CHAPTER 4

Smooth flows: preliminary version

This version is in progress: please, take this into account. All corrections and comments
are welcome.
In what follows we denote by P(R™) the class of all subsets of R".

DEFINITION 4.0.10. We say that f is a smooth flow if there exist a,b € R, a < b such
that f : [a,b] — P(R"™) and
(i) the set {(z,t) : t € [a,b],z € f(t)} is closed;
(ii) letting'
Az, 1) = d(z, (1) = dist(z, £(1) —dist(z,R" \ f(£)), 2 €R" tefad, (41)
there exists an open set A C R™ such that A D 9f(t) for any t € [a,b], and
d € C®(A x [a,b]).
We say that f is a smooth compact flow if in addition Of(t) is compact for any t € [a,b].
Note that f is a smooth flow if and only if

fet) =R\ f(2), t € la,b,
is a smooth flow. Note also that df(t) € C* for any ¢ € [a, b], and if f is a smooth compact
flow then 0f(t) € C> N KC(R™) for any t € [a, b].
As usual, for x € 9f(t), N(0f(t)) and T,(0f(t)) denote the normal line and the
tangent space, respectively, to df(t) at .

Notation: When no confusion is possible, we sometimes use the notation

S(t) = OF(t).

DEFINITION 4.0.11. Let OE € C*= and let f : [a,b] — P(R"™) be a smooth flow. If
f(a) = E we say that [ starts from E at time a.

Let us recall the definition of normal velocity vector. Let as usual V = (% ceey %).

DEFINITION 4.0.12. Let f : [a,b] — P(R") be a smooth flow and let t € [a,b]. The
normal velocity vector of the flow at x € Of(t) is defined as

ad
—E(x,t) Vd(z,t). (4.2)

Even if the time variable is present, for simplicity of notation we still use here the symbol d, as in
(2.4).
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Note that the normal velocity vector is unchanged if we replace d with d in (4.2).
REMARK 4.0.13. If we define

n = %(d)2 in R" x [a, b], (4.3)
then n € C*(A x [a, b]) and
ad __0Vn

4.0.1.1. Normal velocity using parametrizations. Using also the results in Chapter 2,
one can prove that f : [a,b] — P(R™) is a smooth compact flow (resp. a smooth flow) if
and only if there exist a smooth compact (resp. smooth) (n — 1)-dimensional manifold S
without boundary and a map ¢ € C*(S X [a, b]; R™) such that

(i) for any t € [a,b] the map ¢(-,t) is a bijection between S and

Of(t) = #(S,1);
(ii) for any s € S and any ¢ € [a, b] the differential dy (s, t) with respect to s is injective.

Hence for any ¢ € [a,b] the map ¢(+,t) is a smooth embedding of the manifold S in R",
and Of(t) is the image of the embedding; in addition, ¢ depends smoothly on the variable
t.

DEFINITION 4.0.14. Let s € S, t € [a,b], v = p(s,t). We define V(s,t) as the
orthogonal projection of %—f(s, t) on N(Of(t)), that is,
0
V(s:8) = (v(s,1), Sr(s, )u(s, 1), (4.4)
where v(s,t) := Vd(z,t) denotes the unit normal to Of(t) at x = ¢(s,t), pointing toward
R™\ f(#).

V (s, t) depends only on the set df(¢) and not on the way 0f(t) is parameterized, since
reparameterizations add only tangential components to the velocity. Precisely, let ¢ €
C>(8 % [a,b]; S) be such that for any ¢ € [a, b] the map ¥(-,?) is a smooth diffeomorphism
of S, and set @(s,t) := @(¥(s,t),t). Then the orthogonal projections of %—f(s,t) and
of %—‘f(qﬁ(s,t),t) on N, (0f(t)), © = ¢(¢(s,t),t), are equal, since % = d(p%—f + %—f, and
dp((s,t), t)awa(f’t) € T,(0f(t)). On the other hand, orthogonal projections of %2 on lines
different from the normal line may depend in general on parameterizations.

