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CHAPTER 4

Smooth flows: preliminary version

This version is in progress: please, take this into account. All corrections and comments
are welcome.

In what follows we denote by P(Rn) the class of all subsets of Rn.

Definition 4.0.10. We say that f is a smooth flow if there exist a, b ∈ R, a < b such
that f : [a, b] → P(Rn) and

(i) the set {(z, t) : t ∈ [a, b], z ∈ f(t)} is closed;
(ii) letting1

d(z, t) := d(z, f(t)) = dist(z, f(t))− dist(z, Rn \ f(t)), z ∈ Rn, t ∈ [a, b], (4.1)

there exists an open set A ⊆ Rn such that A ⊃ ∂f(t) for any t ∈ [a, b], and
d ∈ C∞(A× [a, b]).

We say that f is a smooth compact flow if in addition ∂f(t) is compact for any t ∈ [a, b].

Note that f is a smooth flow if and only if

f c(t) := Rn \ f(t), t ∈ [a, b],

is a smooth flow. Note also that ∂f(t) ∈ C∞ for any t ∈ [a, b], and if f is a smooth compact
flow then ∂f(t) ∈ C∞ ∩ K(Rn) for any t ∈ [a, b].

As usual, for x ∈ ∂f(t), Nx(∂f(t)) and Tx(∂f(t)) denote the normal line and the
tangent space, respectively, to ∂f(t) at x.

Notation: When no confusion is possible, we sometimes use the notation

Σ(t) = ∂f(t).

Definition 4.0.11. Let ∂E ∈ C∞ and let f : [a, b] → P(Rn) be a smooth flow. If
f(a) = E we say that f starts from E at time a.

Let us recall the definition of normal velocity vector. Let as usual ∇ = ( ∂
∂z1 , . . . ,

∂
∂zn ).

Definition 4.0.12. Let f : [a, b] → P(Rn) be a smooth flow and let t ∈ [a, b]. The
normal velocity vector of the flow at x ∈ ∂f(t) is defined as

−∂d

∂t
(x, t) ∇d(x, t). (4.2)

1Even if the time variable is present, for simplicity of notation we still use here the symbol d, as in
(2.4).
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Note that the normal velocity vector is unchanged if we replace d with dfc in (4.2).

Remark 4.0.13. If we define

η :=
1

2
(d)2 in Rn × [a, b], (4.3)

then η ∈ C∞(A× [a, b]) and

∂d

∂t
∇d =

∂∇η
∂t

on ∂f(t).

4.0.1.1. Normal velocity using parametrizations. Using also the results in Chapter 2,
one can prove that f : [a, b] → P(Rn) is a smooth compact flow (resp. a smooth flow) if
and only if there exist a smooth compact (resp. smooth) (n− 1)-dimensional manifold S
without boundary and a map ϕ ∈ C∞(S × [a, b]; Rn) such that

(i) for any t ∈ [a, b] the map ϕ(·, t) is a bijection between S and

∂f(t) = ϕ(S, t);

(ii) for any s ∈ S and any t ∈ [a, b] the differential dϕ(s, t) with respect to s is injective.

Hence for any t ∈ [a, b] the map ϕ(·, t) is a smooth embedding of the manifold S in Rn,
and ∂f(t) is the image of the embedding; in addition, ϕ depends smoothly on the variable
t.

Definition 4.0.14. Let s ∈ S, t ∈ [a, b], x = ϕ(s, t). We define V(s, t) as the
orthogonal projection of ∂ϕ

∂t (s, t) on Nx(∂f(t)), that is,

V(s, t) := 〈ν(s, t),
∂ϕ

∂t
(s, t)〉ν(s, t), (4.4)

where ν(s, t) := ∇d(x, t) denotes the unit normal to ∂f(t) at x = ϕ(s, t), pointing toward
Rn \ f(t).

