
 D
ra

ft

5. THE SPECIAL CASE OF EMBEDDED CLOSED CURVES IN THE PLANE 92

REMARK 5.25. For curves in the plane, possibly with self–intersections, such that
the initial curvature is never zero, this result was obtained via a different method by
Angenent [11] (see also [4]), studying directly the parabolic equation satisfied by the
curvature function.

In view of these results and the discussion about the classification of translating so-
lution in Section 1, the strongest conjecture in this context is that all the blow up limits
via the Hamilton’s modified procedure at a type II singularity of the evolution of an em-
bedded hypersurface with H ≥ 0 is the only rotationally symmetric, strictly convex,
translating solution.
In [93], White was able to exclude the possibility to get as a blow up limit the product
of a grim reaper with R

n−1.

More in general, also without assuming the condition H > 0, one can conjecture that
blow up limits like the minimal catenoid surfaceM in R

3 given by

Ω =
{
(x, y) ∈ R

2 × R | cosh |y| = |x|
}

or products of lower dimensional convex translating solutions with some R
k, cannot

happen.
This seems to be supported by the recent paper by Ecker [27].

5. The Special Case of Embedded Closed Curves in the Plane

In the special case of the evolution of an embedded closed curve in the plane, it is
possible to exclude at all type II singularities. This, together with the case of convex,
compact, hypersurfaces (as we have seen in the proof of Theorem 4.39 and 4.40) are the
only cases in which this can be done.
By the previous section and embeddedness, any blow up limit must be translating

and with unit multiplicity, that is, a grim reaper. We apply now a very geometric ar-
gument by Huisken in [56] in order to exclude also such possibility (see also [51] for
another similar quantity).
Given the smooth flow γt of an initial embedded closed curve γ0 on some interval

[0, T ), we know that the curve stay embedded during the flow, so we can refer to every
curve γt as a subset of R

2. At every time t ∈ [0, T ), for every pair of points p and q in γt

we define dt(p, q) to be the geodesic distance in γt of p and q, |p− q| the standard distance
in R

2 and Lt the length of γt.
We consider the function Φt : γt × γt → R defined as

Φt(p, q) =

{
π|p−q|

Lt

/ sin πdt(p,q)
Lt

if p 6= q,

1 if p = q ,

which is a perturbation of the quotient between the extrinsic and the intrinsic distance
of a pair of points on γt.
Since γt is smooth and embedded for every time, the function Φt is well defined and
positive. Moreover, it is easy to check that even if dt is not C

1 at the pairs of points such
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that dt(p, q) = Lt/2, the function Φt isC
1 in the open set {p 6= q} ⊂ γt×γt and continuous

on γt × γt.
By compactness, for every t ∈ [0, T ), the following infimum is actually a minimum in
this case,

E(t) = inf
p,q∈γt

Φt(p, q) . (5.6)

As the curve γt has no self–intersections we have 0 < E(t) ≤ 1, the converse is clearly
also true. Finally, since the evolution is smooth it is easy to see that the function E :
[0, T ) → R is continuous.

LEMMA 5.26 (Huisken [56]). The function E(t) is monotone increasing in every interval
where E(t) < 1.

PROOF. We start differentiating in time Φt(p, q),

d

dt
Φt(p, q) =

π

Lt

〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|
/ sin

πdt(p, q)

Lt

+

(
π|p − q|

L2
t

∫

γt

k2 ds

)
/ sin

πdt(p, q)

Lt

−
π2|p − q|

L2
t

cos
πdt(p, q)

Lt

(
dt(p, q)

Lt

∫

γt

k2 ds −

∫ p

q

k2 ds

)
/ sin2 πdt(p, q)

Lt

=

[
〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|2
+

1

Lt

∫

γt

k2 ds

−
π

Lt

cot
πdt(p, q)

Lt

(
dt(p, q)

Lt

∫

γt

k2 ds −

∫ p

q

k2 ds

)]
Φt(p, q)

=

[
〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|2
+

1

Lt

(
1 −

πdt(p, q)

Lt

cot
πdt(p, q)

Lt

) ∫

γt

k2 ds

+
π

Lt

cot
πdt(p, q)

Lt

∫ p

q

k2 ds

]
Φt(p, q)

where s is the arclength and k the curvature of γt. It is then easy to see that being the
function E the infimum of a family of locally uniformly Lipschitz functions, it is also
locally Lipschitz, hence differentiable almost everywhere. Then, to prove the statement

it is enough to show that dE(t)
dt

> 0 for every time t such that this derivative exists. We
will do that as usual, by Hamilton’s trick, Lemma 3.3.
Let (p, q) a minimizing pair at a differentiability time t and suppose that E(t) < 1. By
the very definition of Φt, it must be p 6= q.
We set α = πdt(p, q)/Lt and notice that α cot α < 1 as α ∈ (0, π/2]. Moreover,

∫
γt

k2 ds ≥
(∫

γt

k ds
)2

/Lt ≥ 4π2/Lt. Then, we have

d

dt
E(t) ≥

[
〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|2
+

4π2

L2
t

(1 − α cotα) +
π

Lt

cotα

∫ p

q

k2 ds

]
E(t)
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that is,

d

dt
log E(t) ≥

〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|2
+

4π2

L2
t

(1 − α cotα) +
π

Lt

cotα

∫ p

q

k2 ds , (5.7)

at any minimizing pair (p, q).
Assume that the curve is parametrized counterclockwise in arclength, that dt(p, q) <
Lt/2 and that the geodesic connecting p and q is the counterclockwise oriented part of
the curve from q to p, like in the figure.

β(q)

p

γt

qβ(p)

FIGURE 1.

