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In the general case, repeating this argument, unfortunately, one could obtain a union
of hyperplanes, or even more disturbing, integer multiplicity hyperplanes. Hence, a
possible flat limit.

REMARK 4.32. Another line to produce a homothetic blow up limit, is to apply, in-
stead of Stone’s argument, White’s Theorem 4.24, excluding the presence of singularities
in the case Σ = 1 (recall Definition 4.7). As the set of reachable points S is compact, if
Σ > 1 there must exists a point x0 = p̂ such that Θ(p) > 1, otherwise, by a covering
argument, White’s Theorem implies that the curvature is bounded as t ր T .

REMARK 4.33. Finally, we can also obtain a homothetic limit by rescaling the hy-
persurfaces around moving points as follows. Rescaling the maximal monotonicity for-
mula (4.6) around the points xt which are the maximum point which realize σ(t) in
Definition 4.7, that is,

σ(t) = max
x0∈Rn+1

∫

M

e
− |x−x0|

2

4(T−t)

[4π(T − t)]n/2
dµt =

∫

M

e
− |x−xt|

2

4(T−t)

[4π(T − t)]n/2
dµt ,

where now the rescaled hypersurfaces with associated measures µ̃s are given by

ϕ̃(q, s) =
ϕ(q, t(s)) − xt√

2(T − t(s))
s = s(t) = −1

2
log(T − t) ,

we get
d

ds

∫

M

e−
|y|2

2 dµ̃s = −
∫

M

e−
|y|2

2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ≤ 0 .

It follows that, integrating this formula as before, we get

σ(0) − Σ =

∫ +∞

− 1
2

log T

∫

M

e−
|y|2

2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ds < +∞ ,

and with the same argument we can produce a homothetic limit hypersurface M̃∞ such
that ∫

fM∞

e−
|y|2

2 dH̃n = Σ ≥ 1 .

Since when Σ = 1 the curvature is bounded, the limit hypersurface M̃∞ cannot be a
single hyperplane for the origin. If the initial hypersurface was embedded, this limit
also cannot be flat.

4. Embedded Hypersurfaces with Nonnegative Mean Curvature

If the compact initial hypersurface is embedded and has H ≥ 0 (this condition is
often called mean convexity) or at some time the evolving hypersurface achieve it, then
the analysis of the previous section can be pushed forward, since we have a new con-
dition that all the possible limits of rescaled hypersurfaces have to satisfy. Under such
hypothesis, Problem 4.28 and consequently Problem 4.31 have a satisfying solution.
Actually, in this class, every singular point is a special singular point and it is indeed
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possible to classify all the embedded hypersurfaces in R
n+1 such that H+ 〈x | ν〉 = 0 and

H ≥ 0, arising from a rescaling around a singularity point, see [53, 65] or [90].
We recall here that in this case, after a positive time ε > 0, there exist a constant α > 0

such that α|A| ≤ H ≤ n|A| everywhere onM for every time t ≥ ε, Corollary 3.22.
Hence, for every t ∈ [ε, T )we have

α√
2(T − t)

≤ max
p∈M

H(p, t) ≤ C√
2(T − t)

.

PROPOSITION 4.34 (Huisken [53, 65]). LetM ⊂ R
n+1 be a mean convex, smooth, embed-

ded hypersurface in R
n+1 such that H + 〈x | ν〉 = 0 at every x ∈ M and there exists a constant

C such that |A|, |∇A| ≤ C andHn(M ∩ BR) ≤ CeR, for every ball of radius R > 0 in R
n+1.

Then, up to rotation in R
n+1, M must be one of only (n + 1) possible hypersurfaces, namely,

either a hyperplane for the origin, or the sphere Sn(
√

n) or one of the cylinders Sm(
√

m)×R
n−m.

In the special one–dimensional case the only embedded smooth curves in R
2 satisfying the

structural equation k + 〈x | ν〉 = 0 are the lines through the origin and the unit circle.

PROOF. Let us assume that M is connected. If the theorem is true in this case, it
it easy to see that it is not possible to have a nonconnected embedded hypersurface
satisfying the hypotheses. Indeed, any connected component has to belong to the list
of the statement and every two hypersurfaces in such list either coincide or have some
intersections.
We deal separately with the case n = 1.

