\right)<\delta\left(t_{1}\right)$. Let $P: \mathbb{R} \rightarrow \mathbb{R}$ be a linear decreasing function such that $P\left(t_{1}\right)=\delta\left(t_{1}\right)$ and $P\left(t_{2}\right)>\delta\left(t_{2}\right)$. Let

$$
t^{*}:=\sup \left\{t \in\left[t_{1}, \sigma\right]: \delta(t) \leq P(t)\right\}
$$

Then $P\left(t^{*}\right)=\delta\left(t^{*}\right), t^{*}<\sigma$, and $\frac{\delta\left(t^{*}+\tau\right)-\delta\left(t^{*}\right)}{\tau}<\frac{P\left(t^{*}+\tau\right)-P\left(t^{*}\right)}{\tau}$ for $\tau>0$ small enough. Therefore

$$
\lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}\left(\delta\left(t^{*}+\tau\right)-\delta\left(t^{*}\right)\right) \leq P^{\prime}\left(t^{*}\right)<0
$$

a contradiction.
Hence δ is nondecreasing in $[a, \sigma]$, and therefore $\delta(\sigma) \geq \delta(a)>0$. If $\sigma=b$ the proof is concluded. Assume now that $\sigma \in[a, b)$, and assume by contradiction that δ is not nondecreasing in $[\sigma, b]$. Set $\bar{t}:=\inf \left\{t \in[a, b]: \exists\left\{t_{n}\right\} \subset(t, b), \delta\left(t_{n}\right)<\delta(t), \lim _{n \rightarrow+\infty} \delta\left(t_{n}\right)=\right.$ $\delta(t)\}$. Then \bar{t} is a minimum, $\bar{t} \geq a+\sigma$, and $\delta(\bar{t}) \geq \delta(a)>0$. If $\bar{t}<b$, arguing as before with \bar{t} in place of a, we find $\bar{\sigma}>0$ such that δ is nondecreasing in $[\bar{t}, \bar{t}+\bar{\sigma}]$, which contradicts the definition of \bar{t}.

Remark 6.1.2. We can state Theorem 7.3 in the following equivalent form. Assume that $f_{1}(a) \cap f_{2}(a)=\emptyset$. Define $\delta(t):=\operatorname{dist}\left(f_{1}(t), f_{2}(t)\right)$ for any $t \in[a, b]$. δ is nondecreasing in $[a, b]$. In particular, $f_{1}(t) \cap f_{2}(t)=\emptyset$ for any $t \in[a, b]$.

REmark 6.1.3. As we shall see in Section ??, under the (weaker) assumption $f_{1}(a) \subseteq$ $f_{2}(a)$ in place of (6.15), a conclusion even stronger than the one of Theorem 7.3 is valid in $[a, b]$, namely that δ is strictly increasing.

Corollary 6.1.4. Let $f_{1}, f_{2} \in \mathcal{K} \mathcal{F}$ be two smooth compact mean curvature flows in a common time interval $[a, b]$. Assume that $f_{1}(a) \subseteq \operatorname{int}\left(f_{2}(a)\right)$. Then $f_{1}(t) \subseteq \operatorname{int}\left(f_{2}(t)\right)$ for all $t \in[a, b]$.

Observe that Theorem 7.3 is still valid if we assume that f_{2} is a smooth mean curvature flow in $[a, b]$, namely if we drop the compactness assumption on $\partial f(t)$.

We conclude this section with another interesting property, that can be proved by refining the arguments in the proof of Theorem 7.3 is described in the following remark ${ }^{1}$.

Remark 6.1.5. Let \mathcal{S} be an $(n-1)$-dimensional smooth compact manifold without boundary and let $\varphi \in \mathcal{C}^{\infty}\left(\mathcal{S} \times[a, b], \mathbb{R}^{n}\right)$. For any $t \in[a, b]$ set $\Gamma(t):=\varphi(\mathcal{S}, t)$. Assume that
(i) $\varphi(\cdot, a)$ is a bijection between \mathcal{S} and $\Gamma(a)$;
(ii) for any $s \in \mathcal{S}$ and any $t \in[a, b]$ the differential $d \varphi(s, t)$ with respect to s is injective;
(iii) the orthogonal projection of $\frac{\partial \varphi}{\partial t}(s, t)$ on $N_{\varphi(s, t)}(\Gamma(t))$ equals the mean curvature of $\Gamma(t)$ at $\varphi(s, t)$ for any $s \in S$ and any $t \in[a, b]$.
Then $\varphi(\cdot, t)$ is a bijection between \mathcal{S} and $\Gamma(t)$ for any $t \in[a, b]$.

6.2. The approach of Evans-Spruck

Denote by Sym_{n} the set of all real symmetric $(n \times n)$-matrices, and for $X \in \operatorname{Sym}_{n}$ let $\left\{\lambda_{1}(X), \ldots, \lambda_{n}(X)\right\}$ be the set of the eigenvalues of X. Set

$$
\left.D:=\left\{(\mathrm{u}, X) \in \mathbb{R} \times \operatorname{Sym}_{n}: 1-\mathrm{u} \lambda_{i}(X)\right) \neq 0, i=1, \ldots, n\right\}
$$

[^0]which we consider as a subspace of $\mathbb{R} \times \mathbb{R}^{n^{2}}$, with the norm induced by the euclidean norm. Let $F: D \rightarrow \mathbb{R}$ be defined as
\[

$$
\begin{equation*}
F(\mathrm{u}, X):=\sum_{i=1}^{n} \frac{\lambda_{i}(X)}{1-\mathrm{u} \lambda_{i}(X)}, \quad(\mathrm{u}, X) \in D \tag{6.29}
\end{equation*}
$$

\]

In this chapter we prove the following theorem, due to Evans and Spruck.
Theorem 6.2.1. Let $E \subset \mathbb{R}^{n}$ be a bounded open set with boundary of class $\mathcal{C}^{2+\alpha}$, for some $\alpha \in(0,1)$, and set $u_{0}(\cdot):=d(\cdot, E)$. Then there exist $\rho_{0}>0$ and $t_{0}>0$ such that, setting $\mathrm{U}:=(\partial E)_{\rho_{0}}^{+}$, the problem

$$
\begin{cases}u \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right), & \text { in } \mathrm{U} \times\left(0, t_{0}\right) \tag{6.30}\\ u_{t}=F\left(u, \nabla^{2} u\right) & \text { on } \partial \mathrm{U} \times\left[0, t_{0}\right] \\ |\nabla u|^{2}=1 & \text { in } \mathrm{U}\end{cases}
$$

has a unique solution.
The definitions of parabolic Hölder spaces and corresponding norms are given in Section 6.3. Observe that, from (2.5), it follows that the compatibility condition $|\nabla u(\cdot, 0)|^{2}=1$ is satisfied.
6.2.1. Some properties of the function F. In order to prove Theorem 6.2.1 we need some preparation. If $(\mathrm{u}, X) \in D$ the two matrices $(\operatorname{Id}-\mathrm{u} X)^{-1} \in \operatorname{Sym}_{n}$ and $X(\operatorname{Id}-$ $\mathrm{u} X)^{-1} \in \operatorname{Sym}_{n}$ commute with X; if $X=\operatorname{diag}\left(\lambda_{1}(X), \ldots, \lambda_{n}(X)\right)$ is diagonal in suitable bases of \mathbb{R}^{n}, then $(\operatorname{Id}-u X)^{-1}$ is diagonal in the same bases, and $(\operatorname{Id}-u X)^{-1}=\operatorname{diag}((1-$ $\left.\left.\lambda_{1}(X)\right)^{-1}, \ldots,\left(1-\lambda_{n}(X)\right)^{-1}\right)$. Since the trace of a matrix is independent of the choice of the basis, we have

$$
\begin{equation*}
F(\mathrm{u}, X)=\operatorname{tr}\left(X(\mathrm{Id}-\mathrm{u} X)^{-1}\right), \quad(\mathrm{u}, X) \in D \tag{6.31}
\end{equation*}
$$

Set

$$
\widehat{D}:=\left\{(\mathrm{u}, X) \in \mathbb{R} \times M_{n}: \mathrm{Id}-\mathrm{u} X \text { is invertible }\right\}
$$

where M_{n} is the set of all $(n \times n)$ real matrices. Observe that \widehat{D} is an open subset of $\mathbb{R} \times \mathbb{R}^{n^{2}}$. The function defined as

$$
\begin{equation*}
\operatorname{tr}\left(X(\operatorname{Id}-\mathrm{u} X)^{-1}\right), \quad(\mathrm{u}, X) \in \widehat{D} \tag{6.32}
\end{equation*}
$$

coincides with F on D, and will be still denoted by the same symbol. From now on we will denote the function F with the symbol F. From (6.31) it follows that F is analytic on \widehat{D}, and being

$$
\begin{equation*}
(\operatorname{Id}-\mathrm{u} X)^{-1}=\sum_{k \geq 0} \mathrm{u}^{k} X^{k}, \quad(\mathrm{u}, X) \in \widehat{D} \tag{6.33}
\end{equation*}
$$

we have

$$
\begin{equation*}
F(\mathrm{u}, X)=\operatorname{tr}\left(\sum_{k \geq 0} \mathrm{u}^{k} X^{k+1}\right), \quad(\mathrm{u}, X) \in \widehat{D} \tag{6.34}
\end{equation*}
$$

If $\xi, \eta \in \mathbb{R}^{n}$ we indicate by $\xi \otimes \eta$ the matrix whose $i j$-entry is given by $\xi_{i} \eta_{j}$. Let us denote by $F_{X_{i j}}$ the derivative of F with respect to the $i j$-th component of X, i.e., $F_{X_{i j}}(\mathrm{u}, X)=$ $\frac{d F}{d X_{i j}}(\mathrm{u}, X):=\lim _{h \rightarrow 0} \frac{1}{h}\left(F\left(\mathrm{u}, X+h e_{i} \otimes e_{j}\right)-F(\mathrm{u}, X)\right)$ where e_{1}, \ldots, e_{n} is the canonical basis of \mathbb{R}^{n}. We denote by $F_{X}(\mathrm{u}, X)$ the matrix whose $i j$-entry is $F_{X_{i j}}(\mathrm{u}, X)$.

Lemma 6.2.2. For any $(u, X) \in D$ and any $M \in M_{n}$ we have

$$
\begin{equation*}
\operatorname{tr}\left(M F_{X}(\mathrm{u}, X)\right)=\operatorname{tr}\left(M(\mathrm{Id}-\mathrm{u} X)^{-2}\right) . \tag{6.35}
\end{equation*}
$$

Proof. We first observe that

$$
F_{X_{i j}}(\mathrm{u}, X)=\operatorname{tr}\left(\frac{d}{d X_{i j}}\left(X \sum_{k \geq 0} \mathrm{u}^{k} X^{k}\right)\right)
$$

where $\frac{d}{d X_{i j}}\left(X \sum_{k \geq 0} \mathrm{u}^{k} X^{k}\right):=\lim _{h \rightarrow 0} \frac{\left(X+h e_{i} \otimes e_{j}\right) \sum_{k \geq 0} \mathrm{u}^{k}\left(X+h e_{i} \otimes e_{j}\right)^{k}-X \sum_{k \geq 0} \mathrm{u}^{k} X^{k}}{h}$. Then

$$
F_{X_{i j}}(\mathrm{u}, X)=\operatorname{tr}\left(e_{i} \otimes e_{j}\left(\sum_{k \geq 0} \mathrm{u}^{k} X^{k}+\mathrm{u} X \sum_{k \geq 0}(k+1) \mathrm{u}^{k} X^{k}\right)\right)
$$

Since $\left(\sum_{k \geq 0} \mathrm{u}^{k} X^{k}\right)\left(\sum_{m \geq 0} \mathrm{u}^{m} X^{m}\right)=\sum_{k \geq 0}(k+1) \mathrm{u}^{k} X^{k}$ we deduce

$$
F_{X_{i j}}(\mathrm{u}, X)=\operatorname{tr}\left(e_{i} \otimes e_{j}\left(\sum_{k \geq 0} \mathrm{u}^{k} X^{k}+\mathrm{u} X\left(\sum_{k \geq 0} u^{k} X^{k}\right)^{2}\right)\right) .
$$