PROPOSITION 4.0.15. For any s € S and any t € [a,b] we have

‘%@”f) Vd(z,t) = V(s,1),  :=p(s,t) € Of(1). (4.5)

PrROOF. We know that d(p(s,t),t) = 0 for any s € S and any t € [0,7]. Hence,
differentiating with respect to ¢ and setting x := (s, t), we get

(525,0), Vi, 1)) + 5 ,1) =0, (4.6)

Then (4.5) follows from (4.4). O
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4.0.1.2. The diffeomorphism ® between S x (—p, p) X [a,b] and A X [a,b]. If f : [a,b] —
P(R™) is a smooth compact flow, in general for two different ¢;,¢5 € [a,b] it may happen
that 3(t1) N X(t2) # 0. On the other hand,
tl 7é tg = {(.T,tl) X e Z(tl)} N {(l',tg) T e Z(tg)} = @ (47)
We let s : A x [a,b] — S be the map defined as follows: given (z,t) € A X [a,b], the point
©(s(z,t),t) € OE(t) is the unique projection point of z on OF(t), namely
z—p(s(z,t),t) = d(z,t)Vd(z,1). (4.8)
We define the map ® € C*(A X [a,b]; S x (—p, p) X [a,b]) as
Bz, 1) = (s(2, 1), d(z, ), 1)
The map ® can be inverted, so that @' € C*(8 x (—p, p) X [a,b]; A X [a,b]),
(s, d ) = (2,1),  2s,dt) = p(s,t) +dn(s, t).

EXAMPLE 4.0.16. Let n = 2, e; = (1,0), and let f : [0,1] — P(R?) be the smooth flow
consisting of the initial disk f(0) = {z € R?: |z| < 1} which translates in the e;-direction
with constant scalar speed v > 0, i.e., f(t) ={z € R? : |z — tvey| < 1} for ¢ € [0,1]. We
have d(z,t) = |z — tve;| — 1, and the normal velocity vector at z € 9f(0) equals (z, ve)z.

DEFINITION 4.0.17. The quantity (%—f(s,t),Vd(x,t)) is called normal velocity of the

flow and equals —24(z,t).

Finally, let e € S*! be a unit vector of R®. The velocity vector of the flow in the
direction e at x € 0f(t) is defined as
ad(z,t)
ot

and it is such that its orthogonal projection on N, (9f(t)) is the normal velocity vector at

. The velocity of the flow at z in the direction e is defined as —(Vd(z,t), )% (x, t).

—(Vd(z,t),e)"

¢,

REMARK 4.0.18. The normal velocity vector can also be expressed as follows. Let
u : R™ X [a,b] — R be a continuous function which is smooth in A x [a, b], where A C R"
is an open set containing Usepp{u(-,t) = 0}, and such that u® + [Vul* > 0 in A x [a, b].
Then f : [a,b] — P(R") defined as f(t) := {z € R" : u(z,t) < 0} is a smooth flow,

and 0f(t) = {z € R™ : u(z,t) = 0}. Letting u; := %, the normal velocity vector equals
—%%. If in addition there exists v € C*(R" ™ x [a, b]) such that u(s, z,,,t) := v(s,t)—2zy,
we can parametrize the flow as (s,t) — ¢(s,t) := (s,v(s,t)). Therefore %—‘f = (0,%Y), and
the normal velocity can be written as

Op 9

——(s,1), Vd)Vd = —2—(-Vu,1 4.9

<at (87 )7V > 1+|VU|2( v, )7 ( )

where Vv on the right hand side is the gradient with respect to s.

2If f is a smooth compact mean curvature flow it happens that ¥(t,) N X (t2) = 0 if, for instance, %(a)
has nonnegative mean curvature.
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The definition of smooth flows can be generalized as follows?®.

DEFINITION 4.0.19. We say that f is a generalized smooth flow in [a,b] if there exist
a,b € R, a < b such that f : [a,b] — P(R™), if (i) of Definition 4.0.10 holds, and
if for any t € [a,b] there exists an open set and Ay C R™ such that Ay 2 Of(t), and
d e C°°< U (A x {t})) We say that f is a generalized smooth compact flow if in

t€(a,b]

addition the set {(z,t) : t € [a,b],z € f(t)} has compact boundary.