V(s, t) depends only on the set ∂f(t) and not on the way ∂f(t) is parameterized, since
reparameterizations add only tangential components to the velocity. Precisely, let ψ ∈
C∞(S × [a, b];S) be such that for any t ∈ [a, b] the map ψ(·, t) is a smooth diffeomorphism
of S, and set ϕ̃(s, t) := ϕ(ψ(s, t), t). Then the orthogonal projections of ∂ eϕ

∂t (s, t) and

of ∂ϕ
∂t (ψ(s, t), t) on Nx(∂f(t)), x = ϕ(ψ(s, t), t), are equal, since ∂ eϕ

∂t = dϕ∂ψ
∂t + ∂ϕ

∂t , and

dϕ(ψ(s, t), t)∂ψ(s,t)
∂t ∈ Tx(∂f(t)). On the other hand, orthogonal projections of ∂ϕ

∂t on lines
different from the normal line may depend in general on parameterizations.

Proposition 4.0.15. For any s ∈ S and any t ∈ [a, b] we have

−∂d

∂t
(x, t) ∇d(x, t) = V(s, t), x := ϕ(s, t) ∈ ∂f(t). (4.5)

Proof. We know that d(ϕ(s, t), t) = 0 for any s ∈ S and any t ∈ [0, T ]. Hence,
differentiating with respect to t and setting x := ϕ(s, t), we get

〈∂ϕ
∂t

(s, t),∇d(x, t)〉+ ∂d

∂t
(x, t) = 0. (4.6)

Then (4.5) follows from (4.4). !
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4.0.1.2. The diffeomorphism Φ between S × (−ρ, ρ)× [a, b] and A× [a, b]. If f : [a, b]→
P(Rn) is a smooth compact flow, in general for two different t1, t2 ∈ [a, b] it may happen
that Σ(t1) ∩ Σ(t2) += ∅2. On the other hand,

t1 += t2 ⇒ {(x, t1) : x ∈ Σ(t1)} ∩ {(x, t2) : x ∈ Σ(t2)} = ∅. (4.7)

We let s : A× [a, b]→ S be the map defined as follows: given (z, t) ∈ A× [a, b], the point
ϕ(s(z, t), t) ∈ ∂E(t) is the unique projection point of z on ∂E(t), namely

z − ϕ(s(z, t), t) = d(z, t)∇d(z, t). (4.8)

We define the map Φ ∈ C∞(A× [a, b];S × (−ρ, ρ)× [a, b]) as

Φ(z, t) := (s(z, t), d(z, t), t).

The map Φ can be inverted, so that Φ−1 ∈ C∞(S × (−ρ, ρ)× [a, b]; A× [a, b]),

Φ−1(s, d, t) = (z, t), z(s, d, t) = ϕ(s, t) + dn(s, t).

Example 4.0.16. Let n = 2, e1 = (1, 0), and let f : [0, 1]→ P(R2) be the smooth flow
consisting of the initial disk f(0) = {z ∈ R2 : |z| ≤ 1} which translates in the e1-direction
with constant scalar speed v > 0, i.e., f(t) = {z ∈ R2 : |z − tve1| ≤ 1} for t ∈ [0, 1]. We
have d(z, t) = |z − tve1| − 1, and the normal velocity vector at z ∈ ∂f(0) equals 〈z, ve1〉z.

Definition 4.0.17. The quantity 〈∂ϕ∂t (s, t),∇d(x, t)〉 is called normal velocity of the
flow and equals −∂d

∂t (x, t).

Finally, let e ∈ Sn−1 be a unit vector of Rn. The velocity vector of the flow in the
direction e at x ∈ ∂f(t) is defined as

−〈∇d(x, t), e〉−1∂d(x, t)

∂t
e,

and it is such that its orthogonal projection on Nx(∂f(t)) is the normal velocity vector at
x. The velocity of the flow at x in the direction e is defined as −〈∇d(x, t), e〉−1 ∂d

∂t (x, t).

Remark 4.0.18. The normal velocity vector can also be expressed as follows. Let
u : Rn × [a, b] → R be a continuous function which is smooth in A× [a, b], where A ⊂ Rn

is an open set containing ∪t∈[a,b]{u(·, t) = 0}, and such that u2 + |∇u|2 > 0 in A × [a, b].
Then f : [a, b] → P(Rn) defined as f(t) := {z ∈ Rn : u(z, t) ≤ 0} is a smooth flow,
and ∂f(t) = {z ∈ Rn : u(z, t) = 0}. Letting ut := ∂u

∂t , the normal velocity vector equals
− ut

|∇u|
∇u
|∇u| . If in addition there exists v ∈ C∞(Rn−1×[a, b]) such that u(s, zn, t) := v(s, t)−zn,

we can parametrize the flow as (s, t) → ϕ(s, t) := (s, v(s, t)). Therefore ∂ϕ
∂t = (0, ∂v

∂t ), and
the normal velocity can be written as

〈∂ϕ
∂t

(s, t),∇d〉∇d =
∂v
∂t

1 + |∇v|2 (−∇v, 1), (4.9)

where ∇v on the right hand side is the gradient with respect to s.