Fixing a reference point on a curve γ we have an arclength parameter s which gives a
unit tangent vector field and a unit normal vector field ν which is the rotation of π/2 in
R

2 of the vector τ . Then, it follows that k = 〈∂sτ | ν〉.
The relation k = −〈γ | ν〉 implies ks = k〈γ | τ〉. Suppose that at some point k = 0, then
also ks = 0 at the same point, hence, by the uniqueness theorem applied to this ODE for
the curvature k we can conclude that k is identically zero and we are dealing with a line
L, which then, as 〈x | ν〉 = 0 for every x ∈ L, it must pass for the origin of R2.
So we suppose that k is always nonzero and possibly reversing the orientation of the
curve we can also assume that k > 0 at every point, that is, the curve is strictly convex.
Computing the derivative of |γ|2,

∂s|γ|2 = 2〈γ | τ〉 = 2ks/k = 2∂s log k

we get k = Ce|γ|
2/2 for some constant C > 0, so if k is bounded above and below away

from zero, the curve is also bounded in R
2, hence, it is compact being embedded. As a

consequence, it is closed.
We consider now a new coordinate θ = arccos 〈e1 | ν〉, this can be done globally as we
know that the curve is convex.
Then, we have ∂sθ = k and

kθ = ks/k = 〈γ | τ〉 kθθ =
∂skθ

k
=

1 + k〈γ | ν〉
k

=
1

k
− k .
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Multiplying both sides for 2kθ we get ∂θ[k
2
θ + k2 − log k2] = 0, that is, the quantity

k2
θ +k2− log k2 is equal to some constant E along all the curve. Notice that such quantity

E cannot be less than 1, moreover, if E = 1 we have k constant equal to one and the
curve must be the unit circle.
For other values of E > 1 it is easy to see, as the function, x− log x is convex, that kmust
be bounded above and below away from zero, hence, by what we said before the curve
is a simple closed curve.
We look now at the critical points of the curvature k, they must be isolated (hence finite)
and non degenerate (kθθ 6= 0), otherwise the ODE kθθ = 1

k
−k implies that kθ is identically

zero, k is constant and again we are dealing with the unit circle.
Suppose now that k− and k+ are a pair of consecutive critical values of k, hence the two
distinct positive zeroes of the function E + log k2 − k2 when E > 1.
We have that the change ∆θ in the angle θ along the piece of curve from the points
corresponding to k− and k+ on γ is given by the integral

I(E) =

∫ k+

k−

dk√
E − k2 + log k2

.

As the four vertex theorem [72, 77] says that there are at least four critical points of k on
the curve, there must be at least four pieces like the one above, hence, the total change
in the angle θ along the curve must be at least 4I(E).
As the curve γ is simple, the total change must be 2π, so we have 4I(E) ≤ 2π, that is,

I(E) =

∫ k+

k−

dk√
E − k2 + log k2

≤ π/2 .

The analysis of Abresch and Langer in [1] (see also the work of Epstein and Wein-
stein [31]) shows that I(E) is always strictly larger than π/2 for every E > 1, which
is a contradiction and γ must be a circle.
Actually, Abresch and Langer (and also Epstein andWeinstein) classify all the closed

curves in R
2 satisfying the structural equation k + 〈γ | ν〉 = 0.

We remark that, like for other results, the one–dimensional case does not follows from
the general one below. Moreover, even if the study of the integral I(E) is done with
elementary tools, the proof of the inequality I(E) > π/2 is quite involved making def-
initely nontrivial this classification result even for simple closed curves (we underline
that the n–dimensional generalization, Problem 4.35, is open).
Suppose now that n ≥ 2.

By covariant differentiation of the equation H + 〈x | ν〉 = 0 in an orthonormal frame
{e1, . . . , en} onM we get

∇iH = 〈x | ek〉hik

∇i∇jH = hij + 〈x | ν〉hikhjk + 〈x | ek〉∇ihjk = hij − Hhikhjk + 〈x | ek〉∇khij (4.14)

where we used Codazzi and Gauss–Weingarten equations.
Contracting now with gij and hij respectively we have

∆H = H − H|A|2 + 〈x | ek〉∇kH = H(1 − |A|2) + 〈x | ∇H〉 (4.15)
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hij∇i∇jH = |A|2 − Htr(A3) + 〈x | ek〉∇k|A|2/2

which implies, by Simon’s identity (2.3),

∆|A|2 = 2|A|2(1 − |A|2) + 2|∇A|2 + 〈x | ∇|A|2〉 . (4.16)