Being $\left(\sum_{k \geq 0} u^{k} X^{k}\right)^{2}(\operatorname{Id}-u X)=\sum_{k \geq 0} u^{k} X^{k}$, we obtain

$$
F_{X_{i j}}(\mathrm{u}, X)=\operatorname{tr}\left(e_{i} \otimes e_{j}\left(\left(\sum_{k \geq 0} \mathrm{u}^{k} X^{k}\right)^{2}(\operatorname{Id}-\mathrm{u} X+\mathrm{u} X)\right)\right)=\operatorname{tr}\left(e_{i} \otimes e_{j}(\operatorname{Id}-\mathrm{u} X)^{-2}\right)
$$

Then the assertion follows.
Corollary 6.2.3. Let $(\mathrm{u}, X) \in D$. Then

$$
\begin{equation*}
F_{X_{i j}}(\mathrm{u}, X) \xi_{i} \xi_{j} \geq C(\mathrm{u}, X)|\xi|^{2}, \quad \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \tag{6.36}
\end{equation*}
$$

where $C(\mathrm{u}, X):=\min \left\{\left(1-\mathrm{u} \lambda_{i}(X)\right)^{-2}: i=1, \ldots, n\right\}>0$.
Proof. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis of \mathbb{R}^{n} so that v_{i} is an eigenvalue of X with $\lambda_{i}(X)$ as eigenvector; note that in the same basis $(\operatorname{Id}-u X)^{-2}=\operatorname{diag}((1-$ $\left.\lambda_{1}(X)\right)^{-2}, \ldots,\left(1-\lambda_{n}(X)\right)^{-2}$. Let us apply (6.35) with $M=\xi \otimes \xi$. We have

$$
\begin{aligned}
F_{X_{i j}}(\mathrm{u}, X) \xi_{i} \xi_{j} & =\operatorname{tr}\left(\xi \otimes \xi(\mathrm{Id}-\mathrm{u} X)^{-2}\right)=\sum_{i=1}^{n} \frac{\left\langle\xi, v_{i}\right\rangle^{2}}{\left(1-\mathrm{u} \lambda_{i}(X)\right)^{2}} \\
& \geq C(u, X) \sum_{i=1}^{n}\left\langle\xi, v_{i}\right\rangle^{2}=C(u, X)|\xi|^{2}
\end{aligned}
$$

If we denote by F_{u} the partial derivative of F with respect to u , with similar computations made as in Lemma 6.2.2 we have that $F_{\mathrm{u}}(\mathrm{u}, X)=\operatorname{tr}\left(X^{2}(\mathrm{Id}-\mathrm{u} X)^{-2}\right)$ for any $(u, X) \in D$.
6.2.2. Existence. We begin by proving the existence statement of Theorem 6.2.1. Since the boundary of E is of class $\mathcal{C}^{2+\alpha}\left(\mathbb{R}^{n}\right)$, for $\rho>0$ small enough we have $u_{0} \in$ $\mathcal{C}^{2+\alpha}\left(\overline{(\partial E)_{\rho}^{+}}\right)$and

$$
\left|u_{0}(z) \lambda_{i}\left(\nabla^{2} u_{0}(z)\right)\right| \leq \frac{1}{2}, \quad z \in \overline{(\partial E)_{\rho}^{+}}, i=1, \ldots, n
$$

In particular, $\left(u_{0}(z), \nabla^{2} u_{0}(z)\right) \in D$ for any $z \in \overline{(\partial E)_{\rho}^{+}}$.
We will reduce the problem to a linear one. Given $t_{0}>0$ and $w \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)$ to be selected later, we look for solutions u of (6.30) of the form

$$
\begin{equation*}
u(z, t)=u_{0}(z)+t F\left(u_{0}(z), \nabla^{2} u_{0}(z)\right)+w(z, t), \quad(z, t) \in \mathrm{U} \times\left(0, t_{0}\right) \tag{6.37}
\end{equation*}
$$

Inserting (6.37) into the first equation in (6.30) and adding and subtracting the quantity $F_{\mathbf{u}}\left(u_{0}, \nabla^{2} u_{0}\right) w+F_{X_{i j}}\left(u_{0}, \nabla^{2} u_{0}\right) \nabla_{i j} w$, we get

$$
\begin{equation*}
w_{t}-\mathcal{A}\left(z, w, \nabla^{2} w\right)=\mathfrak{f}\left(z, t, w, \nabla^{2} w\right), \quad(z, t) \in \mathrm{U} \times\left(0, t_{0}\right) \tag{6.38}
\end{equation*}
$$

where

$$
\mathcal{A}(z, \mathrm{u}, X):=F_{X_{i j}}\left(u_{0}(z), \nabla^{2} u_{0}(z)\right) X_{i j}+F_{\mathrm{u}}\left(u_{0}(z), \nabla^{2} u_{0}(z)\right) \mathrm{u}
$$

is linear with respect to X and u and where, setting for simplicity

$$
\ell(z):=F\left(u_{0}(z), \nabla^{2} u_{0}(z)\right),
$$

the function \mathfrak{f} is defined as

$$
\begin{align*}
\mathfrak{f}(z, t, \mathrm{u}, X):= & F\left(u_{0}(z)+t \ell(z)+\mathrm{u}, \nabla^{2} u_{0}(z)+t \nabla^{2} \ell(z)+X\right) \tag{6.39}\\
& -\ell(z)-F_{\mathrm{u}}\left(u_{0}(z), \nabla^{2} u_{0}(z)\right) \mathrm{u}-F_{X_{i j}}\left(u_{0}(z), \nabla^{2} u_{0}(z)\right) X_{i j} .
\end{align*}
$$

Inserting (6.37) into the second equation in (6.30), setting as usual

$$
d(\cdot):=d(\cdot, E),
$$

and observing that, thanks to the eikonal equation (2.5),

$$
1=|\nabla d+t \nabla \ell+\nabla w|^{2}=1+|t \nabla \ell+\nabla w|^{2}+2\langle\nabla d, \nabla w\rangle+2 t\langle\nabla d, \nabla \ell\rangle,
$$

we get $\langle\nabla d, \nabla w\rangle=-\frac{1}{2}|t \nabla \ell+\nabla w|^{2}-t\langle\nabla d, \nabla \ell\rangle$. Hence

$$
\begin{equation*}
\frac{\partial w}{\partial \nu}=\beta(z, t, \nabla w) \quad \text { on } \partial \mathrm{U} \times\left[0, t_{0}\right] \tag{6.40}
\end{equation*}
$$

where ν is the outer unit normal to $\partial \mathrm{U}$, so that $\nu=\nabla d(\cdot)$ on $\{d(\cdot)>0\} \cap \partial \mathrm{U}$ and $\nu=-\nabla d$ on $\{d(\cdot)<0\} \cap \partial \mathrm{U}$ and $\beta \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\mathrm{U} \times\left(0, t_{0}\right) \times \mathbb{R}^{n}\right)$ is defined as

$$
\beta(z, t, q):= \begin{cases}-\frac{1}{2}|t \nabla \ell(z)+q|^{2}-t \frac{\partial \ell(z)}{\partial \nu} & \text { on }(\{d(\cdot)>0\} \cap \partial \mathrm{U}) \times\left(0, t_{0}\right) \times \mathbb{R}^{n}, \tag{6.41}\\ \frac{1}{2}|t \nabla \ell(z)+q|^{2}-t \frac{\partial \ell(z)}{\partial \nu} & \text { on }(\{d(\cdot)<0\} \cap \partial \mathrm{U}) \times\left(0, t_{0}\right) \times \mathbb{R}^{n} .\end{cases}
$$

Finally, inserting (6.37) into the last equation of (6.30) we get

$$
\begin{equation*}
w(\cdot, 0)=0 \quad \text { on } \mathrm{U} \tag{6.42}
\end{equation*}
$$

Collecting together the equations (6.38), (6.40) and (6.42) for w we have:

$$
\begin{cases}w_{t}-\mathcal{A}\left(z, w, \nabla^{2} w\right)=\mathfrak{f}\left(z, t, w, \nabla^{2} w\right) & \text { in } \mathrm{U} \times\left(0, t_{0}\right) \tag{6.43}\\ \frac{\partial w}{\partial \nu}=b(z, t, \nabla w) & \text { on } \partial \mathrm{U} \times\left[0, t_{0}\right] \\ w(\cdot, 0)=0 & \text { in } \mathrm{U} .\end{cases}
$$

In Proposition 6.2.4 it is shown that problem (6.43) has a unique solution $w \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}(\overline{\mathrm{U}} \times$ $\left.\left[0, t_{0}\right]\right)$: note that \mathfrak{f} depends nonlinearly on second derivatives of w and β depends nonlinearly on first derivatives of w. We will make use of Theorem 6.3.1, that we will apply with the choice

$$
\begin{gather*}
a_{i j}(z, t)=a_{i j}(z):=F_{X_{i j}}\left(u_{0}(z), \nabla^{2} u_{0}(z)\right), \quad i, j=1, \ldots, n, \tag{6.44}\\
b_{i} \equiv 0, \quad i=1, \ldots, n
\end{gather*}
$$

and

$$
c(z, t)=c(z):=F_{\mathrm{u}}\left(u_{0}(z), \nabla^{2} u_{0}(z)\right)
$$

so that $a_{i j} \in \mathcal{C}^{\alpha, \alpha / 2}(\overline{\mathrm{U}})$ and $c \in \mathcal{C}^{\alpha, \alpha / 2}(\overline{\mathrm{U}})$, and with the choice $\beta_{i}(z, t)=\beta_{i}(z)=\nu_{i}(z)$, $\gamma \equiv 0$, so that $\beta_{i} \in \mathcal{C}^{1+\alpha,(1+\alpha) / 2}\left(\partial \mathrm{U} \times\left[0, t_{0}\right]\right)$. Recall that (6.36) implies that (6.70) is satisfied, since the smoothness and compactness of ∂E imply that there exists a constant $C>0$ such that $F\left(u_{0}(x), \nabla^{2} u_{0}(x)\right) \xi_{i} \xi_{j} \geq C|\xi|^{2}$ for any $x \in \partial E$ and $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$.

We also need the following expression of \mathfrak{f}, obtained by Taylor expanding \mathfrak{f} in (6.39) to second order (with integral remainder):

$$
\begin{align*}
& \mathfrak{f}(z, t, \mathrm{u}, X)=F_{\mathrm{u}}\left(u_{0}(z), \nabla^{2} u_{0}(z)\right) t \ell(z)+F_{X_{i j}}\left(u_{0}(z), \nabla^{2} u_{0}(z)\right) t \nabla_{j i} \ell(z) \\
& +\int_{0}^{1}(1-\sigma) F_{X_{i j} X_{k l}}\left(u_{0}+\sigma t \ell+\sigma \mathrm{u}, \nabla^{2} u_{0}+\sigma t \nabla^{2} \ell+\sigma X\right) u_{0} \sigma\left(t \nabla_{i j} \ell+X_{i j}\right)\left(t \nabla_{k l} \ell+X_{k l}\right) \tag{6.45}\\
& +2 \int_{0}^{1}(1-\sigma) F_{X_{i j} \mathrm{u}}\left(u_{0}+\sigma t \ell+\sigma \mathrm{u}, \nabla^{2} u_{0}+\sigma t \nabla^{2} \ell+\sigma X\right) u_{0} \sigma\left(t \nabla_{i j} \ell+X_{i j}\right)(t \ell+\mathrm{u}) \\
& +\int_{0}^{1}(1-\sigma) F_{\mathrm{uu}}\left(u_{0}+\sigma t \ell+\sigma \mathrm{u}, \nabla^{2} u_{0}+\sigma t \nabla^{2} \ell+\sigma X\right) d \sigma(t \ell+\mathrm{u})^{2}
\end{align*}
$$

where u_{0} and ℓ are evaluated at z.
Proposition 6.2.4. There exists $t_{0}>0$ such that problem (6.43) has a unique solution $w \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)$.