2If f is a smooth compact mean curvature flow it happens that Σ(t1)∩Σ(t2) = ∅ if, for instance, Σ(a)
has nonnegative mean curvature.
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The definition of smooth flows can be generalized as follows3.

Definition 4.0.19. We say that f is a generalized smooth flow in [a, b] if there exist
a, b ∈ R, a < b such that f : [a, b] → P(Rn), if (i) of Definition 4.0.10 holds, and
if for any t ∈ [a, b] there exists an open set and At ⊆ Rn such that At ⊇ ∂f(t), and

d ∈ C∞
( ⋃

t∈[a,b]

(At × {t})
)
. We say that f is a generalized smooth compact flow if in

addition the set {(z, t) : t ∈ [a, b], z ∈ f(t)} has compact boundary.

Definition (4.0.19) can be given in the same way if a = −∞ and/or b = +∞.

4.1. Smooth mean curvature flows with forcing term

We are now in a position to define classical mean curvature flow of boundaries using
the signed distance function d defined in (4.1).

From now on the function g (that stands for a driving force) will be assumed to satisfy
the following properties:

g ∈ C∞(Rn × [0, +∞)) ∩ L∞(Rn × [0, +∞));
there exists a constant Lg > 0 such that

|g(z, t)− g(y, t)| ≤ Lg|z − y|, z, y ∈ Rn, t ∈ [0, +∞). (4.10)

***queste ipotesi su g non sono necessarie tutte, perche’ i flussi sono compatti ***

Definition 4.1.1. Let f : [a, b]→ P(Rn) be a smooth flow. We say that f is a smooth
mean curvature flow with forcing term g (in [a, b]), if

∂d

∂t
(x, t)∇d(x, t) = (∆d(x, t) + g(x, t))∇d(x, t), t ∈ [a, b], x ∈ ∂f(t). (4.11)

If in addition f is a smooth compact flow we say that f is a smooth compact mean curvature
flow with forcing term g in [a, b], and we write f ∈ KFg. When g ≡ 0 we say that f is a
smooth mean curvature flow; moreover, we write f ∈ KF in place of f ∈ KF0.

Remark 4.1.2. If f : [a, b] → P(Rn), f ∈ KFg, then the map f c : [a, b] → P(Rn) is a
smooth compact mean curvature flow with forcing term −g, so that f c ∈ KF−g.

Let f : [a, b] → P(Rn) be a smooth flow. Recall our notation:

ν(s, t) = ∇d(x, t) =: n(x, t), t ∈ [a, b], x = ϕ(s, t) ∈ Σ(t),

H(x, t) = ∆d(x, t) =: H(s, t), t ∈ [a, b], x = ϕ(s, t) ∈ Σ(t).

We also set
H(s, t) := −∆d(x, t)∇d(x, t),

Then f ∈ KF if and only if

V(s, t) = −H(s, t), s ∈ S, t ∈ [a, b].

3As we will see, the barriers’ theory remains unchanged if one uses smooth compact mean curvature
flows or generalized smooth compact mean curvature flows: see Remark 9.0.27 in Chapter 9.
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Remark 4.1.3. Let g ≡ 0. With the notation of Remark 4.0.13, recalling (2.18), we
have that (4.11) can be written equivalently as

∂∇η
∂t

(x, t) = ∆∇η(x, t), t ∈ [a, b], x ∈ ∂f(t). (4.12)

Remark 4.1.4. Recalling that |∇d(z, t)| = 1 for any (z, t) ∈ A × [a, b], the system in
(4.11) is equivalent to

∂d

∂t
(x, t) = ∆d(x, t) + g(x, t), t ∈ [a, b], x ∈ ∂f(t) (4.13)

which, in turn, is equivalent to the system





∂d

∂t
= ∆d + g,

d(·, t) = 0,

t ∈ [a, b]. (4.14)

We conclude this section with the definition of smooth sub/supersolutions of mean
curvature flow, which will be useful in the sequel.

