## CHAPTER 4

## Smooth flows: preliminary version

This version is in progress: please, take this into account. All corrections and comments are welcome.

In what follows we denote by $\mathcal{P}\left(\mathbb{R}^{n}\right)$ the class of all subsets of $\mathbb{R}^{n}$.
Definition 4.0.10. We say that $f$ is a smooth flow if there exist $a, b \in \mathbb{R}, a<b$ such that $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ and
(i) the set $\{(z, t): t \in[a, b], z \in f(t)\}$ is closed;
(ii) letting ${ }^{1}$

$$
\begin{equation*}
d(z, t):=d(z, f(t))=\operatorname{dist}(z, f(t))-\operatorname{dist}\left(z, \mathbb{R}^{n} \backslash f(t)\right), \quad z \in \mathbb{R}^{n}, t \in[a, b] \tag{4.1}
\end{equation*}
$$

there exists an open set $A \subseteq \mathbb{R}^{n}$ such that $A \supset \partial f(t)$ for any $t \in[a, b]$, and $d \in \mathcal{C}^{\infty}(A \times[a, b])$.
We say that $f$ is a smooth compact flow if in addition $\partial f(t)$ is compact for any $t \in[a, b]$.
Note that $f$ is a smooth flow if and only if

$$
f^{c}(t):=\overline{\mathbb{R}^{n} \backslash f(t)}, \quad t \in[a, b]
$$

is a smooth flow. Note also that $\partial f(t) \in \mathcal{C}^{\infty}$ for any $t \in[a, b]$, and if $f$ is a smooth compact flow then $\partial f(t) \in \mathcal{C}^{\infty} \cap \mathcal{K}\left(\mathbb{R}^{n}\right)$ for any $t \in[a, b]$.

As usual, for $x \in \partial f(t), N_{x}(\partial f(t))$ and $T_{x}(\partial f(t))$ denote the normal line and the tangent space, respectively, to $\partial f(t)$ at $x$.
Notation: When no confusion is possible, we sometimes use the notation

$$
\Sigma(t)=\partial f(t)
$$

Definition 4.0.11. Let $\partial E \in \mathcal{C}^{\infty}$ and let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth flow. If $f(a)=E$ we say that $f$ starts from $E$ at time $a$.

Let us recall the definition of normal velocity vector. Let as usual $\nabla=\left(\frac{\partial}{\partial z^{1}}, \ldots, \frac{\partial}{\partial z^{n}}\right)$.
Definition 4.0.12. Let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth flow and let $t \in[a, b]$. The normal velocity vector of the flow at $x \in \partial f(t)$ is defined as

$$
\begin{equation*}
-\frac{\partial d}{\partial t}(x, t) \nabla d(x, t) \tag{4.2}
\end{equation*}
$$

[^0]Note that the normal velocity vector is unchanged if we replace $d$ with $d_{f^{c}}$ in (4.2).
Remark 4.0.13. If we define

$$
\begin{equation*}
\eta:=\frac{1}{2}(d)^{2} \quad \text { in } \mathbb{R}^{n} \times[a, b] \tag{4.3}
\end{equation*}
$$

then $\eta \in \mathcal{C}^{\infty}(A \times[a, b])$ and

$$
\frac{\partial d}{\partial t} \nabla d=\frac{\partial \nabla \eta}{\partial t} \quad \text { on } \partial f(t)
$$

4.0.1.1. Normal velocity using parametrizations. Using also the results in Chapter 2, one can prove that $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ is a smooth compact flow (resp. a smooth flow) if and only if there exist a smooth compact (resp. smooth) $(n-1)$-dimensional manifold $\mathcal{S}$ without boundary and a map $\varphi \in \mathcal{C}^{\infty}\left(\mathcal{S} \times[a, b] ; \mathbb{R}^{n}\right)$ such that
(i) for any $t \in[a, b]$ the map $\varphi(\cdot, t)$ is a bijection between $\mathcal{S}$ and

$$
\partial f(t)=\varphi(\mathcal{S}, t)
$$

(ii) for any $s \in \mathcal{S}$ and any $t \in[a, b]$ the differential $d \varphi(s, t)$ with respect to $s$ is injective. Hence for any $t \in[a, b]$ the map $\varphi(\cdot, t)$ is a smooth embedding of the manifold $\mathcal{S}$ in $\mathbb{R}^{n}$, and $\partial f(t)$ is the image of the embedding; in addition, $\varphi$ depends smoothly on the variable $t$.

Definition 4.0.14. Let $s \in \mathcal{S}, t \in[a, b], x=\varphi(s, t)$. We define $\mathbf{V}(s, t)$ as the orthogonal projection of $\frac{\partial \varphi}{\partial t}(s, t)$ on $N_{x}(\partial f(t))$, that is,

$$
\begin{equation*}
\mathbf{V}(s, t):=\left\langle\nu(s, t), \frac{\partial \varphi}{\partial t}(s, t)\right\rangle \nu(s, t) \tag{4.4}
\end{equation*}
$$

where $\nu(s, t):=\nabla d(x, t)$ denotes the unit normal to $\partial f(t)$ at $x=\varphi(s, t)$, pointing toward $\mathbb{R}^{n} \backslash f(t)$.
$\mathbf{V}(s, t)$ depends only on the set $\partial f(t)$ and not on the way $\partial f(t)$ is parameterized, since reparameterizations add only tangential components to the velocity. Precisely, let $\psi \in$ $\mathcal{C}^{\infty}(\mathcal{S} \times[a, b] ; \mathcal{S})$ be such that for any $t \in[a, b]$ the map $\psi(\cdot, t)$ is a smooth diffeomorphism of $\mathcal{S}$, and set $\widetilde{\varphi}(s, t):=\varphi(\psi(s, t), t)$. Then the orthogonal projections of $\frac{\partial \widetilde{\varphi}}{\partial t}(s, t)$ and of $\frac{\partial \varphi}{\partial t}(\psi(s, t), t)$ on $N_{x}(\partial f(t)), x=\varphi(\psi(s, t), t)$, are equal, since $\frac{\partial \widetilde{\varphi}}{\partial t}=d \varphi \frac{\partial \psi}{\partial t}+\frac{\partial \varphi}{\partial t}$, and $d \varphi(\psi(s, t), t) \frac{\partial \psi(s, t)}{\partial t} \in T_{x}(\partial f(t))$. On the other hand, orthogonal projections of $\frac{\partial \varphi}{\partial t}$ on lines different from the normal line may depend in general on parameterizations.