Proof. The proof is based on Theorem 6.3.1 and on a fixed point argument. Define

$$
Y:=\left\{u \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right): u(\cdot, 0)=0\right\}
$$

Y turns out to be a Banach space. We define the map $\Gamma: Y \rightarrow Y$ as follows: given $u \in Y$, then

$$
\Gamma(u):=w
$$

where w is the solution of (6.73) given by Theorem 6.3.1, with the choices

$$
\begin{equation*}
f(z, t):=\mathfrak{f}\left(z, t, u(z, t), \nabla^{2} u(z, t)\right), \quad \mathrm{g}(z, t):=\beta(z, t, \nabla u(z, t)), \quad w_{0} \equiv 0 \tag{6.46}
\end{equation*}
$$

note that, as $u \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)$, it follows that

$$
\begin{equation*}
f \in \mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right), \quad \mathrm{g} \in \mathcal{C}^{1+\alpha,(1+\alpha) / 2}\left(\partial U \times\left[0, t_{0}\right]\right) \tag{6.47}
\end{equation*}
$$

and therefore the assumptions of Theorem 6.3.1 are satisfied.
Given $R>0$ set

$$
Y_{t_{0}, R}:=\left\{u \in Y:\|u\|_{\mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq R\right\} .
$$

Since $Y_{t_{0}, R}$ is closed in Y, also $Y_{t_{0}, R}$ is a Banach space. We will prove the following two properties:
(i) there exist $t_{0}>0$ and $R>0$ such that $\Gamma: Y_{t_{0}, R} \rightarrow Y_{t_{0}, R}$;
(ii) there exist $t_{0}>0$ and $R>0$ such that

$$
\|\Gamma(u)-\Gamma(v)\|_{\mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq \frac{1}{2}\|u-v\|_{\mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)}, \quad u, v \in Y_{t_{0}, R}
$$

Let us prove (i). Let $u \in Y_{t_{0}, r_{0}}$, so that

$$
\begin{equation*}
\|u\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq r_{0} . \tag{6.48}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\|t\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)}=\|t\|_{\mathcal{C}^{\alpha / 2}\left(\left[0, t_{0}\right]\right)}=t_{0}^{1-\alpha / 2} \tag{6.49}
\end{equation*}
$$

and recall that $\|u v\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq C\|u\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)}\|v\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)}$. ${ }^{2}$ Then, from (6.49), (6.45), (6.48) it follows that there exists $C_{1}>0$ such that

$$
\begin{equation*}
\left\|\mathfrak{f}\left(z, t, u(z, t), \nabla^{2} u(z, t)\right)\right\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq C_{1}\left(r_{0}^{2}+t_{0}^{1-\alpha / 2}\right) \tag{6.50}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\|t\|_{\mathcal{C}^{1+\alpha,(1+\alpha) / 2}\left(\partial \mathrm{U} \times\left[0, t_{0}\right]\right)}=t_{0}^{(1-\alpha) / 2} . \tag{6.51}
\end{equation*}
$$

Hence, using (6.41), (6.51), (6.48),

$$
\begin{equation*}
\|\beta(z, t, u(z, t))\|_{\mathcal{C}^{1+\alpha,(1+\alpha) / 2}\left(\partial \mathrm{U} \times\left[0, t_{0}\right]\right)} \leq C_{2}\left(r_{0}^{2}+t_{0}^{(1-\alpha) / 2}\right) \tag{6.52}
\end{equation*}
$$

[^1]for some $C_{2}>0$. From (6.50), (6.52), (6.46), $1-\alpha / 2>(1-\alpha) / 2$, the definition of w and (6.74) we have
$$
\|w\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq C_{3}\left(r_{0}^{2}+t_{0}^{(1-\alpha) / 2}\right)
$$
where $C_{3}:=C\left(C_{1}+C_{2}\right)$. Taking $r_{0}^{2} \leq 1 / C_{3}$ we have $C_{3} r_{0}^{2} \leq r_{0} / 2$, so that
$$
\|w\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq \frac{r_{0}}{2}+C_{3} t_{0}^{(1-\alpha) / 2}
$$

Taking $t_{0} \leq \frac{r_{0}}{\left(2 C_{3}\right)^{1 /(1-\alpha / 2)}}$ we get $\frac{r_{0}}{2}+C_{3} t_{0}^{(1-\alpha) / 2} \leq r_{0}$, so that

$$
\|w\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq r_{0}
$$

and assertion (i) follows.
To prove (ii), set $B^{u}(z, t):=\mathfrak{f}\left(z, t, u(z, t), \nabla^{2} u(z, t)\right), \mathrm{g}^{u}(z, t):=\beta(z, t, \nabla u(z, t)), B^{v}(z, t):=$ $\mathfrak{f}\left(z, t, v(z, t), \nabla^{2} v(z, t)\right), \mathfrak{g}^{v}(z, t):=\beta(z, t, \nabla v(z, t))$. From (6.74) and the linearity of the equation in (6.73) we have

$$
\|\Gamma(u)-\Gamma(v)\|_{\mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)} \leq C\left(\left\|B^{u}-B^{v}\right\|_{\mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)}+\left\|\mathrm{g}^{u}-\mathrm{g}^{v}\right\|_{\mathcal{C}^{1+\alpha,(1+\alpha) / 2}\left(\partial \mathrm{U} \times\left[0, t_{0}\right]\right)}\right) .
$$

From properties (i) and (ii) and the fixed point theorem it follows that there exist $t_{0}>0$ and $R>0$ such that Γ has a unique fixed point in $Y_{t_{0}, R}$. This concludes the proof of Proposition 6.2.4.
6.2.3. Uniqueness. Let us now show uniqueness of solutions to (6.30). Let $u, v \in$ $\mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)$ be two solutions of (6.30), and set $\omega:=u-v$. Then ω satisfies

$$
\begin{cases}\omega_{t}=a_{i j} \nabla_{i j} \omega+c \omega & \text { in } \mathrm{U} \times\left(0, t_{0}\right) \tag{6.53}\\ b_{i}(z, t) \nabla_{i} \omega(z, t)=0 & \text { on } \partial \mathrm{U} \times\left[0, t_{0}\right] \\ \omega(\cdot, 0)=0 & \text { on } \mathrm{U}\end{cases}
$$

where

$$
\begin{aligned}
a_{i j}(z, t) & :=\int_{0}^{1} F_{X_{i j}}\left(\sigma u(z, t)+(1-\sigma) v(z, t), \sigma \nabla^{2} u(z, t)+(1-\sigma) \nabla^{2} v(z, t)\right) d \sigma \\
c(z, t) & :=\int_{0}^{1} F_{\mathrm{u}}\left(\sigma u(z, t)+(1-\sigma) v(z, t), \sigma \nabla^{2} u(z, t)+(1-\sigma) \nabla^{2} v(z, t)\right) d \sigma
\end{aligned}
$$

and, setting $g(p):=|p|^{2}-1$,

$$
b_{i}(z, t):=\int_{0}^{1} \nabla_{i} g(\sigma \nabla u(z, t)+(1-\sigma) \nabla v(z, t)) d \sigma=\frac{1}{2} \nabla_{i} u(z, t)+\frac{1}{2} \nabla_{i} v(z, t) .
$$

From (6.36) we have that $a_{i j}$ satisfy (6.70), and b_{i} satisfies (6.71). Moreover $a_{i j} \in \mathcal{C}^{\alpha, \alpha / 2}(\overline{\mathrm{U}} \times$ $\left.\left[0, t_{0}\right]\right)$, and $c \in \mathcal{C}^{\alpha, \alpha / 2}\left(\overline{\mathrm{U}} \times\left[0, t_{0}\right]\right)$. Then ω solves a uniformly parabolic linear problem, so that by the classical maximum principle it follows that $\omega \equiv 0$.

The solution u given by Theorem 6.2 .1 can be continued on a larger time interval, taking $u\left(\cdot, t_{0}+\delta\right)$ as initial datum. Repeating the argument, in this way one can find $T>0$ and a solution $u: \mathrm{U} \times[0, T) \rightarrow \mathbb{R}$ such that $u \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}(\mathrm{U} \times[0, \tau])$, for any
$\tau \in(0, T)$, and such that, if $T<+\infty$, then there does not exist any solution of (6.30) belonging to $\mathcal{C}^{2+\alpha, 1+\alpha / 2}(\mathrm{U} \times[0, T])$.

Looking at the linear evolution equation ${ }^{3}$ satisfied by $\frac{u\left(z+h e_{k}, t\right)-u(z, t)}{h}$ and passing to the limit as $h \rightarrow 0$ it is the possible to show the following result.

Proposition 6.2.5. Assume that the boundary of E is of class $\mathcal{C}^{3+\alpha}$. Let u be the solution given by Theorem 6.2.1. Then $\nabla u \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\Omega \times\left[0, t_{0}\right]\right)$.
${ }^{* * * *}$ check (krylov?) la regolarita' C^{∞} all'interno se ∂E é \mathcal{C}^{∞} : vedere la u come soluzione di una eq. lineare del tipo

$$
u_{t}=\operatorname{tr}\left(A(x, t) D^{2}(u)\right)
$$

dove la matrice $A(x)$ e' l'inversa di $\left(I d-u D^{2}(u)\right)$, ma pensata come matrice di coefficienti in funzione della sola x e del tempo. A questo punto usare la massima regolarita‘ della u, per dedurne la massima regolarita‘ sulla $A(x)$, e da questa, usando l'equazione pensata come eq. lineare, dedurre ulteriore regolarita‘ della u, quindi ulteriore regolarita‘ della $A(x)$, e cosi‘ via. servirebbe la regolarita’ fino al tempo zero. ${ }^{* * *}$

Theorem 6.2.6. Let $E \in \mathcal{C}_{b}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $t_{0}>0$ be as in Theorem 6.2.1. Then there exists a unique smooth compact mean curvature flow $f:\left[0, t_{0}\right] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ starting from E at time 0 .

Proof. Let U and $u \in C^{* * *}\left(\mathrm{U} \times\left[0, t_{0}\right]\right)$ be given by Theorem 6.2.1. We first show that

$$
\begin{equation*}
|\nabla u|^{2}=1 \quad \text { in } \mathrm{U} \times\left[0, t_{0}\right] \tag{6.54}
\end{equation*}
$$

We set $v:=|\nabla u|^{2}-1$; by Proposition 6.2 .5 we have $v \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}\left(\mathrm{U} \times\left[0, t_{0}\right]\right)$. By (6.30) we have

$$
\begin{equation*}
v=0 \quad \text { on } \partial \mathrm{U} \times\left[0, t_{0}\right] \tag{6.55}
\end{equation*}
$$

and by the properties of $d(\cdot, E)$ also

$$
\begin{equation*}
v=0 \quad \text { on } \mathrm{U} \times\{t=0\} \tag{6.56}
\end{equation*}
$$

In addition $\nabla_{i j} v=2 \nabla_{k} u \nabla_{i j k} u+2 \nabla_{i k} u \nabla_{k j} u$. Differentiating the equation in (6.30) with respect to z_{k},

$$
\begin{aligned}
v_{t} & =2 \nabla_{k} u \nabla_{k} u_{t}=2 \nabla_{k} u\left[F_{X_{i j}}\left(u, \nabla^{2} u\right) \nabla_{i j k} u+F_{\mathrm{u}}\left(u, \nabla^{2} u\right) \nabla_{k} u\right] \\
& =F_{X_{i j}}\left(u, \nabla^{2} u\right) \nabla_{i j} v-2 F_{X_{i j}}\left(u, \nabla^{2} u\right) \nabla_{i k} u \nabla_{k j} u+2 F_{\mathrm{u}}\left(u, \nabla^{2} u\right)|\nabla u|^{2} .
\end{aligned}
$$

Observe now that

$$
\begin{equation*}
F_{\mathrm{u}}\left(u, \nabla^{2} u\right)=F_{X_{i j}}\left(u, \nabla^{2} u\right) \nabla_{i k} u \nabla_{k j} u . \tag{6.57}
\end{equation*}
$$

Indeed, by (6.35) applied with $M=\nabla^{2} u \nabla^{2} u$ we have

$$
\begin{equation*}
F_{X_{i j}}\left(u, \nabla^{2} u\right) \nabla_{i k} u \nabla_{k j} u=\operatorname{tr}\left(\nabla^{2} u \nabla^{2} u\left(\operatorname{Id}-u \nabla^{2} u\right)^{-2}\right)=\sum_{i=1}^{n} \frac{\left(\lambda_{i}\left(\nabla^{2} u\right)\right)^{2}}{\left(1-u \lambda_{i}\left(\nabla^{2} u\right)\right)^{2}} . \tag{6.58}
\end{equation*}
$$

[^2]On the other hand it is immediate to check that $F_{\mathrm{u}}\left(u, \nabla^{2} u\right)$ coincides with the right hand side of (6.58).

From (6.57) we then have

$$
\begin{equation*}
v_{t}=F_{X_{i j}}\left(u, \nabla^{2} u\right) \nabla_{i j} v+2 F_{\mathrm{u}}\left(u, \nabla^{2} u\right) v \tag{6.59}
\end{equation*}
$$

Equation (6.59) is a linear partial differential equation in the unknown w, which is uniformly parabolic thanks to Lemma 6.2.3. Hence, from (6.55), (6.56), it follows that $v \equiv 0$ in $\mathrm{U} \times\left[0, t_{0}\right]$.