Definition 4.1.5. Let f : [a, b] → P(Rn) be a smooth compact flow. We write f ∈
KF≥

g if
∂d

∂t
(x, t) ≥ ∆d(x, t) + g(x, t), t ∈ [a, b], x ∈ ∂f(t). (4.15)

Similarly, we write f ∈ KF>
g (resp. f ∈ KF≤

g , f ∈ KF<
g ) if the inequality > (resp. ≤, <)

holds in (4.15).

4.2. Examples

In this section we give some examples.

Example 4.2.1. Let n = 1, f : [a, b] → P(R), f ∈ KFg, and let d, A be as in Definition
4.0.10. Since df ∈ C∞(A), it follows that ∂f(t) is a finite union of points, so that f(t) is a
finite union of intervals for t ∈ [a, b], evolving in a smooth way. Then d(·, t) is linear in a
neighbourhood of each extremum of the intervals, and hence ∆d = 0 in this neighbourhood.
Assume that [x−(t), x+(t)] is one of the intervals composing f(t) for t ∈ [a, b]. Note that

∂d

∂t
(x−(t), t) =

dx−

dt
(t),

∂d

∂t
(x+(t), t) = −dx+

dt
(t), t ∈ [a, b].

Hence by (4.13) we get

dx−

dt
(t) = −g(x−(t), t),

dx+

dt
(t) = g(x+(t), t), t ∈ [a, b]. (4.16)

Example 4.2.2. Let v ∈ C∞(Rn−1) and assume that E := {(s, zn) ∈ Rn−1 × R :
zn ≥ v(s)} is such that ∂E has zero mean curvature. Then, given T > 0, the map
f : [0, T ]→ P(Rn), f(t) := E for any t ∈ [0, T ], is a smooth mean curvature flow starting
from E. Hence smooth graphs with vanishing mean curvature are stationary solutions to
mean curvature flow.
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Example 4.2.3. Let R0 > 0 and y ∈ Rn; a smooth compact mean curvature flow
starting from the ball BR0(z0) is the ball f(t) = BR(t)(z0), where

R(t) =
√

R2
0 − 2(n− 1)t, t ∈ [0, T ], T < t† :=

R2
0

2(n− 1)
.

Indeed d(z, t) = |z− z0| −R(t), hence df ∈ C∞((Rn \ {z0})× [0, T ]), and ∂d
∂t (z, t) = −Ṙ(t),

∇d(z, t) =
z − z0

|z − z0|
, ∇2d(z, t) =

1

|z − z0|

(
Id− z − z0

|z − z0|
⊗ z − z0

|z − z0|

)
, ∆d(z, t) =

n− 1

|z − z0|
.

Hence (4.13) becomes

Ṙ(t) = −n− 1

R(t)
. (4.17)

Coupled with R(0) = R0, the solution is R(t) =
√

R2
0 − 2(n− 1)t. Observe that

BR(t)(z0) =

√
1− t

t†
BR0(z0).

Note that

lim
t↑t†

∫

∂BR(t)(z0)

H2 dHn−1 =






+∞ if n = 2,

16π if n = 3,

0 if n ≥ 4,

∫ t†

0

∫

∂BR(t)

H2 dHn−1 < +∞.

Note also that since H is constant, no informations can be inferred from the L2
Hn−1(∂BR(t)(z0))-

norms of the various derivatives of H .

Example 4.2.4. Let m ∈ {1, . . . , n− 1}, R0 > 0, and let C := {(σ, y) ∈ Rn−m × Rm :
|σ| ≤ R0}. Then a smooth mean curvature flow starting from C is given by the cylinder
f(t) = C(t) = {(σ, y) ∈ Rn−m ×Rm : |σ| ≤ R(t)}, where

R(t) =
√

R2
0 − 2(n−m− 1)t, t ∈ [0, T ], T < t† :=

R2
0

2(n−m− 1)
.