Proposition 4.0.15. For any $s \in \mathcal{S}$ and any $t \in[a, b]$ we have

$$
\begin{equation*}
-\frac{\partial d}{\partial t}(x, t) \nabla d(x, t)=\mathbf{V}(s, t), \quad x:=\varphi(s, t) \in \partial f(t) \tag{4.5}
\end{equation*}
$$

Proof. We know that $d(\varphi(s, t), t)=0$ for any $s \in \mathcal{S}$ and any $t \in[0, T]$. Hence, differentiating with respect to $t$ and setting $x:=\varphi(s, t)$, we get

$$
\begin{equation*}
\left\langle\frac{\partial \varphi}{\partial t}(s, t), \nabla d(x, t)\right\rangle+\frac{\partial d}{\partial t}(x, t)=0 . \tag{4.6}
\end{equation*}
$$

Then (4.5) follows from (4.4).
4.0.1.2. The diffeomorphism $\Phi$ between $\mathcal{S} \times(-\rho, \rho) \times[a, b]$ and $A \times[a, b]$. If $f:[a, b] \rightarrow$ $\mathcal{P}\left(\mathbb{R}^{n}\right)$ is a smooth compact flow, in general for two different $t_{1}, t_{2} \in[a, b]$ it may happen that $\Sigma\left(t_{1}\right) \cap \Sigma\left(t_{2}\right) \neq \emptyset^{2}$. On the other hand,

$$
\begin{equation*}
t_{1} \neq t_{2} \Rightarrow\left\{\left(x, t_{1}\right): x \in \Sigma\left(t_{1}\right)\right\} \cap\left\{\left(x, t_{2}\right): x \in \Sigma\left(t_{2}\right)\right\}=\emptyset . \tag{4.7}
\end{equation*}
$$

We let $s: A \times[a, b] \rightarrow \mathcal{S}$ be the map defined as follows: given $(z, t) \in A \times[a, b]$, the point $\varphi(s(z, t), t) \in \partial E(t)$ is the unique projection point of $z$ on $\partial E(t)$, namely

$$
\begin{equation*}
z-\varphi(s(z, t), t)=d(z, t) \nabla d(z, t) \tag{4.8}
\end{equation*}
$$

We define the map $\Phi \in \mathcal{C}^{\infty}(A \times[a, b] ; \mathcal{S} \times(-\rho, \rho) \times[a, b])$ as

$$
\Phi(z, t):=(s(z, t), d(z, t), t) .
$$

The map $\Phi$ can be inverted, so that $\Phi^{-1} \in \mathcal{C}^{\infty}(\mathcal{S} \times(-\rho, \rho) \times[a, b] ; A \times[a, b])$,

$$
\Phi^{-1}(s, d, t)=(z, t), \quad z(s, d, t)=\varphi(s, t)+d n(s, t)
$$

Example 4.0.16. Let $n=2, e_{1}=(1,0)$, and let $f:[0,1] \rightarrow \mathcal{P}\left(\mathbb{R}^{2}\right)$ be the smooth flow consisting of the initial disk $f(0)=\left\{z \in \mathbb{R}^{2}:|z| \leq 1\right\}$ which translates in the $e_{1}$-direction with constant scalar speed $v>0$, i.e., $f(t)=\left\{z \in \mathbb{R}^{2}:\left|z-t v e_{1}\right| \leq 1\right\}$ for $t \in[0,1]$. We have $d(z, t)=\left|z-t v e_{1}\right|-1$, and the normal velocity vector at $z \in \partial f(0)$ equals $\left\langle z, v e_{1}\right\rangle z$.

Definition 4.0.17. The quantity $\left\langle\frac{\partial \varphi}{\partial t}(s, t), \nabla d(x, t)\right\rangle$ is called normal velocity of the flow and equals $-\frac{\partial d}{\partial t}(x, t)$.

Finally, let $e \in \mathbb{S}^{n-1}$ be a unit vector of $\mathbb{R}^{n}$. The velocity vector of the flow in the direction $e$ at $x \in \partial f(t)$ is defined as

$$
-\langle\nabla d(x, t), e\rangle^{-1} \frac{\partial d(x, t)}{\partial t} e
$$

and it is such that its orthogonal projection on $N_{x}(\partial f(t))$ is the normal velocity vector at $x$. The velocity of the flow at $x$ in the direction $e$ is defined as $-\langle\nabla d(x, t), e\rangle^{-1} \frac{\partial d}{\partial t}(x, t)$.

Remark 4.0.18. The normal velocity vector can also be expressed as follows. Let $u: \mathbb{R}^{n} \times[a, b] \rightarrow \mathbb{R}$ be a continuous function which is smooth in $A \times[a, b]$, where $A \subset \mathbb{R}^{n}$ is an open set containing $\cup_{t \in[a, b]}\{u(\cdot, t)=0\}$, and such that $u^{2}+|\nabla u|^{2}>0$ in $A \times[a, b]$. Then $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ defined as $f(t):=\left\{z \in \mathbb{R}^{n}: u(z, t) \leq 0\right\}$ is a smooth flow, and $\partial f(t)=\left\{z \in \mathbb{R}^{n}: u(z, t)=0\right\}$. Letting $u_{t}:=\frac{\partial u}{\partial t}$, the normal velocity vector equals $-\frac{u_{t}}{|\nabla u|} \frac{\nabla u}{|\nabla u|}$. If in addition there exists $v \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n-1} \times[a, b]\right)$ such that $u\left(s, z_{n}, t\right):=v(s, t)-z_{n}$, we can parametrize the flow as $(s, t) \rightarrow \varphi(s, t):=(s, v(s, t))$. Therefore $\frac{\partial \varphi}{\partial t}=\left(0, \frac{\partial v}{\partial t}\right)$, and the normal velocity can be written as

$$
\begin{equation*}
\left\langle\frac{\partial \varphi}{\partial t}(s, t), \nabla d\right\rangle \nabla d=\frac{\frac{\partial v}{\partial t}}{1+|\nabla v|^{2}}(-\nabla v, 1) \tag{4.9}
\end{equation*}
$$

where $\nabla v$ on the right hand side is the gradient with respect to $s$.

