1. MAXIMUM PRINCIPLE 28

LEMMA 3.3 (Hamilton’s Trick [44]). Let u : M x (0,T) — R be a C' function such that
for every time t, there exists a value 6 > 0 and a compact subset K C M \ OM such that at
every time t' € (t —0,t+9) the maximum Umax(t') = maxyen u(p, t') is attained at least at one
point of K.

Then, umax 1s a locally Lipschitz function in (0,T") and at every differentiability time t € (0,T")

we have
dumax(t)  Ou(p,t)

ot
where p € M is any inner point such that (-, t) gets its maximum at p.

PROOF. Fixing t € (0,7), we have § > 0 and K as in the hypotheses, hence on
K x (t — 6,t + 9) the function u is Lipschitz with some constant C. Consider a value
0 < € < ¢, then we have

Umax(t +€) = u(q, t +€) S u(g,t) + 0 < Upmax(t) + €C,

for some ¢ € K, hence,
umax(t + 5) - umax(t)
5

<C.

Analogously,
Umax(t) = u(p, 1) Su(p,t +€) +eC < umax(t +€) +eC,

for some p € K, hence,

umax(t) - umax(t + 5)

€
With the same argument, considering —9 < ¢ < 0, we conclude that .y is a locally
Lipschitz function in (0, 7"), hence differentiable at almost every time.
Suppose that t is one of such times, let p be a point in the nonempty set {p € M \
OM |u(p,t) = Umax(t) }-
By Lagrange’s Theorem, for every 0 < ¢ < 9, u(p,t +¢) = u(p,t) + 5% for some &,
hence
du(p,¢)

umax(t + 5) Z u(pat + 5) - umax(t) + 57 9

<C.

which implies, if we choose € > 0,
umax(t + en— umax(t) > 8’&(]7, 6)
5 - ot

Sending ¢ to zero, we get u, (t) > du(p.t)

. max ot
If instead we choose —6 < ¢ < 0,

umax(t =+ 5) - umax(t) < 8’&(]7, 6)
€ - 0t

() < %. Thus, we are done. O

/
and when ¢ — 0, we have u/ .