In particular, for any $t \in\left[0, t_{0}\right]$ the boundary of the set $E(t):=\{u(\cdot, t) \leq 0\}$ is a hypersurface of class $\mathcal{C}^{3+\alpha}$ without boundary in U^{4}. ${ }^{* * *}$ in realta' $\mathcal{C}^{\infty}{ }^{* * *} \operatorname{Using}(6.54)$ it is possible to prove that

$$
u(z, t)=\operatorname{dist}(z, E(t))-\operatorname{dist}\left(z, \mathbb{R}^{n} \backslash E(t)\right), \quad(z, t) \in \mathrm{U} \times\left[0, t_{0}\right]
$$

Then, recalling also Proposition ??, it follows that $t \in\left[0, t_{0}\right] \rightarrow\{u(\cdot, t) \leq 0\}$ is the smooth mean curvature flow starting from E.
6.2.4. Improvements of the inclusion principle. Let $E_{1}, E_{2} \in \mathcal{C}^{\infty}$. We say that ∂E_{1} and ∂E_{2} are close if there exists an open set $A \subset \mathbb{R}^{n}$ such that $\partial E_{1} \subset A, \partial E_{2} \subset A$, and the oriented distance functions from ∂E_{1} and from ∂E_{2} belong to $\mathcal{C}^{\infty}(A)$.

THEOREM 6.2.7. Let $f_{1}, f_{2}:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be two smooth compact mean curvature flows. Assume that

$$
f_{1}(a) \subseteq f_{2}(a), \quad \partial f_{1}(a) \text { and } \partial f_{2}(a) \text { are close. }
$$

Then

$$
\begin{equation*}
f_{1}(t) \subseteq f_{2}(t), \quad t \in[a, b] \tag{6.60}
\end{equation*}
$$

If moreover $\partial f_{i}(a)$ are connected for $i=1,2$ and $f_{1}(a) \neq f_{2}(a)$, then

$$
\begin{equation*}
\partial f_{1}(t) \cap \partial f_{2}(t)=\emptyset, \quad t \in(a, b] . \tag{6.61}
\end{equation*}
$$

Proof. We can suppose that each $\partial f_{i}(a)$ is connected, since the argument can be repeated separately for each connected component. Without loss of generality, assume that $f_{1}(a) \neq f_{2}(a)$. Let $d_{i}(\cdot, t)$ be the oriented distance function from $\partial f_{i}(t)$. By assumption there exists an open set $A \subset \mathbb{R}^{n}$ such that $d_{i}(\cdot, 0) \in \mathcal{C}^{\infty}(A)$. Recalling Theorem (6.2.6) we have that there exists $\tau>0$ such that d_{1} and d_{2} are two solutions of equation (6.30) in $A \times[a, a+\tau]$. Define $w:=d_{1}-d_{2}$. Since $f_{1}(a) \subseteq f_{2}(a)$, it follows that

$$
\begin{equation*}
w(\cdot, a) \geq 0 \tag{6.62}
\end{equation*}
$$

Then, from the maximum principle applied to the uniformly parabolic equation (6.53), it follows that $w(z, t) \geq 0$ for any $(z, t) \in Q$, so that (6.103) holds for any $t \in[a, a+\tau]$. From the strong maximum principle applied to (6.53), observing that $w(\cdot, a) \neq 0$, we deduce that $f_{1}(t) \subset f_{2}(t)$ and $\partial f_{1}(t) \cap \partial f_{2}(t)=\emptyset$ for any $t \in(a, a+\tau]$. Then (6.103) and (6.104) follow from Theorem 7.3.

[^3]
6.3. Definitions of parabolic Hölder spaces and linear theory

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set of class \mathcal{C}^{2} and $T>0$. We recall the definition of the following parabolic Hölder spaces: for $\alpha>0$

$$
\begin{align*}
\mathcal{C}^{0, \alpha}(\bar{\Omega} \times[0, T]):= & \left\{u \in \mathcal{C}(\bar{\Omega} \times[0, T]): u(z, \cdot) \in \mathcal{C}^{\alpha}([0, T]) \forall z \in \Omega,\right. \tag{6.63}\\
& \left.\|u\|_{\mathcal{C}^{0, \alpha}(\bar{\Omega} \times[0, T])}:=\sup _{z \in \bar{\Omega}}\|u(z, \cdot)\|_{\mathcal{C}^{\alpha}([0, T])}<+\infty\right\} \tag{6.64}\\
\mathcal{C}^{\alpha, 0}(\bar{\Omega} \times[0, T]):= & \left\{u \in \mathcal{C}(\bar{\Omega} \times[0, T]): u(\cdot, t) \in \mathcal{C}^{\alpha}(\bar{\Omega}) \forall t \in[0, T],\right. \tag{6.65}\\
& \left.\|u\|_{\mathcal{C}^{\alpha, 0}(\bar{\Omega} \times[0, T])}:=\sup _{t \in[0, T]}\|u(\cdot, t)\|_{\mathcal{C}^{\alpha}(\bar{\Omega})}<+\infty\right\} \tag{6.66}
\end{align*}
$$

where, if $0<\theta<1$ and O is a bounded open subset of $\mathbb{R}^{m}, m \geq 1$,

$$
\begin{aligned}
& \mathcal{C}^{\theta}(\bar{O}):=\left\{u \in \mathcal{C}(\bar{O}):[u]_{\mathcal{C}^{\theta}}:=\sup _{x, y \in \bar{O}, x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\theta}}<+\infty\right\} \\
& \|u\|_{\mathcal{C}^{\theta}(\bar{O})}:=\|u\|_{\infty}+[u]_{\mathcal{C}^{\theta}},
\end{aligned}
$$

and for $k \in \mathbb{N}, k \geq 1$,

$$
\mathcal{C}^{k+\theta}(\bar{O}):=\left\{u \in \mathcal{C}^{k}(\bar{O}): \nabla_{i_{1} \ldots i_{k}} u \in \mathcal{C}^{\theta}(\bar{O}), i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}\right\}
$$

with

$$
\|u\|_{\mathcal{C}^{k+\theta}(\bar{O})}:=\|u\|_{\mathcal{C}^{k}(\bar{O})}+\sum_{i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}}\left[\nabla_{i_{1} \ldots i_{k}} u\right]_{\mathcal{C}^{\theta}(\bar{O})} .
$$

For $0<\alpha<2$

$$
\begin{equation*}
\mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[0, T]):=\mathcal{C}^{0, \alpha / 2}(\bar{\Omega} \times[0, T]) \cap \mathcal{C}^{\alpha, 0}(\bar{\Omega} \times[a, b]), \tag{6.67}
\end{equation*}
$$

endowed with the norm ${ }^{5,6}$

$$
\begin{equation*}
\|u\|_{\mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[0, T])}:=\|u\|_{\mathcal{C}^{0, \alpha / 2}(\bar{\Omega} \times[0, T])}+\|u\|_{\mathcal{C}^{\alpha, 0}(\bar{\Omega} \times[0, T])} \tag{6.68}
\end{equation*}
$$

In addition

$$
\begin{align*}
\mathcal{C}^{2,1}(\bar{\Omega} \times[0, T]):= & \{u \in \mathcal{C}(\bar{\Omega} \times[0, T]): \\
& \left.\exists u_{t}, \nabla_{i j} u \in \mathcal{C}(\bar{\Omega} \times[0, T]), i, j \in\{1, \ldots, n\}\right\}, \tag{6.69}
\end{align*}
$$

endowed with the norm

$$
\|u\|_{\mathcal{C}^{2,1}(\bar{\Omega} \times[0, T])}:=\|u\|_{L^{\infty}(\bar{\Omega} \times[0, T])}+\sum_{i=1}^{n}\left\|\nabla_{i} u\right\|_{\infty}+\left\|u_{t}\right\|_{L^{\infty}(\bar{\Omega} \times[0, T])}+\sum_{i, j=1}^{n}\left\|\nabla_{i j} u\right\|_{L^{\infty}(\bar{\Omega} \times[0, T])}
$$

[^4]and for $0<\alpha<2$
\[

$$
\begin{aligned}
\mathcal{C}^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T]):= & \left\{u \in \mathcal{C}^{2,1}(\bar{\Omega} \times[0, T]):\right. \\
& \left.u_{t}, \nabla_{i j} u \in \mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[0, T]), i, j \in\{1, \ldots, n\}\right\},
\end{aligned}
$$
\]

endowed with the norm

$$
\begin{aligned}
&\|u\|_{\mathcal{C}^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T])}=\|u\|_{L^{\infty}(\bar{\Omega} \times[0, T])}+\sum_{i=1}^{n}\left\|\nabla_{i} u\right\|_{L^{\infty}(\bar{\Omega} \times[0, T])} \\
&+\left\|u_{t}\right\|_{\mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[0, T])}+\sum_{i, j=1}^{n}\left\|\nabla_{i j} u\right\|_{\mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[0, T])} \\
&\|u\|_{\mathcal{C}^{1+\alpha,(1+\alpha) / 2}(\bar{\Omega} \times[a, b])}:=\|u\|_{\infty}+\sum_{i=1}^{n}\left\|\nabla_{i} u\right\|_{\infty}+\left\|u_{t}\right\|_{\mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[a, b])}+\sum_{i, j=1}^{n}\left\|\nabla_{i j} u\right\|_{\mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[a, b])}
\end{aligned}
$$

Finally, we set

$$
\|f\|_{C^{(1+\alpha) / 2,1+\alpha}([a, b] \times \partial \Omega)}:=\inf \left\{\|v\|_{C^{(1+\alpha) / 2,1+\alpha}([a, b] \times \Omega)}: v=f \mathrm{su}[a, b] \times \partial \Omega\right\} .
$$

6.3.1. Remarks on the linear theory. It is possible to prove the following theorem on second order linear parabolic partial differential equations.

THEOREM 6.3.1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set which is uniformly $C^{2+\alpha}, 0<\alpha<1$, and let $T>0$. Let $a_{i j}, b_{i}, c, f \in \mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[0, T])$, and $\beta_{i}, \gamma, g \in C^{1+\alpha,(1+\alpha) / 2}(\partial \Omega \times[0, T])$, $w_{0} \in \mathcal{C}^{2+\alpha}(\bar{\Omega})$. Assume that there exists a constant $C>0$ such that

$$
\begin{equation*}
a_{i j}(z, t) \xi_{i} \xi_{j} \geq C|\xi|^{2}, \quad t \in[0, T], z \in \bar{\Omega}, \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \tag{6.70}
\end{equation*}
$$

and the nontangentiality condition

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \beta_{i}(z, t) \nu_{i}(z)\right| \geq \nu_{0}, \quad 0 \leq t \leq T, z \in \partial \Omega \tag{6.71}
\end{equation*}
$$

Set

$$
\begin{aligned}
& \mathcal{A}(z, t) \varphi=a_{i j}(z, t) \nabla_{i j} \varphi+b_{i}(z, t) \nabla_{i} \varphi+c(z, t) \varphi, \\
& \mathcal{B}(z, t) \varphi=\beta_{i}(z, t) D_{i} \varphi+\gamma(z, t) \varphi
\end{aligned}
$$

Moreover, assume that the following compatibility condition holds:

$$
\begin{equation*}
\mathcal{B}(0, z) u_{0}(z)=\mathrm{g}(0, z), \quad z \in \partial \Omega . \tag{6.72}
\end{equation*}
$$

Then the problem

$$
\begin{cases}\mathrm{w}_{t}=\mathcal{A}(z, t) w+f & \text { in } \Omega \times(0, T) \tag{6.73}\\ \mathcal{B}(z, t) u(z, t)=\mathrm{g}(z, t), & \text { on } \partial \Omega \times(0, T], \\ \mathrm{w}=w_{0} & \text { on } \bar{\Omega} \times\{t=0\}\end{cases}
$$

has a unique solution $\mathrm{w} \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T])$, and there exists a constant $C>0$ such that

$$
\begin{equation*}
\|\mathrm{w}\|_{\mathcal{C}^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T])} \leq C\left(\left\|w_{0}\right\|_{\mathcal{C}^{2+\alpha}(\bar{\Omega})}+\|f\|_{\mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times[0, T])}+\|\mathrm{g}\|_{\mathcal{C}^{1+\alpha,(1+\alpha) / 2}(\partial \Omega \times[0, T])}\right) \tag{6.74}
\end{equation*}
$$

The constant C depends on Ω, on the $C^{\alpha, \alpha / 2}$-norm of $a_{i j}, b_{i}$, c, on the $C^{1+\alpha,(1+\alpha) / 2}$-norm of β_{i}, γ, o n the constants ν, ν_{0}, on the space dimension n, and on T, and it is increasing with respect to T.