[^1]The definition of smooth flows can be generalized as follows ${ }^{3}$.
Definition 4.0.19. We say that $f$ is a generalized smooth flow in $[a, b]$ if there exist $a, b \in \mathbb{R}, a<b$ such that $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$, if (i) of Definition 4.0.10 holds, and if for any $t \in[a, b]$ there exists an open set and $A_{t} \subseteq \mathbb{R}^{n}$ such that $A_{t} \supseteq \partial f(t)$, and $d \in \mathcal{C}^{\infty}\left(\bigcup_{t \in[a, b]}\left(A_{t} \times\{t\}\right)\right)$. We say that $f$ is a generalized smooth compact flow if in addition the set $\{(z, t): t \in[a, b], z \in f(t)\}$ has compact boundary.

Definition (4.0.19) can be given in the same way if $a=-\infty$ and/or $b=+\infty$.

### 4.1. Smooth mean curvature flows with forcing term

We are now in a position to define classical mean curvature flow of boundaries using the signed distance function $d$ defined in (4.1).

From now on the function $g$ (that stands for a driving force) will be assumed to satisfy the following properties:

$$
g \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n} \times[0,+\infty)\right) \cap L^{\infty}\left(\mathbb{R}^{n} \times[0,+\infty)\right)
$$

there exists a constant $L_{g}>0$ such that

$$
\begin{equation*}
|g(z, t)-g(y, t)| \leq L_{g}|z-y|, \quad z, y \in \mathbb{R}^{n}, t \in[0,+\infty) \tag{4.10}
\end{equation*}
$$

${ }^{* * *}$ queste ipotesi su $g$ non sono necessarie tutte, perche' i flussi sono compatti ${ }^{* * *}$
Definition 4.1.1. Let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth flow. We say that $f$ is a smooth mean curvature flow with forcing term $g($ in $[a, b]$ ), if

$$
\begin{equation*}
\frac{\partial d}{\partial t}(x, t) \nabla d(x, t)=(\Delta d(x, t)+g(x, t)) \nabla d(x, t), \quad t \in[a, b], x \in \partial f(t) \tag{4.11}
\end{equation*}
$$

If in addition $f$ is a smooth compact flow we say that $f$ is a smooth compact mean curvature flow with forcing term $g$ in $[a, b]$, and we write $f \in \mathcal{K} \mathcal{F}_{g}$. When $g \equiv 0$ we say that $f$ is a smooth mean curvature flow; moreover, we write $f \in \mathcal{K} \mathcal{F}$ in place of $f \in \mathcal{K} \mathcal{F}_{0}$.

REMARK 4.1.2. If $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right), f \in \mathcal{K} \mathcal{F}_{g}$, then the map $f^{c}:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ is a smooth compact mean curvature flow with forcing term $-g$, so that $f^{c} \in \mathcal{K} \mathcal{F}_{-g}$.

Let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth flow. Recall our notation:

$$
\begin{array}{rr}
\nu(s, t)=\nabla d(x, t)=: \mathrm{n}(x, t), & t \in[a, b], x=\varphi(s, t) \in \Sigma(t), \\
H(x, t)=\Delta d(x, t)=: \mathrm{H}(s, t), & t \in[a, b], x=\varphi(s, t) \in \Sigma(t) .
\end{array}
$$

We also set

$$
\mathbf{H}(s, t):=-\Delta d(x, t) \nabla d(x, t),
$$

Then $f \in \mathcal{K} \mathcal{F}$ if and only if

$$
\mathbf{V}(s, t)=-\mathbf{H}(s, t), \quad s \in \mathcal{S}, t \in[a, b]
$$

[^2]REmark 4.1.3. Let $g \equiv 0$. With the notation of Remark 4.0.13, recalling (2.18), we have that (4.11) can be written equivalently as

$$
\begin{equation*}
\frac{\partial \nabla \eta}{\partial t}(x, t)=\Delta \nabla \eta(x, t), \quad t \in[a, b], x \in \partial f(t) \tag{4.12}
\end{equation*}
$$

Remark 4.1.4. Recalling that $|\nabla d(z, t)|=1$ for any $(z, t) \in A \times[a, b]$, the system in (4.11) is equivalent to

$$
\begin{equation*}
\frac{\partial d}{\partial t}(x, t)=\Delta d(x, t)+g(x, t), \quad t \in[a, b], x \in \partial f(t) \tag{4.13}
\end{equation*}
$$

which, in turn, is equivalent to the system

$$
\left\{\begin{array}{l}
\frac{\partial d}{\partial t}=\Delta d+g,  \tag{4.14}\\
d(\cdot, t)=0,
\end{array} t \in[a, b]\right.
$$

We conclude this section with the definition of smooth sub/supersolutions of mean curvature flow, which will be useful in the sequel.

Definition 4.1.5. Let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth compact flow. We write $f \in$ $\mathcal{K} \mathcal{F}_{g}^{\geq}$if

$$
\begin{equation*}
\frac{\partial d}{\partial t}(x, t) \geq \Delta d(x, t)+g(x, t), \quad t \in[a, b], x \in \partial f(t) \tag{4.15}
\end{equation*}
$$

Similarly, we write $f \in \mathcal{K} \mathcal{F}_{g}^{>}$(resp. $f \in \mathcal{K} \mathcal{F}_{g}^{\leq}, f \in \mathcal{K} \mathcal{F}_{g}^{<}$) if the inequality $>($resp.$\leq,<)$ holds in (4.15).