Observe that C(t) =
√

1− t
t†C.

Definition 4.2.5. We say that f is a smooth self-similar evolution if there exist E ⊂
Rn with ∂E ∈ C∞, an interval I ⊆ R, and a smooth function α : I → (0, +∞) such that

f(t) = α(t)E, (4.18)

for any t ∈ I.

Observe that if E and α are as in Definition 4.2.5, then λE and α(t)
λ give raise to the

same self-similar evolution, for any λ > 0. We denote by Imax the maximal open interval
where we can smoothly extend the self-similar solution α.

The following proposition describes a class of special solutions to mean curvature flow.
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Proposition 4.2.6. Let f : I → P(Rn) be a smooth self-similar evolution. If f is
a smooth mean curvature flow then one of the following three conditions hold: setting
d(·) := d(·, E),

(i) there exist t0 ∈ R and T > 0 such that Imax = (−∞, t0), α(t) =

√
t0
T

√
1− t

t0
for

any t ∈ Imax, and

∆d(x) =
1

2T
〈x,∇d(x)〉, x ∈ ∂E; (4.19)

(ii) Imax = R, α′(t) = 0 and

∆d(x) = 0, x ∈ ∂E; (4.20)

(iii) there exist t0 ∈ R and T > 0 such that Imax = (t0, +∞), α(t) =

√
t0
T

√
t

t0
− 1 for

any t ∈ Imax, and

∆d(x) = − 1

2T
〈x,∇d(x)〉, x ∈ ∂E. (4.21)

Conversely, assume that one of the conditions (i)-(iii) holds. Define f : Imax → P(Rn) as
in (4.18). Then f is a smooth mean curvature flow.

Proof. Assume that f in (4.18) is a smooth mean curvature flow. Let z ∈ Rn. We
have

dist (z, f(t)) = inf
y∈f(t)

|y − z| = α(t) inf
y/α(t)∈E

|y/α(t)− z/α(t)| = α(t)dist(z/α(t), E).

Similarly, dist(z, Rn \ f(t)) = α(t)dist(z/α(t), Rn \ E). Hence, if d is the function defined
in (4.1) and d = d is the one defined in (2.4), we have d(z, t) = α(t)d(z/α(t)). Then we
compute:

∇d(z) = ∇d(z/α(t)), ∆d(z) =
1

α(t)
∆d(z/α(t)), (4.22)

∂d

∂t
(z, t) = α′(t)d(z/α(t))− α′(t)

α(t)
〈z,∇d(z/α(t))〉, (4.23)

where ′ denotes differentiation with respect to t. Since ∂f(t) = {z ∈ Rn : d(z, t) = 0} =
α(t)∂E = {z ∈ Rn : d(z/α(t)) = 0}, from (4.23) we deduce

∂d

∂t
(x, t) = −α′(t)

α(t)
〈x,∇d(x/α(t))〉, x ∈ ∂f(t). (4.24)

Using (4.22) and (4.24), equation (4.13) (with g ≡ 0) expressing mean curvature flow of
f(t) becomes an equation for the function d on ∂E which reads as

−α′(t)〈x/α(t),∇d(x/α(t))〉 =
1

α(t)
∆d(x/α(t)), x/α(t) ∈ ∂E,

i.e.,
∆d(x) = −α′(t)α(t)〈x,∇d(x)〉, x ∈ ∂E.



 D
ra

ft
4.2. EXAMPLES 29

Since the left hand side does not depend on t, we deduce that

α′(t)α(t) ≡ α ∈ R, t ∈ I.

We now distinguish the three cases α < 0, α = 0 and α > 0. If α < 0, writing α = − 1
2T

for T > 0, we have α(t) =
√
−α

√
2(t0 − t) for any t ∈ I = (−∞, t0). If α = 0 then (ii)

immediately follows. If α > 0 we have α(t) =
√
α
√

2(t− t0) for any t ∈ I = (t0, +∞).
Conversely, let E ⊂ Rn be such that ∂E ∈ C∞ and (4.19) holds for some T > 0.

Repeating the previous computations in reverse order, one checks that the map f in (??)
is a smooth mean curvature flow on I. Similar reasonings apply in cases (ii) and (iiii). !