We set p(s) = γt(s0 + s)with p = γt(s0), then, by minimality we have

0 =
d

ds
Φt(p(s), q)

∣∣∣∣
s=0

=
π

Lt

〈p − q | τ(p)〉

|p − q|
/ sin

πdt(p, q)

Lt

−
π|p − q|

Lt sin
2 πdt(p,q)

Lt

π cos πdt(p,q)
Lt

Lt

where we denoted with τ(p) the oriented unit tangent vector to γt at p.
By this last equality we get

cos β(p) =
〈p − q | τ(p)〉

|p − q|
=

π|p − q|

Lt sin
πdt(p,q)

Lt

cos
πdt(p, q)

Lt

= E(t) cos α

where β(p) is the angle between the vectors p − q and τ(p).
Repeating this argument for the other point q we get

cos β(q) = −E(t) cos α

where, as before, β(q) is the angle between q − p and τ(q), see Figure 1. Clearly, β(q) =
π − β(p).
Notice that if one of these intersection is tangential, we would have E(t) cos α = 1
which is impossible as we assumed that E(t) < 1. Moreover, by the relation cos β(p) =
E(t) cos α < cos α it follows that β > α.
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We look now at the second variation of Φt, at the same minimizing pair of points
(p, q). With the same notation, if p = γt(s1) and q = γt(s2) we set p(s) = γt(s1 + s) and
q(s) = γs(s2 − s). After a straightforward computation one gets,

0 ≤
d2

ds2
Φt(p(s), q(s))

∣∣∣∣
s=0

=
π

Lt

(
〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|
+

4π2|p − q|

L2
t

)
/ sin

πdt(p, q)

Lt

=

[
〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|2
+

4π2

L2
t

]
E(t) .

Hence, getting back to inequality (5.7), we have

d

dt
log E(t) ≥

〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|2
+

4π2

L2
t

(1 − α cotα) +
π

Lt

cotα

∫ p

q

k2 ds

≥ −
4π2

L2
t

α cot α +
π

Lt

cot α

∫ p

q

k2 ds

=
π cot α

Lt

(∫ p

q

k2 ds −
4π

Lt

α

)
,

so it remains to show that this last expression is positive. As
∫ q

p

k2 ds ≥

(∫ q

p

k ds

)2

/dt(p, q)

and noticing that
∫ q

p
k ds is the angle between the tangent vectors τ(p) and τ(q), we have

(∫ q

p
k ds

)2

= 4β(p)2 > 4α2, as we concluded above.

Thus,

d

dt
log E(t) ≥

π cotα

Lt

(∫ p

q

k2 ds −
4π

Lt

α

)

>
π cotα

Lt

(
4α2

dt(p, q)
−

4π

Lt

α

)

=0

recalling that α = πdt(p, q)/Lt. �

REMARK 5.27. Clearly, by its definition and this lemma, the function E is always
nondecreasing. Actually, to be more precise, by means of a simple geometric argument
it can be proved that if E(t) = 1 the curve must be a circle. Hence, in any other case E
is strictly increasing in time.

REMARK 5.28. This lemma clearly implies that an initial embedded closed curve
cannot develop a self–intersection during mean curvature flow, otherwise E would get
zero, which is impossible as E(0) > 0 and E is nondecreasing.

An immediate consequence of this lemma is that for every initial embedded, closed
curve in R

2, there exists a positive constant C depending on the initial curve such that
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on all [0, T ) we have E(t) ≥ C. The same conclusion holds for any rescaling of such
curves as the function E is scaling invariant by construction.

REMARK 5.29. This lemma also provide an alternative proof of the fact that an initial
embedded, closed curve stays embedded, that is, it cannot develop a self–intersection
during mean curvature flow, otherwise E would get zero.

We can then exclude Type II singularities, indeed, as γ∞ is a grim reaper and it is the
limit of rescalings of curves of the family γt, the function E for such grim reaper (which
is constant in time, since it moves by translation) is not smaller, at any time, than the
infimum of the corresponding functions for the approximating curves, hence, by the
discussion above, following the lemma, it is bounded below by some positive constant
C.
But, if we consider a pair of points p, q on any grim reaper Γt such that the segment
[p, q] is orthogonal to the velocity vector w ∈ R

2 and we send such segment infinity, we
can see that Φt(p, q) → 0, hence E(Γt) = 0, indeed, the distance |p − q| is bounded by a
constant (the width of the strip where the grim reaper lives) and the intrinsic distance
dt(p, q) diverges.
This is in contradiction with the above conclusion.

PROPOSITION 5.30. Type II singularities cannot develop during the mean curvature flow
of an embedded, closed curve in R

2.

Collecting together the results of Chapter 4 about type I singularities and this last
proposition, we obtain the following Theoremdue to Grayson [41], whose original proof
is more geometric and direct, showing that the intervals of negative curvature vanish in
finite time, before any singularity.

THEOREM 5.31. Let γ0 be a closed, smooth embedded curve in the plane and let γt, for

t ∈ [0, T ) be its maximal evolution by mean curvature. There exists a time t̂ < T such that γbt is
convex.
As a consequence, the result of Gage and Hamilton 4.39 applies and subsequently the curve
shrinks smoothly to a point t → T .

PROOF. As we said no type II singularities are possible and the only type I singular-
ities have a circle as limit of rescalings, see Section 5.
Hence, at some point the curve must have become convex. �

We add a final remark in this case of embedded curves.
Letting A(t) to be the area enclosed by γt which moves by mean curvature, we have

d

dt
A(t) = −

∫

γt

k ds = −2π ,

hence, as the evolution is smooth till the curve shrinks to a point at time T > 0 and
clearly A(t) goes to zero, we have A(0) = 2πT . That is, the existence time is exactly
equal to the initial enclosed area divided by 2π.