### 4.2. Examples

In this section we give some examples.
Example 4.2.1. Let $n=1, f:[a, b] \rightarrow \mathcal{P}(\mathbb{R}), f \in \mathcal{K} \mathcal{F}_{g}$, and let $d, A$ be as in Definition 4.0.10. Since $d_{f} \in \mathcal{C}^{\infty}(A)$, it follows that $\partial f(t)$ is a finite union of points, so that $f(t)$ is a finite union of intervals for $t \in[a, b]$, evolving in a smooth way. Then $d(\cdot, t)$ is linear in a neighbourhood of each extremum of the intervals, and hence $\Delta d=0$ in this neighbourhood. Assume that $\left[x^{-}(t), x^{+}(t)\right]$ is one of the intervals composing $f(t)$ for $t \in[a, b]$. Note that

$$
\frac{\partial d}{\partial t}\left(x^{-}(t), t\right)=\frac{d x^{-}}{d t}(t), \quad \frac{\partial d}{\partial t}\left(x^{+}(t), t\right)=-\frac{d x^{+}}{d t}(t), \quad t \in[a, b]
$$

Hence by (4.13) we get

$$
\begin{equation*}
\frac{d x^{-}}{d t}(t)=-g\left(x^{-}(t), t\right), \quad \frac{d x^{+}}{d t}(t)=g\left(x^{+}(t), t\right), \quad t \in[a, b] . \tag{4.16}
\end{equation*}
$$

Example 4.2.2. Let $v \in C^{\infty}\left(\mathbb{R}^{n-1}\right)$ and assume that $E:=\left\{\left(s, z_{n}\right) \in \mathbb{R}^{n-1} \times \mathbb{R}\right.$ : $\left.z_{n} \geq v(s)\right\}$ is such that $\partial E$ has zero mean curvature. Then, given $T>0$, the map $f:[0, T] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right), f(t):=E$ for any $t \in[0, T]$, is a smooth mean curvature flow starting from $E$. Hence smooth graphs with vanishing mean curvature are stationary solutions to mean curvature flow.

Example 4.2.3. Let $R_{0}>0$ and $y \in \mathbb{R}^{n}$; a smooth compact mean curvature flow starting from the ball $B_{R_{0}}\left(z_{0}\right)$ is the ball $f(t)=B_{R(t)}\left(z_{0}\right)$, where

$$
R(t)=\sqrt{R_{0}^{2}-2(n-1) t}, \quad t \in[0, T], \quad T<t^{\dagger}:=\frac{R_{0}^{2}}{2(n-1)}
$$

Indeed $d(z, t)=\left|z-z_{0}\right|-R(t)$, hence $d_{f} \in \mathcal{C}^{\infty}\left(\left(\mathbb{R}^{n} \backslash\left\{z_{0}\right\}\right) \times[0, T]\right)$, and $\frac{\partial d}{\partial t}(z, t)=-\dot{R}(t)$,
$\nabla d(z, t)=\frac{z-z_{0}}{\left|z-z_{0}\right|}, \quad \nabla^{2} d(z, t)=\frac{1}{\left|z-z_{0}\right|}\left(\operatorname{Id}-\frac{z-z_{0}}{\left|z-z_{0}\right|} \otimes \frac{z-z_{0}}{\left|z-z_{0}\right|}\right), \quad \Delta d(z, t)=\frac{n-1}{\left|z-z_{0}\right|}$.
Hence (4.13) becomes

$$
\begin{equation*}
\dot{R}(t)=-\frac{n-1}{R(t)} \tag{4.17}
\end{equation*}
$$

Coupled with $R(0)=R_{0}$, the solution is $R(t)=\sqrt{R_{0}^{2}-2(n-1) t}$. Observe that

$$
B_{R(t)}\left(z_{0}\right)=\sqrt{1-\frac{t}{t^{\dagger}}} B_{R_{0}}\left(z_{0}\right)
$$

Note that

$$
\lim _{t \uparrow t^{\dagger}} \int_{\partial B_{R(t)}\left(z_{0}\right)} H^{2} d \mathcal{H}^{n-1}=\left\{\begin{array}{ll}
+\infty & \text { if } n=2, \\
16 \pi & \text { if } n=3, \\
0 & \text { if } n \geq 4,
\end{array} \quad \int_{0}^{t^{\dagger}} \int_{\partial B_{R(t)}} H^{2} d \mathcal{H}^{n-1}<+\infty\right.
$$

Note also that since $H$ is constant, no informations can be inferred from the $L_{\mathcal{H}^{n-1}}^{2}\left(\partial B_{R(t)}\left(z_{0}\right)\right)$ norms of the various derivatives of $H$.

Example 4.2.4. Let $m \in\{1, \ldots, n-1\}, R_{0}>0$, and let $C:=\left\{(\sigma, y) \in \mathbb{R}^{n-m} \times \mathbb{R}^{m}:\right.$ $\left.|\sigma| \leq R_{0}\right\}$. Then a smooth mean curvature flow starting from $C$ is given by the cylinder $f(t)=C(t)=\left\{(\sigma, y) \in \mathbb{R}^{n-m} \times \mathbb{R}^{m}:|\sigma| \leq R(t)\right\}$, where

$$
R(t)=\sqrt{R_{0}^{2}-2(n-m-1) t}, \quad t \in[0, T], \quad T<t^{\dagger}:=\frac{R_{0}^{2}}{2(n-m-1)}
$$

Observe that $C(t)=\sqrt{1-\frac{t}{t^{\dagger}}} C$.
Definition 4.2.5. We say that $f$ is a smooth self-similar evolution if there exist $E \subset$ $\mathbb{R}^{n}$ with $\partial E \in \mathcal{C}^{\infty}$, an interval $I \subseteq \mathbb{R}$, and a smooth function $\alpha: I \rightarrow(0,+\infty)$ such that

$$
\begin{equation*}
f(t)=\alpha(t) E \tag{4.18}
\end{equation*}
$$

for any $t \in I$.
Observe that if $E$ and $\alpha$ are as in Definition 4.2.5, then $\lambda E$ and $\frac{\alpha(t)}{\lambda}$ give raise to the same self-similar evolution, for any $\lambda>0$. We denote by $I_{\max }$ the maximal open interval where we can smoothly extend the self-similar solution $\alpha$.

The following proposition describes a class of special solutions to mean curvature flow.