Definition (4.0.19) can be given in the same way if « = —oc0 and/or b = +oc.

4.1. Smooth mean curvature flows with forcing term

We are now in a position to define classical mean curvature flow of boundaries using
the signed distance function d defined in (4.1).

From now on the function ¢ (that stands for a driving force) will be assumed to satisfy
the following properties:

g € C(R"™ x [0, +00)) N L=(R" x [0, +-00));
there exists a constant L, > 0 such that
9(2,t) — gy, )| < Lylz —yl, 2,y ER", T €0, +00). (4.10)

*H*queste ipotesi su g non sono necessarie tutte, perche’ i flussi sono compatti ***

DEFINITION 4.1.1. Let f : [a,b] — P(R™) be a smooth flow. We say that f is a smooth
mean curvature flow with forcing term g (in [a,b]), if
od

E(x, t)Vd(z,t) = (Ad(z,t) + g(z,t))Vd(zx,t), t € [a,b], x € Of(t). (4.11)

If in addition f is a smooth compact flow we say that f is a smooth compact mean curvature
flow with forcing term g in [a,b], and we write f € KF,. When g = 0 we say that f is a
smooth mean curvature flow; moreover, we write f € KF in place of f € KFy.

REMARK 4.1.2. If f : [a,0] — P(R"), f € KF,, then the map f¢: [a,b] — P(R") is a
smooth compact mean curvature flow with forcing term —g, so that f¢ e KF_,.

Let f:]a,b] — P(R™) be a smooth flow. Recall our notation:
v(s,t) = Vd(z,t) = n(z,t), t € [a,b],z = p(s,t) € X(t),
H(z,t) = Ad(x,t) =: H(s, ), t € la, b,z = ¢(s,t) € X(t).
We also set
H(s,t) := —Ad(z,t)Vd(x,t),
Then f € KF if and only if
V(s,t) = —H(s, t), seS,te€a,bl.

3As we will see, the barriers’ theory remains unchanged if one uses smooth compact mean curvature
flows or generalized smooth compact mean curvature flows: see Remark 9.0.27 in Chapter 9.



4.2. EXAMPLES 26

REMARK 4.1.3. Let ¢ = 0. With the notation of Remark 4.0.13, recalling (2.18), we
have that (4.11) can be written equivalently as
oVn
ot

REMARK 4.1.4. Recalling that |Vd(z,t)| =1 for any (z,t) € A X [a,b], the system in
(4.11) is equivalent to

(x,t) = AVn(z,t), t € la,b], x € Of(t). (4.12)

%(w,t} = Ad(z,t) + g(x, 1), t € la,b], x € 0f(t) (4.13)
which, in turn, is equivalent to the system
% = Ad + g,
t € |a,b. (4.14)
d(-,t) =0,

We conclude this section with the definition of smooth sub/supersolutions of mean
curvature flow, which will be useful in the sequel.

DEFINITION 4.1.5. Let f : [a,b] — P(R™) be a smooth compact flow. We write f €
KFZ if
od
E(m,t) > Ad(x,t) + g(x,t), t € la,b], x € 0f(t). (4.15)
Similarly, we write f € KF,; (resp. f € KFy, f € KFy) if the inequality > (resp. <, <)
holds in (4.15).

4.2. Examples

In this section we give some examples.

EXAMPLE 4.2.1. Let n =1, f : [a,b] — P(R), f € KF,, and let d, A be as in Definition
4.0.10. Since dy € C*(A), it follows that df(t) is a finite union of points, so that f(¢) is a
finite union of intervals for ¢ € [a,b], evolving in a smooth way. Then d(-,t) is linear in a
neighbourhood of each extremum of the intervals, and hence Ad = 0 in this neighbourhood.
Assume that [z (¢), 27 (¢)] is one of the intervals composing f(t) for ¢ € [a, b]. Note that

od, _ dx~ od dx™
a(x (t)vt) = W(t% a(ib‘—i_(t),t) = _W(t)v te [av b]