In case (i) we say that f is a self-similar contracting mean curvature flow, and in case
(iii) we say that f is a self-similar expanding mean curvature flow.

Remark 4.2.7. In view of Example 3.2.8, equation (4.19) expresses the stationarity
condition of ∂E for the functional in (3.28), and (4.21) expresses the stationarity condition
of ∂E for the functional in (3.29).

Another class of solutions is given by translatory solutions. We say that f : R→ P(Rn)
is a translatory evolution if there exist E ⊂ Rn with ∂E ∈ C∞ and v ∈ Rn such that

f(t) = E + tv, t ∈ R.

In this case we have
d(z, t) = d(z − tv, E),

so that f is a translatory smooth mean curvature flow if and only if

∆d(x) = −〈v,∇d(x)〉, x ∈ ∂E. (4.25)

Note that (4.25) expresses the stationarity condition of ∂E for the functional
∫

∂E

e〈v,n〉t dHn−1.

Example 4.2.8. Let u, A, f and v be as in Remark 4.0.18. Then (4.11) reads as
∂u
∂t

|∇u|
∇u

|∇u|
= div

(
∇u

|∇u|

)
∇u

|∇u|
on {u = 0}, (4.26)

which is invariant under the transformation u → λu, where λ ∈ R \ {0}. Note that if u
is a solution to (4.26) which is smooth in a space time region around one of its level sets
{u(·, t) = λ}, then this level set flows smoothly by mean curvature. Equation (4.26) can
be rewritten in the scalar form as

|∇u|2
(
∂u

∂t
−∆u

)
= −∇iu∇ju∇2

iju on {u = 0}. (4.27)

If |∇u|2 = 1 in a neighbourhood of {u = 0} then problem (4.27) reduces to (4.14), i.e.,





∂u

∂t
= ∆u,

u = 0.
(4.28)
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Moreover, at the points of the graph of v we have that the mean curvature vector equals

−div

(
∇v√

1 + |∇v|2

)
(∇v,−1)√
1 + |∇v|2

. (4.29)

The smooth mean curvature flow of the graph of v is therefore expressed using the equation

∂v

∂t
=

√
1 + |∇v|2 div

(
∇v√

1 + |∇v|2

)

(4.30)

in Rn−1×[a, b]. ***dire qualcosa sulla velocita’ verticale? e sulla equazione senza la radice?
***

Observe that

- if πn(z) := zn then, recalling also (2.14), we have ∂
∂tπn = ∆πn on graph(v)

- the velocity of the flow in the direction en is given by ∂v
∂t

- if n = 2, equation (4.30) takes the form

∂v

∂t
= f(vx)x,

where f(p) = arctg(p) for any p ∈ R.

Example 4.2.9. If we look for special solutions to (4.30) of the form v(s, t) = h(s)+ t,
for some smooth real valued function h, we have to impose

√
1 + |∇h|2 div

(
∇h√

1 + |∇h|2

)

= 1. (4.31)

If we assume n = 2 then (4.31) reduces to the following ordinary differential equation:

h′′

1 + h′2
= (arctg(h′))′ = 1. (4.32)

A solution to (4.32) is given by h(s) = − log(cos s) for s ∈ (−π
2 , π2 ). The corresponding

solution v(s, t) = − log(cos s) + t, for s ∈ (−π
2 , π2 ) and t ∈ [0, +∞) (called grim reaper) is

said to be a translating solution to curvature flow.

Example 4.2.10. Let v ∈ C∞(R, (0, +∞)), and let E be as in Example 2.2.11. It
follows that a smooth mean curvature flow starting from E is given by f : [0, T ]→ P(R3),
f(t) = {(z1, z2, z3) ∈ R3 : (v(z1, t))2 ≤ z2

2 + z2
3}, for some T > 0, and w ∈ C∞(R ×

[0, T ], (0, +∞)) is a solution to

∂w

∂t
=

w′′

1 + (w′)2
− 1

w
, w(·, 0) = v(·). (4.33)

Indeed, to obtain (4.33) it is enough to use (2.29) and use the equality ∂h
∂t /|∇h| = w ∂w

∂t /(w2(w′)2+
z2
2 + z2

3)
1/2, where h(z, t) := 1

2((w(z, t))2 − z2
2 − z2

3).
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Note that the perimeter of E in (a, b)×R2 is given by F(v) = 2π
∫
(a,b) v

√
1 + (v′)2 dz1;

the first variation of F is given by d
dλ
F(v+λϕ)|λ=0 = 2π

∫
(a,b) ϕ

(
(1 + (v′)2)1/2)− v( v′

(1+(v′)2)1/2 )
′
)

dz1.