Proposition 4.2.6. Let $f: I \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth self-similar evolution. If $f$ is a smooth mean curvature flow then one of the following three conditions hold: setting $d(\cdot):=d(\cdot, E)$,
(i) there exist $t_{0} \in \mathbb{R}$ and $T>0$ such that $I_{\max }=\left(-\infty, t_{0}\right), \alpha(t)=\sqrt{\frac{t_{0}}{T}} \sqrt{1-\frac{t}{t_{0}}}$ for any $t \in I_{\max }$, and

$$
\begin{equation*}
\Delta d(x)=\frac{1}{2 T}\langle x, \nabla d(x)\rangle, \quad x \in \partial E \tag{4.19}
\end{equation*}
$$

(ii) $I_{\max }=\mathbb{R}, \alpha^{\prime}(t)=0$ and

$$
\begin{equation*}
\Delta d(x)=0, \quad x \in \partial E \tag{4.20}
\end{equation*}
$$

(iii) there exist $t_{0} \in \mathbb{R}$ and $T>0$ such that $I_{\max }=\left(t_{0},+\infty\right), \alpha(t)=\sqrt{\frac{t_{0}}{T}} \sqrt{\frac{t}{t_{0}}-1}$ for any $t \in I_{\max }$, and

$$
\begin{equation*}
\Delta d(x)=-\frac{1}{2 T}\langle x, \nabla d(x)\rangle, \quad x \in \partial E . \tag{4.21}
\end{equation*}
$$

Conversely, assume that one of the conditions (i)-(iii) holds. Define $f: I_{\max } \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ as in (4.18). Then $f$ is a smooth mean curvature flow.

Proof. Assume that $f$ in (4.18) is a smooth mean curvature flow. Let $z \in \mathbb{R}^{n}$. We have

$$
\operatorname{dist}(z, f(t))=\inf _{y \in f(t)}|y-z|=\alpha(t) \inf _{y / \alpha(t) \in E}|y / \alpha(t)-z / \alpha(t)|=\alpha(t) \operatorname{dist}(z / \alpha(t), E)
$$

Similarly, $\operatorname{dist}\left(z, \mathbb{R}^{n} \backslash f(t)\right)=\alpha(t) \operatorname{dist}\left(z / \alpha(t), \mathbb{R}^{n} \backslash E\right)$. Hence, if $d$ is the function defined in (4.1) and $d=d$ is the one defined in (2.4), we have $d(z, t)=\alpha(t) d(z / \alpha(t))$. Then we compute:

$$
\begin{align*}
& \nabla d(z)=\nabla d(z / \alpha(t)), \quad \Delta d(z)=\frac{1}{\alpha(t)} \Delta d(z / \alpha(t))  \tag{4.22}\\
& \frac{\partial d}{\partial t}(z, t)=\alpha^{\prime}(t) d(z / \alpha(t))-\frac{\alpha^{\prime}(t)}{\alpha(t)}\langle z, \nabla d(z / \alpha(t))\rangle \tag{4.23}
\end{align*}
$$

where ' denotes differentiation with respect to $t$. Since $\partial f(t)=\left\{z \in \mathbb{R}^{n}: d(z, t)=0\right\}=$ $\alpha(t) \partial E=\left\{z \in \mathbb{R}^{n}: d(z / \alpha(t))=0\right\}$, from (4.23) we deduce

$$
\begin{equation*}
\frac{\partial d}{\partial t}(x, t)=-\frac{\alpha^{\prime}(t)}{\alpha(t)}\langle x, \nabla d(x / \alpha(t))\rangle, \quad x \in \partial f(t) \tag{4.24}
\end{equation*}
$$

Using (4.22) and (4.24), equation (4.13) (with $g \equiv 0$ ) expressing mean curvature flow of $f(t)$ becomes an equation for the function $d$ on $\partial E$ which reads as

$$
-\alpha^{\prime}(t)\langle x / \alpha(t), \nabla d(x / \alpha(t))\rangle=\frac{1}{\alpha(t)} \Delta d(x / \alpha(t)), \quad x / \alpha(t) \in \partial E
$$

i.e.,

$$
\Delta d(x)=-\alpha^{\prime}(t) \alpha(t)\langle x, \nabla d(x)\rangle, \quad x \in \partial E
$$

Since the left hand side does not depend on $t$, we deduce that

$$
\alpha^{\prime}(t) \alpha(t) \equiv \alpha \in \mathbb{R}, \quad t \in I
$$

We now distinguish the three cases $\alpha<0, \alpha=0$ and $\alpha>0$. If $\alpha<0$, writing $\alpha=-\frac{1}{2 T}$ for $T>0$, we have $\alpha(t)=\sqrt{-\alpha} \sqrt{2\left(t_{0}-t\right)}$ for any $t \in I=\left(-\infty, t_{0}\right)$. If $\alpha=0$ then (ii) immediately follows. If $\alpha>0$ we have $\alpha(t)=\sqrt{\alpha} \sqrt{2\left(t-t_{0}\right)}$ for any $t \in I=\left(t_{0},+\infty\right)$.

Conversely, let $E \subset \mathbb{R}^{n}$ be such that $\partial E \in \mathcal{C}^{\infty}$ and (4.19) holds for some $T>0$. Repeating the previous computations in reverse order, one checks that the map $f$ in (??) is a smooth mean curvature flow on $I$. Similar reasonings apply in cases (ii) and (iiii).

In case (i) we say that $f$ is a self-similar contracting mean curvature flow, and in case (iii) we say that $f$ is a self-similar expanding mean curvature flow.

Remark 4.2.7. In view of Example 3.2.8, equation (4.19) expresses the stationarity condition of $\partial E$ for the functional in (3.28), and (4.21) expresses the stationarity condition of $\partial E$ for the functional in (3.29).

Another class of solutions is given by translatory solutions. We say that $f: \mathbb{R} \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ is a translatory evolution if there exist $E \subset \mathbb{R}^{n}$ with $\partial E \in C^{\infty}$ and $v \in \mathbb{R}^{n}$ such that

$$
f(t)=E+t v, \quad t \in \mathbb{R}
$$

In this case we have

$$
d(z, t)=d(z-t v, E)
$$

so that $f$ is a translatory smooth mean curvature flow if and only if

$$
\begin{equation*}
\Delta d(x)=-\langle v, \nabla d(x)\rangle, \quad x \in \partial E . \tag{4.25}
\end{equation*}
$$