Hence by (4.13) we get
dx~ 3 dx™
EXAMPLE 4.2.2. Let v € C®(R"!) and assume that £ := {(s,z,) € R" ! x R :
zn > wv(s)} is such that OF has zero mean curvature. Then, given 7" > 0, the map
f:10,T] = P(R™), f(t) := E for any t € [0,T], is a smooth mean curvature flow starting
from E. Hence smooth graphs with vanishing mean curvature are stationary solutions to
mean curvature flow.
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ExXAMPLE 4.2.3. Let Ry > 0 and y € R"; a smooth compact mean curvature flow
starting from the ball Bg, (%) is the ball f(t) = Br)(20), where

RS
2(n—1)

Indeed d(z,t) = |z — 2| — R(t), hence d; € C®((R"\ {2}) x [0,7]), and 2 (z,¢) = —R(),

R(t) = \/R?)—Q(n—l)t, tel0,T], T<th:=

- 1 . . 1
Vd(zat> = ﬂa VQd(Zat> = 1. (Id - s A B ) ) Ad(27t> = - .
|2 — 20| |z = 2| |2 — 20| |2 — 20| |2 — 2|
Hence (4.13) becomes
. n—1
R(t) = — . 4.17
0=- (4.17

Coupled with R(0) = Ry, the solution is R(t) = \/RZ — 2(n — 1)t. Observe that

/ t
BR(t) (Z()) = ]_ — t_TBRO (Z())

Note that
+oo if n= 2, "
lim H? dH" ' =< 167 if n =3, / / H? dH" ' < 400.
tTtT 8BR(1})(ZO) 0 lf n > 4 0 8BR(t)

Note also that since H is constant, no informations can be inferred from the L7 ,_, (0Bg (20))-
norms of the various derivatives of H.

EXAMPLE 4.2.4. Let m € {1,...,n— 1}, Ry > 0, and let C := {(0,y) € R* ™ x R™:
lo| < Rp}. Then a smooth mean curvature flow starting from C' is given by the cylinder
F(t) = C(t) = {(,) € R*™ x R™: |o] < R(t)}, where

g

R(t) =A/R —2(n—m— 1), t€[0.T], T<i:= et

Observe that C(t) = /1 — £C.

DEFINITION 4.2.5. We say that f is a smooth self-similar evolution if there exist ' C
R™ with OF € C*, an interval I C R, and a smooth function « : I — (0,+00) such that

f(t) =a(t)E, (4.18)
for anyt e I.

Observe that if E and « are as in Definition 4.2.5, then A\F and @ give raise to the
same self-similar evolution, for any A > 0. We denote by I,,,, the maximal open interval
where we can smoothly extend the self-similar solution a.

The following proposition describes a class of special solutions to mean curvature flow.
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PROPOSITION 4.2.6. Let f : I — P(R"™) be a smooth self-similar evolution. If f is
a smooth mean curvature flow then one of the following three conditions hold: setting
d() = d('7E)7
t
(i) there exist to € R and T > 0 such that . = (—00,t), a(t) =4/ 7(1 1—— for

any t € L., and
1

Ad(z) = 57

(ii) Imax =R, &/(t) =0 and
Ad(x) =0, x € OL;

(4.20)
t
iii) there exist tg € R and T' > 0 such that Iya.x = (to, +00), Y B | for
(i) t
0

any t € Lyax, and

—(z,Vd(z)), x € OF, (4.19)

1
—5(w Vd(@),  x€dE, (4.21)

Conversely, assume that one of the conditions (i)-(iii) holds. Define f : Inax — P(R™) as
n (4.18). Then f is a smooth mean curvature flow.