In view of the role played by Theorem 6.3.1 in the proof of Theorem 6.2.1, we give here some ideas on how to prove that $w \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T])$, following the approach described in [83, Theorem 5.1.22]. In our application (see (6.43)) we have $w_{0}=0, b_{i}=0$, and the coefficients $a_{i j}$ and c are independent of t; therefore the statement of Theorem 6.3.1 covers a case which is more general than the one required to prove Proposition 6.2.4. The proof of Theorem 6.3.1 can be reduced to the case in which the coefficients are independent of time (see the proof of [83, Theorem 5.1.21]). Therefore, let us assume that

$$
a_{i j}, b_{i} \text { and } c \text { do not depend on } t \text { : }
$$

this is the case considered in [83, Theorems 5.1.19, 5.1.20]. Observe that $f \in \mathcal{C}^{\alpha, \alpha / 2}(\bar{\Omega} \times$ $[0, T])$ implies that

$$
\begin{equation*}
\text { the map } t \rightarrow f(t, \cdot) \text { belongs to } \mathcal{C}^{\alpha / 2}([0, T] ; X) \cap B\left([0, T] ; \mathcal{C}^{\alpha}(\bar{\Omega})\right), \tag{6.75}
\end{equation*}
$$

where the Banach space X is defined as

$$
X:=\mathcal{C}(\bar{\Omega})
$$

and $B\left([0, T] ; \mathcal{C}^{\alpha}(\bar{\Omega})\right)$ denotes the space of bounded functions from $[0, T]$ into $\mathcal{C}^{\alpha / 2}(\bar{\Omega})$.
The strategy of the proof now is the following.
Case 1. Assume g $=0$.
We recall that the interpolation space $D_{A}(\alpha / 2, \infty)$ as defined in [83, Section 2.2.1] satisfies

$$
\begin{equation*}
D_{A}(\alpha / 2, \infty)=\mathcal{C}^{\alpha}(\bar{\Omega}), \tag{6.76}
\end{equation*}
$$

see [83, Theorem 3.1.30].
The equation (6.73) is viewed as an ordinary differential equation in X

$$
\left\{\begin{array}{l}
w^{\prime}(t)=A w(t)+f(t), \quad t \in[0, T] \tag{6.77}\\
\mathrm{w}(0)=w_{0},
\end{array}\right.
$$

where the domain $D(A)$ of A is, thanks to the assumption $\mathrm{g}=0$, the linear space given by

$$
D(A)=\left\{\varphi \in \cap_{p \geq 1} W^{2, p}(\Omega): \varphi, A \varphi \in X, \frac{\partial \varphi}{\partial \nu}=0 \text { on } \partial \Omega\right\}
$$

We recall (see [83, pag. 50]) that, using also (6.76), the interpolation space $D_{A}(\alpha / 2+$ $1, \infty)$ has the following expression:

$$
\begin{equation*}
D_{A}(\alpha / 2+1, \infty)=\left\{\varphi \in D(A): A \varphi \in \mathcal{C}^{\alpha}(\bar{\Omega})\right\}=\left\{\varphi \in \mathcal{C}^{2+\alpha}(\bar{\Omega}): \frac{\partial \varphi}{\partial \nu}=0 \text { on } \partial \Omega\right\} \tag{6.78}
\end{equation*}
$$

where the last equality is a consequence of the Schauder estimates $[\mathbf{8 1}],[\mathbf{6 7}]$.
From (6.75) and (6.76) we have in particular $f \in \mathcal{C}([0, T] ; X) \cap B\left([0, T] ; D_{A}(\alpha / 2, \infty)\right)$. From (6.78) we also have $w_{0} \in D_{A}(\alpha / 2+1, \infty)$. Hence we can apply [83, Corollary 4.3.9], and we obtain that (6.77) has a unique strict solution v which has the expression

$$
v(t)=e^{t A} w_{0}+\left(e^{t A} \star f\right)(t)=e^{t A} w_{0}+\int_{0}^{t} e^{(t-s) A} f(s) d s
$$

with

$$
\begin{equation*}
u^{\prime}, A u \in \mathcal{C}([0, T] ; X) \cap B\left([0, T] ; \mathcal{C}^{\alpha / 2}(\bar{\Omega})\right) \tag{6.79}
\end{equation*}
$$

and

$$
\begin{equation*}
A u \in \mathcal{C}^{\alpha / 2}([0, T] ; X) \tag{6.80}
\end{equation*}
$$

Inclusions (6.79) imply the more delicate conclusion, namely that

$$
\begin{equation*}
v \in \mathcal{C}^{2+\alpha, 1}(\bar{\Omega} \times[0, T]), \tag{6.81}
\end{equation*}
$$

where for $0<\alpha<1$

$$
\mathcal{C}^{2+\alpha, 1}(\bar{\Omega} \times[0, T]):=\left\{u \in \mathcal{C}^{2,1}(\bar{\Omega} \times[0, T]): u_{t}, \nabla_{i j} u \in \mathcal{C}^{\alpha, 0}(\bar{\Omega} \times[0, T]) \forall i, j\right\}
$$

and $\|u\|_{\mathcal{C}^{2+\alpha, 1}(\bar{\Omega} \times[0, T])}:=\|u\|_{\infty}+\sum_{i=1}^{n}\left\|\nabla_{i} u\right\|_{\infty}+\left\|u_{t}\right\|_{\mathcal{C}^{\alpha, 0}}+\sum_{i=1}^{n}\left\|\nabla_{i j} u\right\|_{\mathcal{C}^{\alpha}, 0}$. Formula (6.75) and (6.80) imply that $u=A u+f \in \mathcal{C}^{\alpha / 2}([0, T] ; X)$. Hence, from (6.81) we get $v \in$ $\mathcal{C}^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T])$.

Case 2. Assume that $\mathrm{g} \neq 0$. We want to solve the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A u(t)+f(t), \quad t \in[0, T], \tag{6.82}\\
\frac{\partial u}{\partial \nu}=\mathrm{g} \text { on } \partial \Omega \times[0, T] \\
\mathrm{u}(0)=u_{0}
\end{array}\right.
$$

We use the extension operator \mathcal{N} with respect to the variable x, as defined in $[83$, Theorem 0.3.2]. It follows that we can construct a function $B:=\mathcal{N} \mathrm{g} \in \mathcal{C}^{2+\alpha, 1 / 2+\alpha / 2}(\bar{\Omega} \times[0, T])$ such that $B=\mathrm{g}$ on $\partial \Omega \times[0, T]$. Note that $1 / 2+\alpha / 2<1$, so that B is not differentiable in time. Let us define

$$
v:=u-B
$$

Formally, it follows that v satisfies

$$
\left\{\begin{array}{l}
v_{t}=\mathcal{A} v+f(t)+\mathcal{A} B-B_{t}, \quad t \in[0, T], \tag{6.83}\\
\frac{\partial v}{\partial \nu}=0 \text { on } \partial \Omega \times[0, T], \\
\mathrm{v}(0)=u_{0}-B(0, x), \quad x \in \partial \Omega
\end{array}\right.
$$

Again at the formal level, the function v has one of the expressions on [83, pag. 200], which gives

$$
\begin{equation*}
u=u_{1}+u_{2}, \tag{6.84}
\end{equation*}
$$

where

$$
\begin{array}{r}
u_{1}:=-A \int_{0}^{t} e^{(t-s) A}[B(s, \cdot)-B(0, \cdot)] d s+B(0, \cdot), \tag{6.85}\\
u_{2}:=e^{t A}\left(u_{0}-B(0, \cdot)\right)+\int_{0}^{t} e^{(t-s) A}[f(s, \cdot)+\mathcal{A} B(s, \cdot)] d s
\end{array}
$$

The point is now to show that u in (6.84) has the required regularity (in particular that $\left.u_{1}, u_{2} \in \mathcal{C}^{2+\alpha, 1}(\bar{\Omega} \times[0, T])\right)$, and it is the solution of (6.82). The most delicate part is to prove that u_{1} has the required regularity (see [83, pagg. 201-203]) and that $\frac{\partial u_{1}}{\partial \nu}=\mathrm{g}$ on $\partial \Omega \times[0, T]:$ one shows that $B(s, \cdot)-B(0, \cdot) \in \mathcal{C}^{(1+\alpha) / 2}\left([0, T] ; \mathcal{C}^{1}(\Omega)\right) \subset$ $\mathcal{C}^{(1+\alpha) / 2}\left([0, T] ; D_{A}(1 / 2, \infty)\right.$ and then applies [83, Theorem 4.3.16] with $\theta=\frac{1+\alpha}{2}, \beta=\frac{1}{2}$. Concerning u_{2}, one shows that $f(s, \cdot)+\mathcal{A} B(s, \cdot) \in \mathcal{C}([0, T] ; X) \cap B\left([0, T] ; \mathcal{C}^{\alpha}(\Omega)\right)$ so that $f(s, \cdot)+\mathcal{A} B(s, \cdot) \in B\left([0, T] ; D_{A}(\alpha / 2, \infty)\right) ;$ since $u_{0}-B(0, \cdot) \in \mathcal{C}^{2+\alpha}(\Omega)$ and has vanishing Neumann boundary condition, it follows that $u_{0}-B(0, \cdot) \in D_{A}(\alpha / 2+1, \infty)$. One then applies [83, Corollary 4.3 .9 (iii)] to gain the required regularity of u_{2} and the fact that $\frac{\partial u_{2}}{\partial \nu}=0$ on $\partial \Omega \times[0, T]$.

Notes

6.3.2. Inclusion principles in the presence of the forcing term. A version of Theorem 7.3 can be proved also in presence of the forcing term.

Theorem 6.3.2. Let $f_{1}, f_{2} \in \mathcal{K} \mathcal{F}_{g}$ be two smooth compact mean curvature flows with forcing term g in a common time interval $[a, b]$. Define the function

$$
\begin{equation*}
\delta(t):=\operatorname{dist}\left(f_{1}(t), \mathbb{R}^{n} \backslash f_{2}(t)\right), \quad t \in[a, b] . \tag{6.86}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
\delta(a)>0 . \tag{6.87}
\end{equation*}
$$

Then for any $t \in[a, b]$

$$
\begin{equation*}
\text { there exists } \lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}(\delta(t+\tau)-\delta(t)) \geq-L_{g} \delta(t) \tag{6.88}
\end{equation*}
$$

Hence the function $t \in[a, b] \rightarrow \delta(t) e^{L_{g}(t-a)}$ is nondecreasing.
Proof. We can repeat the proof of Theorem 7.3 up to formula (6.19) included. Let us now show (6.88) for $t \in[a, \sigma)$. We can repeat the computations in (6.22), (6.23) and use that $f_{1}, f_{2} \in \mathcal{K} \mathcal{F}_{g}$ to obtain

$$
\begin{equation*}
\left\langle\nu, \frac{\partial \varphi_{2}}{\partial t}(\hat{s}(t), t)\right\rangle=-H^{f_{2}(t)}\left(\hat{x}_{t}\right)+g\left(\hat{x}_{t}, t\right) \quad\left\langle\nu, \frac{\partial \varphi_{1}}{\partial t}(s(t), t)\right\rangle=-H^{f_{1}(t)}\left(x_{t}\right)+g\left(x_{t}, t\right) . \tag{6.89}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}(\delta(t+\tau)-\delta(t))=-H^{f_{2}(t)}\left(\hat{x}_{t}\right)+g\left(\hat{x}_{t}, t\right)+H^{f_{1}(t)}\left(x_{t}\right)-g\left(x_{t}, t\right) \tag{6.90}
\end{equation*}
$$

Since (6.28) is still valid we obtain

$$
\begin{equation*}
\lim _{\tau \rightarrow 0^{+}} \frac{1}{\tau}(\delta(t+\tau)-\delta(t)) \geq g\left(\hat{x}_{t}, t\right)-g\left(x_{t}, t\right) \geq-G\left|\hat{x}_{t}-x_{t}\right|=-G \delta(t) \tag{6.91}
\end{equation*}
$$

Let us now show that from (6.90) it follows that $\delta e^{L_{g}(t-a)}$ is nondecreasing in $[a, b]$. Indeed, suppose by contradiction that we can find a time $\left.\left.t_{1} \in\right] a, b\right]$ such that $\delta\left(t_{1}\right)<\delta(a) \exp \left(-L_{g}\left(t_{1}-a\right)\right)$. Let $\mu(s)=P(s) \exp \left(-L_{g}(s-a)\right)$, where P is a linear decreasing polynomial such that $\mu(a)=\delta(a)$ and $\mu\left(t_{1}\right)>\delta\left(t_{1}\right)$. Define

$$
s^{\star}=\inf \{s \in[a, b]: \delta(s) \leq \mu(s)\} .
$$

Then $\mu\left(s^{\star}\right)=\delta\left(s^{\star}\right)$, hence $s^{\star}<b$, and by definition of s^{\star}

$$
\liminf _{\tau \rightarrow 0^{+}} \frac{\delta\left(s^{\star}+\tau\right)-\delta\left(s^{\star}\right)}{\tau} \leq \mu^{\prime}\left(s^{\star}\right)<-G \delta\left(s^{\star}\right)
$$

a contradiction.
Again, the conclusion of Theorem ?? is equivalent to $\delta(t) \geq \delta(a) e^{-L_{g}(t-a)}$ for any $t \in[a, b]$.
In presence of the forcing term the distance between $f_{1}(t)$ and $\mathbb{R}^{n} \backslash f_{2}(t)$ can decrease, as shown by the following example.