Note that (4.25) expresses the stationarity condition of $\partial E$ for the functional

$$
\int_{\partial E} e^{\langle v, \mathrm{n}\rangle t} d \mathcal{H}^{n-1}
$$

Example 4.2.8. Let $u, A, f$ and $v$ be as in Remark 4.0.18. Then (4.11) reads as

$$
\begin{equation*}
\frac{\frac{\partial u}{\partial t}}{|\nabla u|} \frac{\nabla u}{|\nabla u|}=\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) \frac{\nabla u}{|\nabla u|} \quad \text { on }\{u=0\} \tag{4.26}
\end{equation*}
$$

which is invariant under the transformation $u \rightarrow \lambda u$, where $\lambda \in \mathbb{R} \backslash\{0\}$. Note that if $u$ is a solution to (4.26) which is smooth in a space time region around one of its level sets $\{u(\cdot, t)=\lambda\}$, then this level set flows smoothly by mean curvature. Equation (4.26) can be rewritten in the scalar form as

$$
\begin{equation*}
|\nabla u|^{2}\left(\frac{\partial u}{\partial t}-\Delta u\right)=-\nabla_{i} u \nabla_{j} u \nabla_{i j}^{2} u \quad \text { on }\{u=0\} . \tag{4.27}
\end{equation*}
$$

If $|\nabla u|^{2}=1$ in a neighbourhood of $\{u=0\}$ then problem (4.27) reduces to (4.14), i.e.,

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\Delta u  \tag{4.28}\\
u=0
\end{array}\right.
$$

Moreover, at the points of the graph of $v$ we have that the mean curvature vector equals

$$
\begin{equation*}
-\operatorname{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v|^{2}}}\right) \frac{(\nabla v,-1)}{\sqrt{1+|\nabla v|^{2}}} \tag{4.29}
\end{equation*}
$$

The smooth mean curvature flow of the graph of $v$ is therefore expressed using the equation

$$
\begin{equation*}
\frac{\partial v}{\partial t}=\sqrt{1+|\nabla v|^{2}} \operatorname{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v|^{2}}}\right) \tag{4.30}
\end{equation*}
$$

in $\mathbb{R}^{n-1} \times[a, b]$. ${ }^{* * *}$ dire qualcosa sulla velocita' verticale? e sulla equazione senza la radice? ***

## Observe that

- if $\pi_{n}(z):=z^{n}$ then, recalling also (2.14), we have $\frac{\partial}{\partial t} \overline{\pi_{n}}=\Delta \overline{\pi_{n}}$ on $\operatorname{graph}(v)$
- the velocity of the flow in the direction $e_{n}$ is given by $\frac{\partial v}{\partial t}$
- if $n=2$, equation (4.30) takes the form

$$
\frac{\partial v}{\partial t}=f\left(v_{x}\right)_{x}
$$

where $f(p)=\operatorname{arctg}(p)$ for any $p \in \mathbb{R}$.
EXAMPLE 4.2.9. If we look for special solutions to (4.30) of the form $v(s, t)=h(s)+t$, for some smooth real valued function $h$, we have to impose

$$
\begin{equation*}
\sqrt{1+|\nabla h|^{2}} \operatorname{div}\left(\frac{\nabla h}{\sqrt{1+|\nabla h|^{2}}}\right)=1 . \tag{4.31}
\end{equation*}
$$

If we assume $n=2$ then (4.31) reduces to the following ordinary differential equation:

$$
\begin{equation*}
\frac{h^{\prime \prime}}{1+h^{\prime 2}}=\left(\operatorname{arctg}\left(h^{\prime}\right)\right)^{\prime}=1 \tag{4.32}
\end{equation*}
$$

A solution to (4.32) is given by $h(s)=-\log (\cos s)$ for $s \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The corresponding solution $v(s, t)=-\log (\cos s)+t$, for $s \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $t \in[0,+\infty)$ (called grim reaper) is said to be a translating solution to curvature flow.

Example 4.2.10. Let $v \in C^{\infty}(\mathbb{R},(0,+\infty))$, and let $E$ be as in Example 2.2.11. It follows that a smooth mean curvature flow starting from $E$ is given by $f:[0, T] \rightarrow \mathcal{P}\left(\mathbb{R}^{3}\right)$, $f(t)=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}:\left(v\left(z_{1}, t\right)\right)^{2} \leq z_{2}^{2}+z_{3}^{2}\right\}$, for some $T>0$, and $w \in C^{\infty}(\mathbb{R} \times$ $[0, T],(0,+\infty))$ is a solution to

$$
\begin{equation*}
\frac{\partial w}{\partial t}=\frac{w^{\prime \prime}}{1+\left(w^{\prime}\right)^{2}}-\frac{1}{w}, \quad w(\cdot, 0)=v(\cdot) \tag{4.33}
\end{equation*}
$$

Indeed, to obtain (4.33) it is enough to use (2.29) and use the equality $\frac{\partial h}{\partial t} /|\nabla h|=w \frac{\partial w}{\partial t} /\left(w^{2}\left(w^{\prime}\right)^{2}+\right.$ $\left.z_{2}^{2}+z_{3}^{2}\right)^{1 / 2}$, where $h(z, t):=\frac{1}{2}\left((w(z, t))^{2}-z_{2}^{2}-z_{3}^{2}\right)$.

Note that the perimeter of $E$ in $(a, b) \times \mathbb{R}^{2}$ is given by $\mathcal{F}(v)=2 \pi \int_{(a, b)} v \sqrt{1+\left(v^{\prime}\right)^{2}} d z_{1}$; the first variation of $\mathcal{F}$ is given by $\left.\frac{d}{d_{\lambda}} \mathcal{F}(v+\lambda \varphi)_{\mid \lambda=0}=2 \pi \int_{(a, b)} \varphi\left(\left(1+\left(v^{\prime}\right)^{2}\right)^{1 / 2}\right)-v\left(\frac{v^{\prime}}{\left(1+\left(v^{\prime}\right)^{2}\right)^{1 / 2}}\right)^{\prime}\right) d z_{1}$. ****