Ad(x) =

PROOF. Assume that f in (4.18) is a smooth mean curvature flow. Let z € R". We
have
dist (-, () = nf =2 =a(t)_inf _lyfa(t) ~=fa(t)] = a()dist(z/a(0), E).
ye y/a
Similarly, dist(z,R™\ f(t)) = a(t)dist(z/a(t), R™\ E). Hence, if d is the function defined
n (4.1) and d = d is the one defined in (2.4), we have d(z,t) = a(t)d(z/a(t)). Then we
compute:

Vd(z) = Vd(z/a(t)), Ad(z) = ﬁAd(z/a(t)), (4.22)
ad o a/(t)
g (& t) = a(t)d(z/a(t) - o) (2, Vd(z/a(1))), (4.23)

where ' denotes differentiation with respect to t. Since df(t) = {z € R™ : d(z,t) = 0} =
a(t)OE = {z € R" : d(z/a(t)) = 0}, from (4.23) we deduce
ad o/ (t)
"N t) = —
ot (%) a(t)

Using (4.22) and (4.24), equation (4.13) (with ¢ = 0) expressing mean curvature flow of
f(t) becomes an equation for the function d on OF which reads as

—a/(t){z/a(t), Vd(z/a(t))) = —<Ad(z/a(t),  z/alt) € OF,

(x,Vd(z/a(t))), x € 0f(t). (4.24)

b
alt)

Ad(z) = —d/(t)a(t){x, Vd(x)), r € 0E.

ie.,
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Since the left hand side does not depend on ¢, we deduce that
d(t)a(t) =a e R, tel.
1

We now distinguish the three cases @ < 0, « =0 and a > 0. If a < 0, writing a = —55

for T > 0, we have a(t) = \/—a\/2(to —t) for any t € [ = (—o0,ty). If @ = 0 then (ii)
immediately follows. If & > 0 we have a(t) = /ay/2(t — ty) for any t € I = (to, +00).
Conversely, let £ C R"™ be such that 0E € C* and (4.19) holds for some 7" > 0.
Repeating the previous computations in reverse order, one checks that the map f in (?7)
is a smooth mean curvature flow on I. Similar reasonings apply in cases (ii) and (iiii). O

In case (i) we say that f is a self-similar contracting mean curvature flow, and in case
(ili) we say that f is a self-similar expanding mean curvature flow.

REMARK 4.2.7. In view of Example 3.2.8, equation (4.19) expresses the stationarity
condition of OF for the functional in (3.28), and (4.21) expresses the stationarity condition
of OF for the functional in (3.29).

Another class of solutions is given by translatory solutions. We say that f : R — P(R")
is a translatory evolution if there exist £ C R™ with 0F € C*° and v € R” such that
f(t) = E + tu, teR.

In this case we have
d(z,t) = d(z —tv, E),
so that f is a translatory smooth mean curvature flow if and only if

Ad(z) = —(v, Vd(z)), x € OF. (4.25)
Note that (4.25) expresses the stationarity condition of OF for the functional

/ €<v,n>t danl'
)

EXAMPLE 4.2.8. Let u, A, f and v be as in Remark 4.0.18. Then (4.11) reads as

ou
= Yu Vu Vu
Vul [Vl W(\w)rw on {u =0}, (4.26)

which is invariant under the transformation v — Au, where A € R\ {0}. Note that if u
is a solution to (4.26) which is smooth in a space time region around one of its level sets

{u(-,t) = A}, then this level set flows smoothly by mean curvature. Equation (4.26) can
be rewritten in the scalar form as

|Vul? (2—1: — Au) = —VauVuViu  on {u=0}. (4.27)
If [Vu|? = 1 in a neighbourhood of {« = 0} then problem (4.27) reduces to (4.14), i.e.,
ou
o A (4.28)

u=20.
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Moreover, at the points of the graph of v we have that the mean curvature vector equals

_div Vv (Vo,-1) (4.29)
V1+ Vo2 ) /14 |Vo]?

The smooth mean curvature flow of the graph of v is therefore expressed using the equation

ov Vo
— = /14 |Vo|? di - 4.30
ot IVl div ( 1+ |W|2) (4.50)

in R"! x [a, b]. ***dire qualcosa sulla velocita’ verticale? e sulla equazione senza la radice?
sk

Observe that
- if m,(2) := 2" then, recalling also (2.14), we have &7, = A7, on graph(v)
- the velocity of the flow in the direction e, is given by 2—7;

- if n = 2, equation (4.30) takes the form

Jv
a - f(vw)l'a
where f(p) = arctg(p) for any p € R.