Example 6.3.3. Fix $0<\bar{\lambda}<1$ sufficiently close to 1 , in such a way that $\dot{R}_{\bar{\lambda}}(0)=-1 / 2$, $\dot{R}_{\bar{\lambda}}(\tau)<-1$, for a suitable $\left.\tau \in\right] 0, T\left[\right.$, where $T=t^{\bar{\lambda}}$. We have $\ddot{R}_{\bar{\lambda}} \leq-\sigma$ on $[0, \tau]$ for a suitable $\sigma>0$. Choose $\bar{\mu}>1$ large enough in such a way that $\dot{R}_{\bar{\mu}}(0) \geq 3 / 4$, and $\ddot{R}_{\bar{\mu}}<\sigma$ on $[0, \tau]$. Setting $f=R_{\bar{\lambda}}+R_{\bar{\mu}}$, we have $\dot{f}(0)>0, \dot{f}(\tau)<0$, and $\ddot{f}<0$ on $[0, \tau]$.

Hence f has a unique strict local maximum $\left.t^{\star} \in\right] 0, \tau[$ on $[0, \tau]$.
Set $R^{\star}=R_{\bar{\mu}}\left(t^{\star}\right), r^{\star}=R_{\bar{\lambda}}\left(t^{\star}\right)$, and $F=B_{R_{\bar{\mu}}(0)}\left(-R^{\star}, 0\right) \cup B_{R_{\bar{\lambda}}(0)}\left(r^{\star}, 0\right)$. Observe that F is the union of two disjoint balls.
6.3.3. Continuity with respect to the initial data. We discuss here the local wellposedness, in particular the continuity with respect to initial data, of the initial value problem for a second order fully nonlinear parabolic equation with first order nonlinear boundary condition. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with boundary of class $\mathcal{C}^{2+\alpha}$ and let $u_{0} \in \mathcal{C}^{2+\alpha}(\bar{\Omega})$. Consider the problem
where

$$
\begin{cases}u_{t}=F\left(z, t, u, \nabla u, \nabla^{2} u\right) & \text { in } \bar{\Omega} \times\left(0, t_{0}\right), \tag{6.92}\\ g(z, t, u, \nabla u)=0 & \text { on } \partial \Omega \times\left[0, t_{0}\right] \\ u(\cdot, 0)=u_{0}(\cdot) & \text { in } \Omega\end{cases}
$$

- $F: Q:=\bar{\Omega} \times\left[0, t_{0}\right] \times B_{R_{0}}((\overline{\mathrm{u}}, \bar{p}, \bar{q})) \rightarrow \mathbb{R},(\overline{\mathrm{u}}, \bar{p}, \bar{X}) \in \mathbb{R} \times \mathbb{R}^{n} \times \operatorname{Sym}_{n}$ is differentiable with respect to $\zeta=(\mathrm{u}, p, X), F, F_{p_{i}}, F_{X_{i j}}$ are locally Lipschitz continuous with respect to ζ and locally $C^{\alpha, \alpha / 2}$ with respect to (z, t), uniformly with respect to the other variables: i.e., for every $\bar{t} \in\left[0, t_{0}\right]$ and $\beta \in\{0,1\}$

$$
\begin{equation*}
\sup \left\{\left\|\nabla_{\zeta}^{\beta} F(\cdot, \cdot, \zeta)\right\|_{C^{\alpha, \alpha / 2}(\bar{\Omega} \times[0, \bar{t}])}: \zeta \in B_{R_{0}}((\overline{\mathrm{u}}, \bar{p}, \bar{X}))\right\}<+\infty \tag{6.93}
\end{equation*}
$$

and

$$
\begin{equation*}
\exists L>0:\left|\nabla_{\zeta}^{\beta} F\left(z, t, \zeta_{1}\right)-\nabla_{\zeta}^{\beta} F\left(z, t, \zeta_{2}\right)\right| \leq L\left|\zeta_{1}-\zeta_{2}\right|, \tag{6.94}
\end{equation*}
$$

for $(z, t) \in \bar{\Omega} \times[0, \bar{t}], \zeta_{1}, \zeta_{2} \in B_{R_{0}}((\bar{u}, \bar{p}, \bar{q}))$, an the following ellipticity condition holds:

$$
\begin{equation*}
\sum_{i, j=1}^{n} \frac{\partial F}{\partial X_{i j}}(z, t, \mathrm{u}, p, X) \xi_{i} \xi_{j}>0, \quad(z, t, \mathrm{u}, p, X) \in Q,\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \backslash\{0\} \tag{6.95}
\end{equation*}
$$

- $g: S:=\bar{\Omega} \times\left[0, t_{0}\right] \times B_{R_{0}}((\bar{u}, \bar{p}))$ satisfies the nontangentiality condition

$$
\begin{equation*}
\frac{\partial g}{\partial p_{i}}(z, t, \mathrm{u}, p) \nu_{i}(x) \neq 0, \quad(z, t, \mathrm{u}, p) \in S, z \in \partial \Omega \tag{6.96}
\end{equation*}
$$

it is twice differentiable with respect to (u, p), each derivative up to the second order is locally Lipschitz continuous with respect to (u, p) and locally $C^{(1+\alpha) / 2,1+\alpha}$ with respect to z, t, uniformly with respect to the other variables: i.e., for every $\bar{t} \geq 0$ we have

$$
\begin{equation*}
\sup \left\{\left\|D_{(\mathrm{u}, p)}^{\beta} g(\cdot, \cdot, w)\right\|_{C^{(1+\alpha) / 2,1+\alpha}([0, \bar{t}] \times \bar{\Omega})}:(\mathrm{u}, p) \in B\left((\bar{u}, \bar{p}), R_{0}\right),|\beta|=0,1,2\right\}<+\infty \tag{6.97}
\end{equation*}
$$

and there exists $M>0$ such that

$$
\begin{gather*}
\left|D_{(\mathrm{u}, p)}^{\beta} g\left(z, t, \mathrm{u}_{1}, p_{1}\right)-D_{(\mathrm{u}, p)}^{\beta} g\left(z, t, \mathrm{u}_{2}, p_{2}\right)\right| \leq M\left|\left(\mathrm{u}_{1}, p_{1}\right)-\left(\mathrm{u}_{2}, p_{2}\right)\right|, \tag{6.98}\\
\forall(z, t) \in[0, \bar{t}] \times \bar{\Omega},\left(\mathrm{u}_{1}, p_{1}\right),\left(\mathrm{u}_{2}, p_{2}\right) \in B_{R_{0}}((\bar{u}, \bar{p})),|\beta|=0,1,2 .
\end{gather*}
$$

Assumptions (6.93) and (6.94) are satisfied if f is twice continuously differentiable with respect to all its arguments, and assumptions (6.97), (6.98) are satisfied if g is thrice continuously differentiable with respect to all its arguments.

Theorem 6.3.4. Assume tuat u_{0} verifies the compatibility condition

$$
\begin{equation*}
g\left(0, z, u_{0}(z), \nabla u_{0}(z)\right)=0, \quad z \in \partial \Omega, \tag{6.99}
\end{equation*}
$$

and that the range of $\left(u_{0}, \nabla u_{0}, \nabla^{2} u_{0}\right)$ is contained in $B_{R_{0} / 2}(\overline{\mathrm{u}}, \bar{p}, \bar{X})$. Then there exist $t_{0}>0$ and a unique $u \in C^{2+\alpha, 1+\alpha / 2}\left(\bar{\Omega} \times\left[0, t_{0}\right]\right)$ satisfying (6.92). Moreover, for any $\rho>0$, there exist $\delta_{0}>0$ and $K_{0}>0$ such that for every $u_{1}, u_{2} \in C^{2+\alpha}(\bar{\Omega})$ satisfying

$$
\begin{equation*}
g\left(0, z, u_{1}(z), \nabla u_{1}(z)\right)=g\left(0, z, u_{2}(z), \nabla u_{2}(z)\right)=0, \quad z \in \partial \Omega \tag{6.100}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{i}-u_{0}\right\|_{C^{2+\alpha}(\bar{\Omega})} \leq \rho \tag{6.101}
\end{equation*}
$$

the solutions $u\left(\cdot, u_{i}\right)$ of problems (6.92) with initial data u_{i} satisfy

$$
\begin{equation*}
\left\|u\left(\cdot, u_{1}\right)-u\left(\cdot, u_{2}\right)\right\|_{C^{2+\alpha, 1+\alpha / 2}\left(\bar{\Omega} \times\left[0, \delta_{0}\right]\right)} \leq K_{0}\left\|u_{1}-u_{2}\right\|_{C^{2+\alpha}(\bar{\Omega})} \tag{6.102}
\end{equation*}
$$

Proof. The proof of the existence and uniqueness part of the statement is given in [83, Theorem 8.5.4]. Let us show (6.102). We first check that for every $u_{1} \in C^{2+\alpha}(\bar{\Omega})$ satisfying (6.100) and (6.101) the solution of problem (6.92) is defined in a common time interval $\left[0, \delta_{0}\right]$. This is done revisiting the proof of [83, Theorem 8.5.4], taking u_{1} instead of u_{0} as initial datum. We have to check ${ }^{* * *}$ that $C(R)$ in [83, formula 8.5.18] may be taken independent of u_{1}. We have $C(R)=C\left(C_{7}(R)+C_{8}(R)\right)$, where C is the constant in (6.74), and $C_{7}(R), C_{8}(R)$ appear in the two estimates on [83, pag. 325]. Looking at the proof of the estimate involving $C_{7}(R)$, we see that $C_{7}(R)$ is bounded by $a(R)+b(R)\left\|u_{1}\right\|_{C^{2+\alpha}(\bar{\Omega})}$ where $a(R), b(R)$ do not depend on u_{1}. So, $C_{7}(R) \leq a(R)+b(R)\left(\left\|u_{0}\right\|_{C^{2+\alpha}}+\rho\right)$, and a similar estimate holds for $C_{8}(R)$. Therefore, $C(R)$ can be taken independent of u_{1}.