Example 4.2.11. Let $\lambda>0$. Consider in $\mathbb{R}^{2}$ a disk of radius $\rho_{\lambda}(t)$ which evolves according to (4.13), with $\rho_{\lambda}(0)=\lambda$. Then

$$
\left\{\begin{array}{l}
\rho_{\lambda}^{\prime}(t)=-\frac{1}{\rho_{\lambda}(t)}+1, \quad t \in\left(0, t^{\lambda}\right) \\
\rho_{\lambda}(0)=\lambda
\end{array}\right.
$$

where $t^{\lambda}$ denotes the extinction time. One can verify that if $0<\lambda<1$ then $t^{\lambda} \in(0,+\infty)$, and $\rho_{\lambda}$ is a nonnegative concave strictly decreasing function on $\left[0, t^{\lambda}\right]$ such that $\rho_{\lambda}\left(t^{\lambda}\right)=0$. If $\lambda=1$ then $\rho_{\lambda} \equiv 1$, so that there is no extinction time (so that $t^{\lambda}=+\infty$ ) and if $\lambda>1$ then $\rho_{\lambda}$ is a positive convex strictly increasing function on $[0,+\infty)$ such that $\lim _{t \rightarrow+\infty} \rho_{\lambda}^{\prime}(t)=1$ (and again $t^{\lambda}=+\infty$ ). Note that

$$
\rho_{\lambda}(t)+\log \left(\left|\lambda-\rho_{\lambda}(t)\right|\right)=\lambda+\log (|1-\lambda|)+t
$$

Remark 4.2.12. Let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right), f \in \mathcal{K} \mathcal{F}$. Then

- as a consequence of (3.7) and (4.11) we have

$$
\begin{equation*}
\frac{d}{d t}|f(t)|=-\int_{\partial f(t)} \Delta d(\cdot, t) d \mathcal{H}^{n-1} \tag{4.34}
\end{equation*}
$$

Hence if $n=2$ then $\frac{d}{d t}|f(t)|=-2 \pi$.

- As a consequence of $(3.23),(4.11)$ and (4.0.12), we have

$$
\begin{equation*}
\frac{d}{d t} \mathcal{H}^{n-1}(\partial f(t))=-\int_{\partial f(t)}(\Delta d(\cdot, t))^{2} d \mathcal{H}^{n-1}, \quad t \in[a, b] \tag{4.35}
\end{equation*}
$$

which shows how the perimeter of $\partial E(t)$ is decreasing along a smooth compact mean curvature flow.

Definition 4.2.13. Let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth flow, let $d_{f}$ and $A$ be as in Definition 4.0.10. Let $v \in \mathcal{C}^{\infty}(A \times[a, b])$. We define

$$
\begin{equation*}
\frac{d v}{d t}(z, t):=-\left\langle\frac{\partial d}{\partial t}(z, t) \nabla d(z, t), \nabla v(z, t)\right\rangle+\frac{\partial v}{\partial t}(z, t), \quad(z, t) \in A \times[a, b] . \tag{4.36}
\end{equation*}
$$

Note that if $f \in \mathcal{K} \mathcal{F}$ then

$$
\frac{d v}{d t}(z, t):=-\Delta d(z, t)\langle\nabla d(z, t), \nabla v(z, t)\rangle+\frac{\partial v}{\partial t}(z, t), \quad(z, t) \in A \times[a, b] .
$$

4.2.1. Extensions. Similarly to Section 2.1.1, we now the define various tangential operators that will be used in the sequel.

Let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)$ be a smooth flow, let $d_{f}$ and $A$ be as in Definition 4.0.10, set $\Sigma(t)=\partial f(t)$ and define

$$
\Xi:=\bigcup_{t \in[a, b]}(\Sigma(t) \times\{t\})
$$

Let $u \in \mathcal{C}^{\infty}(\Xi)$ and let $u^{e}$ be any smooth extension of $u$ in a neighbourhood $U$ of $\Xi$. Given $t \in[a, b]$ and $x \in \Sigma(t)$, the tangential gradient $\nabla^{\Sigma(t)} u(x, t)$ of $u(\cdot, t)$ on $\Sigma(t)$, evaluated at $(x, t)$, is the orthogonal projection on $\Sigma(t)$ of $\nabla u^{e}(x, t)$. The tangential gradient of $u(\cdot, t)$ on $\Sigma(t)$ depends only on the values of $u$ on $\Xi$. We define $\bar{u} \in \mathcal{C}^{\infty}(U)$ as

$$
\begin{equation*}
\bar{u}(z, t)=u\left(\operatorname{pr}_{\Sigma(t)}(z), t\right)=u(z-d(z, t) \nabla d(z, t), t) \tag{4.37}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\nabla^{\Sigma(t)} u(x, t)=\nabla \bar{u}(x, t), \quad t \in[a, b], x \in \partial f(t) \tag{4.38}
\end{equation*}
$$

Remark 4.2.14. Let $f \in \mathcal{K} \mathcal{F}$ and $h \in \mathcal{C}^{\infty}(\Xi)$. Then

$$
\frac{\partial \bar{h}}{\partial t}(z, t)=\frac{d \bar{h}}{d t}(z, t), \quad z \in A, t \in[a, b] .
$$

Indeed, from Definition 4.2.13 we have for $(z, t) \in A \times[a, b]$

$$
\frac{d \bar{h}}{d t}(z, t)=-\left\langle\frac{\partial d}{\partial t}(z, t) \nabla d(z, t), \nabla \bar{h}(z, t)\right\rangle+\frac{\partial \bar{h}}{\partial t}(z, t)=\frac{\partial \bar{h}}{\partial t}(z, t)
$$

Lemma 4.2.15. Let $f \in \mathcal{K} \mathcal{F}, h \in \mathcal{C}^{\infty}(\Xi)$ and define $\mathrm{h} \in \mathcal{C}^{\infty}(\mathcal{S} \times[a, b])$ as

$$
\begin{equation*}
\mathrm{h}(s, t):=h(\varphi(s, t), t), \quad(s, t) \in \mathcal{S} \times[a, b] \tag{4.39}
\end{equation*}
$$

Then for any $t \in[a, b]$ we have

$$
\begin{align*}
& \mathrm{h}(s, t)=\bar{h}(z, t), \quad z \in A, \operatorname{pr}_{\Sigma(t)}(z)=\varphi(s, t),  \tag{4.40}\\
& \frac{\partial \mathrm{h}}{\partial t}(s, t)=\frac{\partial \bar{h}}{\partial t}(x, t), \quad x=\varphi(s, t) \in \Sigma(t) \tag{4.41}
\end{align*}
$$

Proof. Equation (4.40) follows from (4.39) and (4.37). For any $\lambda$ with $|\lambda|$ sufficiently small we have

$$
\mathrm{h}(s, t)=\bar{h}(\varphi(s, t)+\lambda \nabla d(\varphi(s, t), t), t)
$$