EXAMPLE 4.2.9. If we look for special solutions to (4.30) of the form v(s,t) = h(s) +1,
for some smooth real valued function h, we have to impose

3 d; Vi _
V 1+ |Vh|? div (W) = 1. (4.31)

If we assume n = 2 then (4.31) reduces to the following ordinary differential equation:

"

m = (arctg(h'))' =1. (432)
A solution to (4.32) is given by h(s) = —log(coss) for s € (=3, 7). The corresponding
solution v(s,t) = —log(coss) + ¢, for s € (=3, %) and ¢ € [0, +00) (called grim reaper) is

said to be a translating solution to curvature flow.

EXAMPLE 4.2.10. Let v € C*(R, (0,+00)), and let £ be as in Example 2.2.11. It
follows that a smooth mean curvature flow starting from E is given by f : [0,7] — P(R?),
f(t) = {(21,22,23) € R® : (v(21,1))* < 25 + 23}, for some T > 0, and w € C®(R x
0,77, (0, +00)) is a solution to

ow w' 1

T w0 =) (433)

Indeed, to obtain (4.33) it is enough to use (2.29) and use the equality 2/|Vh| = w2 /(w*(w')*+

23+ 23)Y/2, where h(z,t) := S((w(z,1))? — 23 — 23).
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Note that the perimeter of F in (a,b) x R? is given by F(v) = 27 f(a,b) vy/1+ (V') dzy;
the first variation of F is given by %j’-—(v%—)\(p)uzo =27 [ ¥ <(1 + (v')$)Y?) — U(W)/) dz.

Kokokosk

EXAMPLE 4.2.11. Let A > 0. Consider in R? a disk of radius p,(¢) which evolves
according to (4.13), with p,(0) = A\. Then
1

()
pA(0) = A,

+1, t € (0,t),

where t* denotes the extinction time. One can verify that if 0 < A < 1 then t* € (0, +00),
and py is a nonnegative concave strictly decreasing function on [0, #}] such that py(t*) = 0.
If A = 1 then py = 1, so that there is no extinction time (so that t* = +00) and if A > 1 then
pa 1s a positive convex strictly increasing function on [0, +00) such that lim; . p) () =1
(and again t* = +00). Note that

pa(t) +1og(|A = pa(B)]) = A +log([1 — A|) + 2.
REMARK 4.2.12. Let f : [a,b] — P(R"), f € KF. Then
- as a consequence of (3.7) and (4.11) we have

rwl=— [ Adew an (434)
dt af(t)

Hence if n = 2 then 4|f(¢)| = —2n.
- As a consequence of (3.23), (4.11) and (4.0.12), we have

d n—1 _ . 2 n—1 a
G0 =~ [ (a0 i e (435)

which shows how the perimeter of JF(t) is decreasing along a smooth compact
mean curvature flow.

DEFINITION 4.2.13. Let f : [a,b] — P(R") be a smooth flow, let dy and A be as in
Definition 4.0.10. Let v € C*(A X [a,b]). We define

dv od ov
%(2, t) = —(E(z,t)Vd(z,t), Vou(z,t)) + E(Z’ t), (2,t) € A X [a,b]. (4.36)

Note that if f € ICF then

%(z,t} = —Ad(z,t)(Vd(z,t), Vu(z,t)) + %(z,t}, (z2,t) € A x [a,b].
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4.2.1. Extensions. Similarly to Section 2.1.1, we now the define various tangential
operators that will be used in the sequel.

