Lemma 3.3 (Hamilton's Trick [44]). Let $u: M \times(0, T) \rightarrow \mathbb{R}$ be a C^{1} function such that for every time t, there exists a value $\delta>0$ and a compact subset $K \subset M \backslash \partial M$ such that at every time $t^{\prime} \in(t-\delta, t+\delta)$ the maximum $u_{\max }\left(t^{\prime}\right)=\max _{p \in M} u\left(p, t^{\prime}\right)$ is attained at least at one point of K.
Then, $u_{\max }$ is a locally Lipschitz function in $(0, T)$ and at every differentiability time $t \in(0, T)$ we have

$$
\frac{d u_{\max }(t)}{d t}=\frac{\partial u(p, t)}{\partial t}
$$

where $p \in M$ is any inner point such that $u(\cdot, t)$ gets its maximum at p.

Proof. Fixing $t \in(0, T)$, we have $\delta>0$ and K as in the hypotheses, hence on $K \times(t-\delta, t+\delta)$ the function u is Lipschitz with some constant C. Consider a value $0<\varepsilon<\delta$, then we have

$$
u_{\max }(t+\varepsilon)=u(q, t+\varepsilon) \leq u(q, t)+\varepsilon C \leq u_{\max }(t)+\varepsilon C
$$

for some $q \in K$, hence,

$$
\frac{u_{\max }(t+\varepsilon)-u_{\max }(t)}{\varepsilon} \leq C
$$

Analogously,

$$
u_{\max }(t)=u(p, t) \leq u(p, t+\varepsilon)+\varepsilon C \leq u_{\max }(t+\varepsilon)+\varepsilon C
$$

for some $p \in K$, hence,

$$
\frac{u_{\max }(t)-u_{\max }(t+\varepsilon)}{\varepsilon} \leq C
$$

With the same argument, considering $-\delta<\varepsilon<0$, we conclude that $u_{\text {max }}$ is a locally Lipschitz function in $(0, T)$, hence differentiable at almost every time.
Suppose that t is one of such times, let p be a point in the nonempty set $\{p \in M \backslash$ $\left.\partial M \mid u(p, t)=u_{\max }(t)\right\}$.
By Lagrange's Theorem, for every $0<\varepsilon<\delta, u(p, t+\varepsilon)=u(p, t)+\varepsilon \frac{\partial u(p, \xi)}{\partial t}$ for some ξ, hence

$$
u_{\max }(t+\varepsilon) \geq u(p, t+\varepsilon)=u_{\max }(t)+\varepsilon \frac{\partial u(p, \xi)}{\partial t}
$$

which implies, if we choose $\varepsilon>0$,

$$
\frac{u_{\max }(t+\varepsilon)-u_{\max }(t)}{\varepsilon} \geq \frac{\partial u(p, \xi)}{\partial t}
$$

Sending ε to zero, we get $u_{\max }^{\prime}(t) \geq \frac{\partial u(p, t)}{\partial t}$.
If instead we choose $-\delta<\varepsilon<0$,

$$
\frac{u_{\max }(t+\varepsilon)-u_{\max }(t)}{\varepsilon} \leq \frac{\partial u(p, \xi)}{\partial t}
$$

and when $\varepsilon \rightarrow 0$, we have $u_{\max }^{\prime}(t) \leq \frac{\partial u(p, t)}{\partial t}$. Thus, we are done.