From equation (4.15) and the strong maximum principle for elliptic equations we see
that, since M satisfies H ≥ 0 by assumption and ∆H ≤ H + 〈x | ∇H〉, we must either
have that H ≡ 0 or H > 0 on allM .
Of these two possibilities the situation that H ≡ 0 is easily handled: as x is tangent
vector field on M , by the equation 〈x | ν〉 = 0, there is a solution of the ODE γ′(t) =
x(γ(t)) = γ(t) in M for t ∈ R, but the solution is simply the line passing by x and the
origin in R

n+1, so M has to be a cone in R
n+1. Being M smooth, the only possibility is

thatM is a hyperplane through the origin of Rn+1.
Therefore we may assume henceforth, as we do, that the mean curvature satisfies the
strict inequality H > 0 everywhere (so that division by H and |A| is allowed).
Now let R > 0 and define η to be the inward unit conormal toM ∩ BR(0) along ∂

(
M ∩

BR(0)
)
, which is a smooth boundary for almost every R > 0 (by Sard’s theorem). Then,

supposing that R is a regular value for the function |x| on M , from equation (4.15) and
the divergence theorem, we obtain

εR = −
∫

∂(M∩BR(0))

|A|〈∇H | η〉e−R2/2 dHn−1 (4.17)

=

∫

M∩BR(0)

|A|∆He−|x|2/2 + 〈∇(|A|e−|x|2/2) | ∇H〉 dHn

=

∫

M∩BR(0)

|A|H(1 − |A|2)e−|x|2/2 + |A|〈x | ∇H〉e−|x|2/2 dHn

+

∫

M∩BR(0)

1

2|A|〈∇|A|2 | ∇H〉e−|x|2/2 − |A|〈x | ∇H〉e−|x|2/2 dHn

=

∫

M∩BR(0)

(
|A|H(1 − |A|2) +

1

2|A|〈∇|A|2 | ∇H〉
)

e−|x|2/2 dHn .
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Similarly,

δR = −
∫

∂(M∩BR(0))

H

|A| 〈∇|A|2 | η〉e−R2/2 dHn−1 (4.18)

=

∫

M∩BR(0)

H

|A|∆|A|2e−|x|2/2 +
〈
∇
( H

|A| |e
−|x|2/2

) ∣∣∣∇|A|2
〉

dHn

=

∫

M∩BR(0)

2|A|H(1 − |A|2)e−|x|2/2 +
2H|∇A|2

|A| e−|x|2/2 +
H

|A| 〈x | ∇|A|2〉e−|x|2/2 dHn

+

∫

M∩BR(0)

〈∇H | ∇|A|2〉
|A| e−|x|2/2 − H|∇|A|2|2

2|A|3 e−|x|2/2 − H

|A|〈x | ∇|A|2〉e−|x|2/2 dHn

=

∫

M∩BR(0)

(
2|A|H(1 − |A|2) +

2H|∇A|2
|A| +

〈∇H | ∇|A|2〉
|A| − H|∇|A|2|2

2|A|3
)

e−|x|2/2 dHn .

Hence,

σR = 2δR − 4εR =

∫

M∩BR(0)

(
4H|∇A|2

|A| − H|∇|A|2|2
|A|3

)
e−|x|2/2 dHn (4.19)

=

∫

M∩BR(0)

(4|A|2|∇A|2 − |∇|A|2|2) H

|A|3 e−|x|2/2 dHn .

As we have 4|A|2|∇A|2 ≥ |∇|A|2|2, this quantity σR is nonnegative and nondecreasing
in R.
If now we show that lim infR→+∞ σR = 0 (on the set of regular values) we can conclude
that at every point ofM ,

4|A|2|∇A|2 = |∇|A|2|2 . (4.20)

We have,

|σR| =

∣∣∣∣−2

∫

∂(M∩BR(0))

H

|A|〈∇|A|2 | η〉e−R2/2 dHn−1 + 4

∫

∂(M∩BR(0))

|A|〈∇H | η〉e−R2/2 dHn−1

∣∣∣∣

≤ 4e−R2/2

∫

∂(M∩BR(0))

H

|A| |∇|A|2| + |A||∇H| dHn−1

≤ 8e−R2/2

∫

∂(M∩BR(0))