Let f : [a,b] — P(R"™) be a smooth flow, let d; and A be as in Definition 4.0.10, set
Y(t) = 0f(t) and define

== | (S0 x {t}).
te(a,b]

Let u € C*(Z) and let u¢ be any smooth extension of u in a neighbourhood U of Z. Given
t € [a,b] and x € X(t), the tangential gradient V>®u(x,t) of u(-,) on X(t), evaluated at
(x,t), is the orthogonal projection on ¥(t) of Vu®(z,t). The tangential gradient of u(-,?)
on X(t) depends only on the values of u on =. We define w € C*>(U) as

U(z,t) = u(pryyy(2),t) = u(z — d(2,t)Vd(z,1),t) (4.37)
Observe that
VEOu(z, t) = Vi(z, t), t € [a,bl,z € Of(1). (4.38)
REMARK 4.2.14. Let f € KF and h € C*(Z). Then
oh dh

E(Z’t) i —(z,1), z€ At € [a,b].
Indeed, from Definition 4.2.13 we have for (z,t) € A X [a, b]

dh ad _ Oh oh
E(z, t) = —<E(z, t)Vd(z,t),Vh(z,t)) + T —(z,t) = oy —(2,1)

LEMMA 4.2.15. Let f € KF, h € C>*(Z) and define h € C>*(S X [a, b]) as

h(s,t) :== h(p(s,t),t), (s,t) € S x [a,b)]. (4.39)

Then for any t € [a, b] we have
h(s,t) = h(z,t), z € A, pry(2) = ¢(s,1), (4.40)
g?(s t) = g?(x t), x = (s, t) € X(t). (4.41)

PRrOOF. Equation (4.40) follows from (4.39) and (4.37). For any A\ with |\| sufficiently
small we have

h(s,t) = h(p(s,t) + AVd(p(s,t),1),t).
Hence

dh — Op

E(S’t) = (Vh(x + A\Vd(z,1),1), 5 —(s,t) + )\;(Vd(ga(s,t), t)) + %(w + AVd(z,1),1).

Setting A = 0 we have

oh, o Oy Oh Oh
M ot) = (). Z 0.y + Loy = Lo

since VA(x,t) € T,(X(t)) while %—f(s,t) € N.(2(1)). O
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If X € C®(Urelan (B(t) x {t};R")), we define X : A x [a,b] — R™ as

X(z,t) == X(prsy(2),1).

Given t € [a,b], the tangential divergence divy) X is the trace of the orthogonal pro-
jection on X(t) of the space gradient of any smooth extension of X in a neighbourhood of
¥(t). Observe that

diven X =divX  on X(¢).
We denote by Axpu the tangential laplacian of u on (), defined as Agpu :=
divs) (VE®u). Recall that

Ag(t)u = Au on E(t). (4.42)
Setting n = n’® and H = H*® recall that m = Vd; in A x [a,b], and that
H = tr(V?%d;Q), G:=(d—d;V?d;)™"  in Ax]a,b. (4.43)

4.3. Huisken’s monotonicity formula

In this section we prove Huisken’s monotonicity formula, which describes how the
perimeter of a smooth hypersurface flowing by mean curvature changes when weighted
with a suitable backward heat kernel. We begin with the following observation.

LEMMA 4.3.1. Let f: [a,b] — P(R"), f € KF. Let p € C*(R"™ x [a,b]). Then

d 0
— Y dH" = / <—¢ (Ad)? — (Vep, Vd)Ad + —¢) dH™ 1. (4.44)
dt Joj o1(t) ot
Proor. It follows from (3.27) with the choice a = 1, and recalling that V' := —AdVd
is the velocity field of Of(t). O
Note that, using (3.2.3), and assuming ¢ > 0, from (4.44) we deduce
d n—1 1 ? n—1
S wdnrt=— [ ¢ (H+ (V)| aH (4.45)
dt Jog) o1(t) 4

1 0
+ / (—<V¢, n)? + 9¢ + divg(t)Vw) dH" .
aft) \ ¥ ot

In the particular case ¢ = 1, (4.45) coincides with (4.35).

THEOREM 4.3.2. Let 2y € R", ¢ € [a,b] and set

_lz—zol?
e Ao—b

g z €R" t <ty (4.46)

P(2,1) = Pag o) (2, 1) 1= (4m(tg — 1))z

Then
d 1 2
— p dH" ' = —/ p (H + —(Vp, n)) dH" ' <0. (4.47)
dt Jayy a1 (t) p