It follows that for every u_{1} as above, the map Γ (see [83, pag. 321]) defined as $\Gamma(u):=w$, where w is the solution ${ }^{7}$ of

$$
\left\{\begin{aligned}
w_{t}(z, t)-\mathcal{A} w= & F\left(z, t, u, \nabla u, \nabla^{2} u\right)-\mathcal{A} u \\
& 0 \leq t \leq \delta, z \in \bar{\Omega} \\
\mathcal{B} w(z, t)= & -g(z, t, u(z, t), \nabla u(z, t))+\mathcal{B} u(z, t), \quad 0 \leq t \leq \delta, z \in \partial \Omega \\
w(0, z)= & u_{1}(z), \quad z \in \bar{\Omega}
\end{aligned}\right.
$$

is a $1 / 2$-contraction in the set

$$
Y_{u_{1}}:=\left\{u \in \mathcal{C}^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, \delta]): u(0, \cdot)=u_{1},\left\|u-u_{1}\right\|_{\mathcal{C}^{2+\alpha, 1+\alpha / 2}} \leq R\right\}
$$

provided that $C(R) \delta^{\alpha / 2} \leq 1 / 2$. Moreover, Γ maps $Y_{u_{1}}$ into itself, provided that the constant C^{\prime} defined by

$$
C^{\prime}:=C\left(\left\|F\left(\cdot, \cdot, u_{1}, \nabla u_{1}, \nabla^{2} u_{1}\right)\right\|_{C^{\alpha / 2, \alpha}}+\left\|g\left(\cdot, \cdot, u_{1}, \nabla u_{1}\right)\right\|_{C^{(1+\alpha) / 2,1+\alpha}}\right)
$$

$\left(C\right.$ is still the constant in (6.74)) satisfies $C^{\prime} \leq R / 2$. The sum of the norms $\left\|F\left(\cdot, \cdot, u_{1}, D u_{1}, D^{2} u_{1}\right)\right\|_{C^{\alpha / 2, \alpha}}$ and $\left\|g\left(\cdot, \cdot, u_{1}, D u_{1}\right)\right\|_{C^{(1+\alpha) / 2,1+\alpha}}$ does not exceed $a+b\left\|u_{1}\right\|_{C^{2+\alpha}}$ for suitable constants $a, b>0$. Therefore,

$$
C^{\prime} \leq C\left(a+b\left(\left\|u_{0}\right\|_{C^{2+\alpha}}+\rho\right)\right)
$$

In turn, C depends on u_{1} through the $C^{\alpha / 2, \alpha}$-norm of the coefficients of \mathcal{A} and through the $C^{(1+\alpha) / 2,1+\alpha}$-norm of the coefficients of \mathcal{B}. The coefficients of \mathcal{A} are the derivatives of F with respect to $X_{i j}, p_{i}, \mathrm{u}$, evaluated at $\left(0, z, u_{1}(z), \nabla u_{1}(z), \nabla^{2} u_{1}(z)\right.$). Their $C^{\alpha / 2, \alpha}$-norm (which coincides with their $C^{0, \alpha}$-norm, since they do not depend on time) does not exceed $a_{1}+b_{1}\left\|u_{1}\right\|_{C^{2+\alpha}}$ for suitable constants $a_{1}, b_{1}>0$, hence it does not exceed $a_{1}+b_{1}\left(\left\|u_{0}\right\|_{C^{2+\alpha}}+\rho\right)$. Similarly, the $C^{(1+\alpha) / 2,1+\alpha}$-norm of the coefficients of \mathcal{B} does not exceed $a_{2}+b_{1}\left(\left\|u_{0}\right\|_{C^{2+\alpha}}+\rho\right)$, for suitable a_{2}, $b_{2}>0$. Therefore, C is bounded by a constant independent of u_{1}. Hence we can choose R large enough, in such a way that $C^{\prime} \leq R / 2$, and then $\delta \leq \delta_{0}:=(2 C(R))^{-2 / \alpha}$. For this choice, Γ is a $1 / 2$-contraction that maps $Y_{u_{1}}$ into itself, for every u_{1} as above.

Let now u_{1}, u_{2} be two initial data as in the statement, and set $w(\cdot)=u\left(\cdot, u_{1}\right)-u\left(\cdot, u_{2}\right)$. Then w satisfies

$$
\begin{cases}w_{t}=a_{i j} \nabla_{i j} w+b_{i} \nabla_{i} w+c w & \text { on } \bar{\Omega} \times\left[0, \delta_{0}\right] \\ 0=\beta_{i} D_{i} w+\gamma w, & \text { on } \partial \Omega \times\left[0, \delta_{0}\right] \\ w(0, z)=u_{1}(z)-u_{2}(z) & z \in \bar{\Omega},\end{cases}
$$

where

$$
\begin{gathered}
\text { where } a_{i j}(z, t):=\int_{0}^{1} F_{X_{i j}}\left(z, t, \xi_{\sigma}(z, t)\right) d \sigma, \quad b_{i}(z, t):=\int_{0}^{1} F_{p_{i}}\left(z, t, \xi_{\sigma}(z, t)\right) d \sigma, \\
c(z, t):=\int_{0}^{1} F_{\mathrm{u}}\left(z, t, \xi_{\sigma}(z, t)\right) d \sigma \\
\xi_{\sigma}(z, t):=\sigma\left(u\left(z, t, u_{1}\right), \nabla u\left(z, t, u_{1}\right), \nabla^{2} u\left(z, t, u_{1}\right)\right)+(1-\sigma)\left(u\left(z, t, u_{2}\right), \nabla u\left(z, t, u_{2}\right), \nabla^{2} u\left(z, t, u_{2}\right)\right), \\
\beta_{i}(z, t):=\int_{0}^{1} g_{p_{i}}\left(z, t, \eta_{\sigma}(z, t)\right) d \sigma, \gamma(z, t)=\int_{0}^{1} g_{u}\left(z, t, \eta_{\sigma}(z, t)\right) d \sigma,
\end{gathered}
$$

${ }^{7} \mathcal{A} v:=F_{X_{i j}} \nabla_{i j} v+F_{p_{i}} \nabla_{i} v+F_{\mathrm{u}} v, \mathcal{B} v=\sum_{i=1}^{n} g_{p_{i}} D_{i} v+g_{u} v$ where the derivatives of F are evaluated at $\left(z, 0, u_{1}(z), \nabla u_{1}(z), \nabla^{2} u_{1}(z)\right)^{* *} c^{\prime}$ 'e' il solito problema dell'estensione di F fuori dalle simmetriche ${ }^{* * *}$, and the derivatives of g are evaluated at $\left(0, z, u_{1}(z), \nabla u_{1}(z)\right)$. ${ }^{* * *}$ corretto? ${ }^{* * *}$

$$
\eta_{\sigma}(z, t)=\sigma\left(u\left(z, t, u_{1}\right), \nabla u\left(z, t, u_{1}\right)\right)+(1-\sigma)\left(u\left(z, t, u_{2}\right), \nabla u\left(z, t, u_{2}\right)\right)
$$

Since the ranges of $\left(u\left(\cdot, u_{1}\right), D u\left(\cdot, u_{1}\right), \nabla^{2} u\left(\cdot, u_{1}\right)\right)$ and of $\left(u\left(\cdot, u_{2}\right), \nabla u\left(\cdot, u_{2}\right), \nabla^{2} u\left(\cdot, u_{2}\right)\right)$ are contained (see [83, pag. 321]) in $B_{R_{0}}((\bar{u}, \bar{p}, \bar{X}))$, then $\xi_{\sigma}(z, t) \in B_{R_{0}}((\bar{u}, \bar{p}, \bar{X}))$ and $\eta_{\sigma}(z, t) \in$ $B_{R_{0}}((\bar{u}, \bar{p}))$ for every t and x. Therefore, the ellipticity condition (6.70) and the nontangentiality condition (6.71) are satisfied by constants C, ν_{0} independent of u_{1} and u_{2}. If we prove that the $\mathcal{C}^{\alpha, \alpha / 2}$-norm of the coefficients $a_{i j}, b_{i}, c$ and the $\mathcal{C}^{1+\alpha,(1+\alpha) / 2}$-norm of the coefficients β_{i}, γ are bounded by constants independent of u_{1}, u_{2} we may apply Theorem 6.3.1 to obtain

$$
\|w\|_{C^{1+\alpha / 2,2+\alpha}\left(\left[0, \delta_{0}\right] \times \bar{\Omega}\right)} \leq C\left\|u_{1}-u_{2}\right\|_{C^{2+\alpha}(\bar{\Omega})}
$$

and (6.102) follows.
Let us consider the coefficients $a_{i j}$. For every $t \in\left[0, \delta_{0}\right]$ and $x \in \bar{\Omega},\left|a_{i j}(z, t)\right| \leq \sup _{Q}\left|f_{q_{i j}}\right|$, and assumptions (6.93) and (6.94) imply that

$$
\begin{aligned}
& \left|a_{i j}(z, t)-a_{i j}(y, s)\right| \\
\leq & \int_{0}^{1}\left|F_{X_{i j}}\left(z, t, \xi_{\sigma}(z, t)\right)-F_{X_{i j}}\left(y, s, \xi_{\sigma}(z, t)\right)\right| d \sigma+\int_{0}^{1}\left|F_{X_{i j}}\left(y, s, \xi_{\sigma}(z, t)\right)-F_{X_{i j}}\left(y, s, \xi_{\sigma}(y, s)\right)\right| d \sigma \\
\leq & K\left(|t-s|^{\alpha / 2}+|x-y|^{\alpha}\right)+L \int_{0}^{1}\left|\xi_{\sigma}(z, t)-\xi_{\sigma}(y, s)\right| d \sigma \leq K\left(|t-s|^{\alpha / 2}+|x-y|^{\alpha}\right) \\
& +\frac{L}{2}\left(\left[u\left(\cdot, u_{1}\right)\right]_{C^{\alpha / 2, \alpha}}+\left[u\left(\cdot, u_{2}\right)\right]_{C^{\alpha / 2, \alpha}}+\left[D u\left(\cdot, u_{1}\right)\right]_{C^{\alpha / 2, \alpha}}\right. \\
& \left.+\left[D u\left(\cdot, u_{2}\right)\right]_{C^{\alpha / 2, \alpha}}+\left[D^{2} u\left(\cdot, u_{1}\right)\right]_{C^{\alpha / 2, \alpha}}+\left[D^{2} u\left(\cdot, u_{2}\right)\right]_{C^{\alpha / 2, \alpha}}\right)\left(|t-s|^{\alpha / 2}+|x-y|^{\alpha}\right)
\end{aligned}
$$

Therefore,

$$
\left[a_{i j}\right]_{C^{\alpha, \alpha / 2}} \leq K+C\left(\left\|u\left(\cdot, u_{1}\right)\right\|_{C^{2+\alpha, 1+\alpha / 2}}+\left\|u\left(\cdot, u_{2}\right)\right\|_{C^{1+\alpha / 2,2+\alpha}}\right) \leq K+2 C_{0}\left(R+\left\|u_{0}\right\|_{C^{2+\alpha}}+\rho\right)
$$

Similar estimates are satisfied by the coefficients b_{i} and c.
Let us consider now the coefficients β_{i}. For every $t \in\left[0, \delta_{0}\right]$ and $z \in \partial \Omega$ we have $\left|\beta_{i}(z, t)\right| \leq$ $\sup _{S}\left|g_{p_{i}}\right|$ and, arguing as above, with estimates (6.93) and (6.94) replaced by (6.97) and (6.98),

$$
\begin{aligned}
& \left|\beta_{i}(z, t)-\beta_{i}(x, s)\right| \\
\leq & \int_{0}^{1}\left|g_{p_{i}}\left(z, t, \eta_{\sigma}(z, t)\right)-g_{p_{i}}\left(x, s, \eta_{\sigma}(z, t)\right)\right| d \sigma+\int_{0}^{1}\left|g_{p_{i}}\left(x, s, \eta_{\sigma}(z, t)\right)-g_{p_{i}}\left(x, s, \eta_{\sigma}(x, s)\right)\right| d \sigma \\
\leq & H\left(|t-s|^{(1+\alpha) / 2}\right)+M \int_{0}^{1}\left|\xi_{\sigma}(z, t)-\eta_{\sigma}(x, s)\right| d \sigma \\
\leq & H\left(|t-s|^{(1+\alpha) / 2}\right)+\frac{M}{2}\left(\left[u\left(\cdot, u_{1}\right)\right]_{C^{(1+\alpha) / 2,0}}+\left[u\left(\cdot, u_{2}\right)\right]_{C^{(1+\alpha) / 2,0}}+\left[D u\left(\cdot, u_{1}\right)\right]_{C^{(1+\alpha) / 2,0}}+\left[D u\left(\cdot, u_{2}\right)\right]_{C^{(1+\alpha) / 2,0}}\right.
\end{aligned}
$$

Therefore,

$$
\left[\beta_{i}\right]_{C^{(1+\alpha) / 2,0}} \leq H+C_{1}\left(\left\|u\left(\cdot, u_{1}\right)\right\|_{C^{1+\alpha / 2,2+\alpha}}+\left\|u\left(\cdot, u_{2}\right)\right\|_{C^{1+\alpha / 2,2+\alpha}}\right) \leq H+2 C_{1}\left(R+\left\|u_{0}\right\|_{C^{2+\alpha}}+\rho\right) .
$$