H|∇A| + |A||∇H| dHn−1

≤Ce−R2/2Hn−1(∂(M ∩ BR(0))) ,

by the estimates on A and ∇A in the hypotheses.
Now, suppose that definitely on the set of regular values in R

+ we have

Hn−1(∂(M ∩ BR(0))) ≥ δReR2/4

for some constant δ > 0, for every R > r1. Setting xM to be the projection of the vector
x on the tangent space to M , as the function R 7→ Hn(M ∩ BR(0)) is monotone and
continuous from the left and actually continuous at every regular value of |x| on M ,
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we can differentiate it almost everywhere in R
+ and we have (by the coarea formula,

see [32] or [82]),

Hn(M ∩ BR(0)) −Hn(M ∩ Br(0)) ≥
∫ R

r

d

dξ
Hn(M ∩ Bξ(0)) dξ

≥
∫ R

r

∫

∂(M∩Bξ(0))

|∇M |x||−1 dHn−1 dξ

=

∫ R

r

∫

∂(M∩Bξ(0))

|x|/|xM | dHn−1 dξ

≥
∫ R

r

∫

∂(M∩Bξ(0))

dHn−1 dξ ,

where the derivative in the integral is taken only at the points where it exists and∇M |x|
denotes the projection of the gradient of the function |x| on the tangent space toM .
Hence, if r is larger than r1,

Hn(M ∩ BR(0)) −Hn(M ∩ Br(0)) ≥
∫ R

r

∫

∂(M∩Bξ(0))

dHn−1 dξ

≥ δ

∫ R

r

ξeξ2/4 dξ

=2δ(eR2/4 − er2/4)

so ifR goes to+∞, the quantityHn(M∩BR(0))e−R diverges, contradicting the hypothe-
ses in the statement. Hence, the lim inf on the set of regular values as R goes to +∞ of
the quantity e−R2/4Hn−1(∂(M ∩ BR(0))) has to be zero. It follows the same for σR and
equation (4.20) holds.
Making explicit such equation, by the equality condition in the Cauchy–Schwartz

inequality, it immediately follows that, fixing k, at every point there exists a constant ck

such that

∇khij = ckhij

for every i, j. Tracing with the metric and with hij , we get ∇kH = ckH and ∇k|A|2 =
2ck|A|2, hence ck = ∇k log H and ∇k log |A|2 = 2ck = 2∇k log H.
This implies that locally |A| = αH for some constant α > 0, by connectedness, this rela-
tion has to hold globally onM .
Suppose now that at a point |∇H| 6= 0, then, ∇khij = ckhij = ∇kH

H
hij which is a symmet-

ric 3–tensor by Codazzi equations, hence,∇kHhij = ∇jHhik. Computing then in normal
coordinates, with an orthonormal basis {e1 . . . , en} such that e1 = ∇H/|∇H| we have

0 = |∇kHhij −∇jHhik|2 = 2|∇H|2
(
|A|2 −

n∑

i=1

h2
1i

)
.



 D
ra

ft

4. EMBEDDED HYPERSURFACES WITH NONNEGATIVE MEAN CURVATURE 72

Hence, |A|2 =
∑n

i h2
1i then

|A|2 = h2
11 + 2

n∑

i=2

h2
1i +

n∑

i,j 6=1

hij = |A|2
n∑

i=2

h2
1i +

n∑

i,j 6=1

hij

so hij = 0 unless i = j = 1. This means that A has rank one.
Thus, we have two possible (non mutually excluding) situations at every point of M :
either A has rank one or∇H = 0.
If the kernel ofA is empty everywhere,Amust have rank at least two, aswe assumed

n ≥ 2, then we have ∇H = 0 which implies ∇A = 0 and, by equation (4.14) hij =
Hhikhkj. This means that all the eigenvalues of A are 0 or 1/H. As the kernel is empty,
A = Hg/n, precisely H =

√
n and A = g/

√
n. Then, the hypersurface M has to be the

sphere S
n(
√

n).
Indeed, computing

∆|x|2 = 2n + 2〈x |∆x〉 = 2n + 2H〈x | ν〉 = 2n − 2H2 = 0 ,

by the structural equationH+〈x | ν〉 = 0, being |x|2 a harmonic function onM , looking at
the point ofM of minimum distance from the origin, by the strong maximum principle
for elliptic equations, it must be constant onM .
We suppose now that the kernel of A is not empty at some point p ∈ M , then let

v1(p), . . . , vn−m(p) ∈ R
n+1 be a family of unit orthonormal tangent vectors spanning

such (n − m)–dimensional kernel, that is hijv
j
k = 0. Then the geodesic γ(s) inM from p

with initial velocity vk(p) satisfies

∇s(hijγ
j
s) = H−1〈∇H | γs〉hijγ

j
s

hence, by Gronwall’s lemma, it holds hij(γ(s))γj
s(s) = 0 for every s.