****

Example 4.2.11. Let λ > 0. Consider in R2 a disk of radius ρλ(t) which evolves
according to (4.13), with ρλ(0) = λ. Then





ρ′λ(t) = − 1

ρλ(t)
+ 1, t ∈ (0, tλ),

ρλ(0) = λ,

where tλ denotes the extinction time. One can verify that if 0 < λ < 1 then tλ ∈ (0, +∞),
and ρλ is a nonnegative concave strictly decreasing function on [0, tλ] such that ρλ(tλ) = 0.
If λ = 1 then ρλ ≡ 1, so that there is no extinction time (so that tλ = +∞) and if λ > 1 then
ρλ is a positive convex strictly increasing function on [0, +∞) such that limt→+∞ ρ′λ(t) = 1
(and again tλ = +∞). Note that

ρλ(t) + log(|λ− ρλ(t)|) = λ + log(|1− λ|) + t.

Remark 4.2.12. Let f : [a, b]→ P(Rn), f ∈ KF . Then

- as a consequence of (3.7) and (4.11) we have

d

dt
|f(t)| = −

∫

∂f(t)

∆d(·, t) dHn−1. (4.34)

Hence if n = 2 then d
dt |f(t)| = −2π.

- As a consequence of (3.23), (4.11) and (4.0.12), we have

d

dt
Hn−1(∂f(t)) = −

∫

∂f(t)

(∆d(·, t))2 dHn−1, t ∈ [a, b], (4.35)

which shows how the perimeter of ∂E(t) is decreasing along a smooth compact
mean curvature flow.

Definition 4.2.13. Let f : [a, b] → P(Rn) be a smooth flow, let df and A be as in
Definition 4.0.10. Let v ∈ C∞(A× [a, b]). We define

dv

dt
(z, t) := −〈∂d

∂t
(z, t)∇d(z, t),∇v(z, t)〉 +

∂v

∂t
(z, t), (z, t) ∈ A× [a, b]. (4.36)

Note that if f ∈ KF then

dv

dt
(z, t) := −∆d(z, t)〈∇d(z, t),∇v(z, t)〉 +

∂v

∂t
(z, t), (z, t) ∈ A× [a, b].
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4.2.1. Extensions. Similarly to Section 2.1.1, we now the define various tangential
operators that will be used in the sequel.

Let f : [a, b] → P(Rn) be a smooth flow, let df and A be as in Definition 4.0.10, set
Σ(t) = ∂f(t) and define

Ξ :=
⋃

t∈[a,b]

(Σ(t)× {t}) .

Let u ∈ C∞(Ξ) and let ue be any smooth extension of u in a neighbourhood U of Ξ. Given
t ∈ [a, b] and x ∈ Σ(t), the tangential gradient ∇Σ(t)u(x, t) of u(·, t) on Σ(t), evaluated at
(x, t), is the orthogonal projection on Σ(t) of ∇ue(x, t). The tangential gradient of u(·, t)
on Σ(t) depends only on the values of u on Ξ. We define u ∈ C∞(U) as

u(z, t) = u(prΣ(t)(z), t) = u(z − d(z, t)∇d(z, t), t) (4.37)

Observe that
∇Σ(t)u(x, t) = ∇u(x, t), t ∈ [a, b], x ∈ ∂f(t). (4.38)

Remark 4.2.14. Let f ∈ KF and h ∈ C∞(Ξ). Then

∂h

∂t
(z, t) =

dh

dt
(z, t), z ∈ A, t ∈ [a, b].