Moreover, for each k we have

$$
\frac{\partial \beta_{i}}{\partial x_{k}}(z, t)=\int_{0}^{1} \frac{\partial}{\partial x_{k}}\left(g_{p_{i}}\left(z, t, \eta_{\sigma}(z, t)\right)\right) d \sigma
$$

where

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}}\left(g_{p_{i}}\left(z, t, \eta_{\sigma}(z, t)\right)\right) & =g_{p_{i} x_{k}}\left(z, t, \eta_{\sigma}(z, t)\right)+g_{p_{i} u}\left(z, t, \eta_{\sigma}(z, t)\right)\left(\sigma u_{x_{k}}\left(z, t, u_{1}\right)+(1-\sigma) u_{x_{k}}\left(z, t, u_{2}\right)\right) \\
& +\sum_{j=1}^{n} g_{p_{i} p_{j}}\left(z, t, \eta_{\sigma}(z, t)\right)\left(\sigma u_{x_{k} x_{j}}\left(z, t, u_{1}\right)+(1-\sigma) u_{x_{k} x_{j}}\left(z, t, u_{2}\right)\right)
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\left|\frac{\partial \beta_{i}}{\partial x_{k}}(z, t)\right| \leq \sup _{S}\left|g_{p_{i} x_{k}}\right|+\frac{1}{2} \sup _{S}\left|g_{p_{i} u}\right|\left(\sup _{0 \leq t \leq \delta_{0}}\left\|u\left(t, \cdot, u_{1}\right)\right\|_{C^{1}(\bar{\Omega})}+\sup _{0 \leq t \leq \delta_{0}}\left\|u\left(t, \cdot, u_{2}\right)\right\|_{C^{1}(\bar{\Omega})}\right) \\
+\frac{1}{2} \sum_{j=1}^{n} \sup _{S}\left|g_{p_{i} p_{j}}\right|\left(\sup _{0 \leq t \leq \delta_{0}}\left\|u\left(t, \cdot, u_{1}\right)\right\|_{C^{2}(\bar{\Omega})}+\sup _{0 \leq t \leq \delta_{0}}\left\|u\left(t, \cdot, u_{2}\right)\right\|_{C^{2}(\bar{\Omega})}\right) \\
\leq C_{2}\left(R+\left\|u_{0}\right\|_{C^{2+\alpha}}+\rho\right)
\end{gathered}
$$

In a similar manner one estimates $\left[\frac{\partial \beta_{i}}{\partial x_{k}}\right]_{C^{0, \alpha}}$.
Proposition 6.2 .5 is proven in [$\mathbf{8 3}$, Proposition 8.5.6]. The regularity of w in Theorem ?? is proven in [83, Theorem 8.5.6]. Theorem 6.3 .1 is proven in [83, Corollary 5.1.22]. Proposition 6.2 .5 is taken from [83, Proposition 8.5.6]. In [69, Section 2] the authors prove a short-time existence and uniqueness theorem for a manifold evolving by mean curvature inside another ambient manifold.

In [11] the author proves a short-time existence theorem for curves on surfaces evolving by a suitable geometric law (including curvature flow), allowing singular initial curves, namely curves with p-integrable curvature, and also curves that are locally graph of a Lipschitz function. See also [12, Theorem 3.2]. We also note a comment concerning the continuity of the curve solution with respect to parameters given in [11, p. 460].

A general short-time existence theorem for a large class of geometric evolution problems, including evolutions of higher order, can be found in [75, Theorem 7.17]: this theorem covers evolutions of the form (4.13), once one observes that an initially embedded hypersurface evolving under (4.13) remains embedded for short times ${ }^{8}$. An existence and uniqueness theorem for an evolution equation which is nonlocal, similarly to (5.5) where the nonlocality is due to the fact that g is evaluated on $\operatorname{pr}_{\Sigma(t)}(z)$, has been proved in [33, Theorem 3.1].

In $[\mathbf{5 7}$, Section 4] the authors prove a short time existence result of a smooth solution of mean curvature flow starting from a locally Lipschitz initial manifold.
6.3.4. More on the inclusion principle. Using the continuity result with respect to initial data proved in Theorem ??, we now want to improve the inclusion principles described in Sections ??.

PROPOSITION 6.3.5. Let $E \in \mathcal{C}^{\infty} \cap \mathcal{K}$, and let $f:\left[0, t_{0}\right] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be the smooth compact mean curvature flow given by Theorem ??. Then there exist $\bar{\rho}>0$ and $t_{1} \in\left(0, t_{0}\right]$ such that

- for any $\rho \in[0, \bar{\rho}]$ we have $E_{\rho}^{-} \in \mathcal{C}_{b}^{\infty} \cap \mathcal{K}\left(\right.$ resp. $\left.E_{\rho}^{+} \in \mathcal{C}_{b}^{\infty} \cap \mathcal{K}\right)$
- for any $\rho \in[0, \bar{\rho}]$ the set E_{ρ}^{-}(resp. E_{ρ}^{+}) has a unique smooth mean curvature flow $f_{\rho}^{-}:\left[0, t_{1}\right] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)\left(\right.$ resp. $\left.f_{\rho}^{+}:\left[0, t_{1}\right] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)\right)$.

[^5]Proof. The first assertion follows from the results in Chapter ??. It remains to show that the existence time of the smooth flow starting from E_{ρ}^{-}does not tend to zero as $\rho \rightarrow 0^{+}$. This assertion can be proved as follows: it is possible to show that the maximal existence time of the smooth mean curvature flow starting from E is bounded from below by a constant times the L^{∞} norm of the second fundamental form of ∂E^{9}. Using Theorem 2.3.1, it is then enough to observe that the L^{∞} norm of the second fundamental form of ∂E_{ρ}^{-}is uniformly bounded from above with respect to ρ, provided ρ is sufficiently small.

Proposition 6.3.6. Let $E, f, t_{0}, \bar{\rho}, t_{1}, E_{\rho}^{ \pm}$and $f_{\rho}^{ \pm}$be as in Proposition 6.3.5. Then for any $t \in\left[a, a+t_{0}\right]$, we have $\cup_{\rho \in[0, \bar{p}]} f_{\rho}^{-}(t)=f(t)$ and $\cap_{\rho \in[0, \bar{p}]} f_{\rho}^{+}(t)=f(t)$.

Proof. From Theorem 6.2.7 it follows that $\cup_{\rho \in[0, \bar{p}]} f_{\rho}^{-}(t) \subseteq f(t)$. The opposite inclusion follows from (6.102). The proof of the assertion concerning f_{ρ}^{+}is similar.

Theorem 6.3.7. Let $f_{1}, f_{2}:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be two smooth compact mean curvature flows. Assume that

Then

$$
f_{1}(a) \subseteq f_{2}(a)
$$

$$
\begin{equation*}
f_{1}(t) \subseteq f_{2}(t), \quad t \in[a, b] . \tag{6.103}
\end{equation*}
$$

If moreover $\partial f_{i}(a)$ are connected for $i=1,2$ and $f_{1}(a) \neq f_{2}(a)$, then

$$
\begin{equation*}
\partial f_{1}(t) \cap \partial f_{2}(t)=\emptyset, \quad t \in(a, b] . \tag{6.104}
\end{equation*}
$$

Proof. Using the notation of Proposition 6.3.5 (with f_{1} in place of f), we have that $f_{1 \rho}^{-}(t) \subseteq$ $f_{1}(t)$ for any $t \in\left[a, a+t_{0}\right]$, and $\partial f_{1}^{-}(t) \cap \partial f_{1}(t)=\emptyset$ for any $t \in\left[a, a+t_{0}\right]$. ${ }^{* * *}$ ecc. ecc. From Proposition ??

Concerning the short time existence of $E \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$, in the paper [] it is considered the case when ∂E is an entire graph; see also ${ }^{* * *}$ chiedere referenze a cardaliaguet ${ }^{* * *}$

Remark ??: the maximal time of existence depends only on a bound of the second fundamental form of initial set ∂E : see i[57, Section 4], Ilmanen [], and Theorem ??.

[^6]
[^0]: ${ }^{1}$ The conclusion of Remark 6.1.5 is not valid in general for mean curvature flow with a forcing term.

[^1]: ${ }^{2}$ We have $|u(z, t) v(z, t)-u(y, s) v(y, s)| \leq|u(x, t)-u(y, s)||v(x, t)|+|v(x, t)-v(y, s)||u(y, s)|\|u\|_{\mathcal{C}^{\alpha, \alpha / 2}}=$ $2\|u\|_{\infty}+[u]_{\mathcal{C}^{\alpha, 0}}+[u]_{\mathcal{C}^{0}, \alpha / 2}$. Le seminorme holderiane del prodotto si maggiorano, aggiungendo e togliendo, con

 | $[u v]_{\mathcal{C}^{\alpha, 0}}$ | $\leq\\|u\\|_{\infty}[v]_{\mathcal{C}^{\alpha, 0}}+[u]_{\mathcal{C}^{\alpha}, 0}\\|v\\|_{\infty}$, | | | | |
|---|---|---|---|---|---|---|---|---|---|
 | $[u v]_{\mathcal{C}^{0, \alpha / 2}}$ | $\leq\\|u\\|_{\infty}[v]_{\mathcal{C}^{0, \alpha / 2}}+[u]_{\mathcal{C}^{0}, \alpha / 2}\\|v\\|_{\infty}$ |
 | e quindi $\\|u v\\|_{\mathcal{C}^{\alpha, \alpha / 2}}$ | $=2\\|u v\\|_{\infty}+[u v]_{\mathcal{C}^{\alpha, 0}}+[u v]_{\mathcal{C}^{0}, \alpha / 2} \leq$ |
 | $\leq 2\\|u\\|_{\infty}\\|v\\|_{\infty}+\\|u\\|_{\infty}\left([v]_{\mathcal{C}^{\alpha, 0}}+[v]_{\mathcal{C}^{0, \alpha / 2}}\right)+\\|v\\|_{\infty}\left([u]_{\mathcal{C}^{\alpha, 0}}+[u]_{\mathcal{C}^{0}, \alpha / 2}\right)$ | |
 | | $\leq\\|u\\|_{\mathcal{C}^{\alpha, \alpha / 2}}\\|v\\|_{\mathcal{C}^{\alpha, \alpha / 2}}$. |

[^2]: ${ }^{3}$ which turns out to be uniformly parabolic

[^3]: ${ }^{4}$ Hence the second fundamental form of $\partial E(t)$ is of class $\mathcal{C}^{1+\alpha}$.

[^4]: ${ }^{5}$ Since $0<\alpha<2$, definition (6.67) includes the definition of the space $C^{1+\beta,(1+\beta) / 2}(\bar{\Omega} \times[0, T])$ for $0<\beta<1$: from (6.67) it follows $\|u\|_{\mathcal{C}^{1+\beta,(1+\beta) / 2}}=2\|u\|_{L^{\infty}(\bar{\Omega} \times[0, T])}+\sup _{x \in \bar{\Omega}}[u(x, \cdot)]_{\mathcal{C}^{(1+\beta) / 2}([0, T])}+$ $\sum_{i=1}^{n}\left\|\nabla_{i} u\right\|_{L^{\infty}\left(\bar{\Omega} \times[0, T] ; \mathbb{R}^{n}\right)}+\sum_{i=1}^{n} \sup _{t \in[0, T]}\left[\nabla_{i} u(\cdot, t)\right]_{\mathcal{C}^{\beta}}$. Note that a term of the form $\left[\nabla_{i} u\right]_{\mathcal{C}^{(1+\beta) / 2}}$ does not explicitely appear, but it is recovered using the inequality $\|\varphi\|_{C^{1}} \leq C\|\varphi\|_{C^{2+\beta}}^{1 /(2+\beta)}\|\varphi\|_{\infty}^{1+\beta}$ applied to $\varphi(x)=u(x, t)+u(x, s)-2 u(x,(s+t) / 2)$, where C is a constant independent of x.
 ${ }^{6}$ Another slightly different norm ${ }^{* * * *}$ is defined as $\|u\|_{\infty}+\sup _{x, y \in \bar{\Omega}, x \neq y, t, s \in\left[0, t_{0}\right], t \neq s} \frac{|u(x, t)-u(y, t)|}{|x-y|^{\alpha+\left.|t-s|\right|^{\alpha / 2}}}$.

[^5]: ${ }^{8}$ See Section ??

[^6]: ${ }^{9}$ This is shown, in the case of curves, in Chapter ??. For the general case, see ??.