Hence

$$
\frac{\partial \mathrm{h}}{\partial t}(s, t)=\left\langle\nabla \bar{h}(x+\lambda \nabla d(x, t), t), \frac{\partial \varphi}{\partial t}(s, t)+\lambda \frac{\partial}{\partial t}(\nabla d(\varphi(s, t), t))\right\rangle+\frac{\partial \bar{h}}{\partial t}(x+\lambda \nabla d(x, t), t)
$$

Setting $\lambda=0$ we have

$$
\frac{\partial \mathrm{h}}{\partial t}(s, t)=\left\langle\nabla \bar{h}(x, t), \frac{\partial \varphi}{\partial t}(s, t)\right\rangle+\frac{\partial \bar{h}}{\partial t}(x, t)=\frac{\partial \bar{h}}{\partial t}(x, t)
$$

since $\nabla \bar{h}(x, t) \in T_{x}(\Sigma(t))$ while $\frac{\partial \varphi}{\partial t}(s, t) \in N_{x}(\Sigma(t))$.

If $X \in \mathcal{C}^{\infty}\left(\cup_{t \in[a, b]}\left(\Sigma(t) \times\{t\} ; \mathbb{R}^{n}\right)\right)$, we define $\bar{X}: A \times[a, b] \rightarrow \mathbb{R}^{n}$ as

$$
\bar{X}(z, t):=X\left(\operatorname{pr}_{\Sigma(t)}(z), t\right)
$$

Given $t \in[a, b]$, the tangential divergence $\operatorname{div}_{\Sigma(t)} X$ is the trace of the orthogonal projection on $\Sigma(t)$ of the space gradient of any smooth extension of $X$ in a neighbourhood of $\Sigma(t)$. Observe that

$$
\operatorname{div}_{\Sigma(t)} X=\operatorname{div} \bar{X} \quad \text { on } \Sigma(t)
$$

We denote by $\Delta_{\Sigma(t)} u$ the tangential laplacian of $u$ on $\Sigma(t)$, defined as $\Delta_{\Sigma(t)} u:=$ $\operatorname{div}_{\Sigma(t)}\left(\nabla^{\Sigma(t)} u\right)$. Recall that

$$
\begin{equation*}
\Delta_{\Sigma(t)} u=\Delta \bar{u} \quad \text { on } \Sigma(t) \tag{4.42}
\end{equation*}
$$

Setting $\mathrm{n}=\mathrm{n}^{f(t)}$ and $H=H^{\Sigma(t)}$, recall that $\bar{n}=\nabla d_{f}$ in $A \times[a, b]$, and that

$$
\begin{equation*}
\bar{H}=\operatorname{tr}\left(\nabla^{2} d_{f} G\right), \quad G:=\left(\operatorname{Id}-d_{f} \nabla^{2} d_{f}\right)^{-1} \quad \text { in } A \times[a, b] \tag{4.43}
\end{equation*}
$$

### 4.3. Huisken's monotonicity formula

In this section we prove Huisken's monotonicity formula, which describes how the perimeter of a smooth hypersurface flowing by mean curvature changes when weighted with a suitable backward heat kernel. We begin with the following observation.

Lemma 4.3.1. Let $f:[a, b] \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right), f \in \mathcal{K} \mathcal{F}$. Let $\psi \in C^{\infty}\left(\mathbb{R}^{n} \times[a, b]\right)$. Then

$$
\begin{equation*}
\frac{d}{d t} \int_{\partial f(t)} \psi d \mathcal{H}^{n-1}=\int_{\partial f(t)}\left(-\psi(\Delta d)^{2}-\langle\nabla \psi, \nabla d\rangle \Delta d+\frac{\partial \psi}{\partial t}\right) d \mathcal{H}^{n-1} \tag{4.44}
\end{equation*}
$$

Proof. It follows from (3.27) with the choice $a=\psi$, and recalling that $V:=-\Delta d \nabla d$ is the velocity field of $\partial f(t)$.

Note that, using (3.2.3), and assuming $\psi>0$, from (4.44) we deduce

$$
\begin{align*}
\frac{d}{d t} \int_{\partial f(t)} \psi d \mathcal{H}^{n-1}= & -\int_{\partial f(t)} \psi\left(H+\frac{1}{\psi}\langle\nabla \psi, \mathrm{n}\rangle\right)^{2} d \mathcal{H}^{n-1}  \tag{4.45}\\
& +\int_{\partial f(t)}\left(\frac{1}{\psi}\langle\nabla \psi, \mathrm{n}\rangle^{2}+\frac{\partial \psi}{\partial t}+\operatorname{div}_{\Sigma(t)} \nabla \psi\right) d \mathcal{H}^{n-1}
\end{align*}
$$

In the particular case $\psi \equiv 1$, (4.45) coincides with (4.35).
Theorem 4.3.2. Let $z_{0} \in \mathbb{R}^{n}$, $t_{0} \in[a, b]$ and set

$$
\begin{equation*}
\rho(z, t)=\rho_{\left(z_{0}, t_{0}\right)}(z, t):=\frac{e^{-\frac{\left|z-z_{0}\right|^{2}}{4\left(t_{0}-t\right)}}}{\left(4 \pi\left(t_{0}-t\right)\right)^{\frac{n-1}{2}}}, \quad z \in \mathbb{R}^{n}, t<t_{0} \tag{4.46}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d}{d t} \int_{\partial f(t)} \rho d \mathcal{H}^{n-1}=-\int_{\partial f(t)} \rho\left(H+\frac{1}{\rho}\langle\nabla \rho, \mathrm{n}\rangle\right)^{2} d \mathcal{H}^{n-1} \leq 0 \tag{4.47}
\end{equation*}
$$


[^0]:    ${ }^{1}$ Even if the time variable is present, for simplicity of notation we still use here the symbol $d$, as in (2.4).

[^1]:    ${ }^{2}$ If $f$ is a smooth compact mean curvature flow it happens that $\Sigma\left(t_{1}\right) \cap \Sigma\left(t_{2}\right)=\emptyset$ if, for instance, $\Sigma(a)$ has nonnegative mean curvature.

[^2]:    ${ }^{3}$ As we will see, the barriers' theory remains unchanged if one uses smooth compact mean curvature flows or generalized smooth compact mean curvature flows: see Remark 9.0.27 in Chapter 9.