Indeed, from Definition 4.2.13 we have for (z, t) ∈ A× [a, b]

dh

dt
(z, t) = −〈∂d

∂t
(z, t)∇d(z, t),∇h(z, t)〉+ ∂h

∂t
(z, t) =

∂h

∂t
(z, t)

Lemma 4.2.15. Let f ∈ KF , h ∈ C∞(Ξ) and define h ∈ C∞(S × [a, b]) as

h(s, t) := h(ϕ(s, t), t), (s, t) ∈ S × [a, b]. (4.39)

Then for any t ∈ [a, b] we have

h(s, t) = h(z, t), z ∈ A, prΣ(t)(z) = ϕ(s, t), (4.40)

∂h

∂t
(s, t) =

∂h

∂t
(x, t), x = ϕ(s, t) ∈ Σ(t). (4.41)

Proof. Equation (4.40) follows from (4.39) and (4.37). For any λ with |λ| sufficiently
small we have

h(s, t) = h
(
ϕ(s, t) + λ∇d(ϕ(s, t), t), t

)
.

Hence

∂h

∂t
(s, t) = 〈∇h(x + λ∇d(x, t), t),

∂ϕ

∂t
(s, t) + λ

∂

∂t
(∇d(ϕ(s, t), t))〉+ ∂h

∂t
(x + λ∇d(x, t), t).

Setting λ = 0 we have

∂h

∂t
(s, t) = 〈∇h(x, t),

∂ϕ

∂t
(s, t)〉+ ∂h

∂t
(x, t) =

∂h

∂t
(x, t)

since ∇h(x, t) ∈ Tx(Σ(t)) while ∂ϕ
∂t (s, t) ∈ Nx(Σ(t)). !
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If X ∈ C∞(∪t∈[a,b] (Σ(t)× {t}; Rn)), we define X : A× [a, b] → Rn as

X(z, t) := X(prΣ(t)(z), t).

Given t ∈ [a, b], the tangential divergence divΣ(t)X is the trace of the orthogonal pro-
jection on Σ(t) of the space gradient of any smooth extension of X in a neighbourhood of
Σ(t). Observe that

divΣ(t)X = divX on Σ(t).

We denote by ∆Σ(t)u the tangential laplacian of u on Σ(t), defined as ∆Σ(t)u :=
divΣ(t)(∇Σ(t)u). Recall that

∆Σ(t)u = ∆u on Σ(t). (4.42)

Setting n = nf(t) and H = HΣ(t), recall that n = ∇df in A× [a, b], and that

H = tr(∇2dfG), G := (Id− df∇2df)
−1 in A× [a, b]. (4.43)

4.3. Huisken’s monotonicity formula

In this section we prove Huisken’s monotonicity formula, which describes how the
perimeter of a smooth hypersurface flowing by mean curvature changes when weighted
with a suitable backward heat kernel. We begin with the following observation.

Lemma 4.3.1. Let f : [a, b]→ P(Rn), f ∈ KF . Let ψ ∈ C∞(Rn × [a, b]). Then

d

dt

∫

∂f(t)

ψ dHn−1 =

∫

∂f(t)

(
−ψ (∆d)2 − 〈∇ψ,∇d〉∆d +

∂ψ

∂t

)
dHn−1. (4.44)

Proof. It follows from (3.27) with the choice a = ψ, and recalling that V := −∆d∇d
is the velocity field of ∂f(t). !

Note that, using (3.2.3), and assuming ψ > 0, from (4.44) we deduce

d

dt

∫

∂f(t)

ψ dHn−1 =−
∫

∂f(t)

ψ

(
H +

1

ψ
〈∇ψ, n〉

)2

dHn−1 (4.45)

+

∫

∂f(t)

(
1

ψ
〈∇ψ, n〉2 +

∂ψ

∂t
+ divΣ(t)∇ψ

)
dHn−1.

In the particular case ψ ≡ 1, (4.45) coincides with (4.35).

Theorem 4.3.2. Let z0 ∈ Rn, t0 ∈ [a, b] and set

ρ(z, t) = ρ(z0,t0)(z, t) :=
e−

|z−z0|
2

4(t0−t)

(4π(t0 − t))
n−1

2

, z ∈ Rn, t < t0. (4.46)

Then
d

dt

∫

∂f(t)

ρ dHn−1 = −
∫

∂f(t)

ρ

(
H +

1

ρ
〈∇ρ, n〉

)2

dHn−1 ≤ 0. (4.47)