Being γ a geodesic inM , the normal to the curve inR
n+1 is the normal toM , then setting

k to be the curvature of γ in R
n+1, we have

k =
〈
ν
∣∣∣ d

ds
γs

〉
= hijγ

i
sγ

j
s = 0 ,

thus γ is a line in R
n+1.

Hence, all the (n − m)–dimensional affine subspace p + S(p) ⊂ R
n+1 is contained inM ,

where we set S(p) = 〈v1(p), . . . , vm(p)〉 ⊂ R
n+1.

Let now σ(s) a geodesic from p to another point q, parametrized in arclength, and extend
by parallel transport the vectors vk along σ,

∇s(hijv
j
k) = 〈∇H | σs〉hijv

j
k

and again by Gronwall’s lemma, hijv
j
k(s) = for every s, in particular vk(q) is contained

in the kernel of A at q ∈ M . This argument clearly shows that the kernel of S(p) of A at
p has constant dimension (n − m) with 0 < m < n (as A is never zero) and all the affine
(n − m)–dimensional subspaces p + S(p) ⊂ R

n+1 are all contained inM .
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Moreover, as hijv
j
k = 0 along such geodesic, looking at things in R

n+1, denoting with D
the covariant derivative in R

n+1, we have

Dsvk = ∇svk + hijv
j
kσ

i
sν = 0

so the subspaces S(p) are all a common (n − m)–dimensional vector subspace that we
denote with S andM = M + S ⊂ R

n+1.
By Sard’s theorem, there exist a vector y ∈ S such thatN = M ∩ (y +S⊥) is a smoothm–
dimensional submanifold of Rn+1, then asM = M + S, it is easy to see thatM = N × S,
but this means that L = S⊥ ∩M is a smoothm–dimensional submanifold of S⊥ = R

m+1

withM = L × S.
Moreover, as S is in the tangent space to every point of L, the normal ν toM at a point
of L stays in S⊥ = R

m+1 so it coincides with the normal to L in S⊥ = R
m+1, then a simple

computation shows that the mean curvature ofM at the points of L is equal to the mean
curvature of L as a hypersurface in S⊥ = R

m+1. This shows that L is a hypersurface in
R

m+1 satisfying the relative structural equation. Finally, as, by construction, the second
fundamental form of L has empty kernel, by the previous discussion, L = S

m(
√

m) and
M = S

m(
√

m) × R
n−m and we are done.

�

OPEN PROBLEM 4.35. Without the assumption H > 0 this result is not true, an exam-
ple is the Angenent torus [13]. It is an open question if there exists a smooth embedding
of Sn in R

n+1 such that H + 〈x | ν〉 = 0, different by the unit sphere.

COROLLARY 4.36. Every limit hypersurface obtained by rescaling around a type I singu-
larity point of the motion by mean curvature of a compact, embedded initial hypersurface with
H ≥ 0, up to rotation in R

n+1, M must be either a hyperplane for the origin, or the sphere
S

n(
√

n) or one of the cylinders Sm(
√

m) × R
n−m.

We discuss now what are the possible values of the limit heat density function, fol-
lowing Stone [89]. As the value of Θ(p) is the Huisken’s functional on any limit of
rescaled hypersurfaces, and these latter are “finite”, we have that the possible values
are 1 in the case of a hyperplane and

Θn,m =
1

(2π)n/2

∫

Sm(
√

m)×Rn−m

e−
|x|2

2 dHn

for m ∈ {1, . . . , n}.
A straightforward computation gives for m > 0

Θn,m =
( m

2πe

)m/2

ωm

where ωm denotes the volume of the unit m–sphere. Notice that Θ
n,m does not depend

on n, so we can simply write Θm = Θn,m.

LEMMA 4.37 (Stone [89]). The values of Θm are all distinct and larger than 1 for m > 0.
Indeed the numbers

{
Θm : m = 1, 2, . . .

}
form a strictly decreasing sequence in m, with

Θm ց
√

2 asm → ∞.


