
 D
ra

ft
CHAPTER 2

Definition of the Flow and Small Time Existence

1. Notations and Preliminaries

We devote this section to introduce the basic notations and facts about Riemannian
manifolds and their submanifolds we need in the paper, a good reference is [39].
The main objects we will consider are n–dimensional connected and complete hy-

persurfaces immersed inRn+1, that is, pairs (M, ϕ)whereM is an n–dimensional smooth
manifold, connected with empty boundary, and ϕ : M → Rn+1 is a smooth immersion,
that is, the rank of dϕ is everywhere equal to n.
The manifold M gets in a natural way a metric tensor g turning it in a Riemannian

manifold (M, g), by pulling back the standard scalar product of Rn+1 with the immer-
sion map ϕ.
Taking local coordinates around p ∈ M , we have local bases of TpM and T ∗

p M , re-

spectively given by vectors
{

∂
∂xi

}
and covectors {dxj}.

We will denote vectors on M by X = X i, which means X = X i ∂
∂xi
, covectors by

Y = Yj, that is, Y = Yjdxj and a general mixed tensor with T = T i1...ik
j1...jl
, where the

indices refer to the local basis.
Often, we will consider tensors along M , viewing it as a submanifold of R

n+1 via
the map ϕ, in that case we will use the Greek indices to denote the components of such
tensors in the canonical basis {eα} of Rn+1, for instance, given a vector fieldX alongM ,
not necessarily tangent, we will haveX = Xαeα.
In all the paper the convention to sum over repeated indices will be adopted.
The inner product onM , extended to tensors, is given by

g(T, S) = gi1s1
. . . giksk

gj1z1 . . . gjlzlT i1...ik
j1...jl

Ss1...sk
z1...zl

where gij is the matrix of the coefficients of the metric tensor in local coordinates and gij

is its inverse. Clearly, the norm of a tensor is

|T | =
√

g(T, T ) .

The scalar product in Rn+1 will be denoted with 〈· | ·〉. As the metric g is obtained
pulling it back with ϕ, we have

gij = g

(
∂

∂xi

,
∂

∂xj

)
= (dϕ∗〈· | ·〉)

(
∂

∂xi

,
∂

∂xj

)
=

〈
∂ϕ

∂xi

∣∣∣∣
∂ϕ

∂xj

〉
.
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1. NOTATIONS AND PRELIMINARIES 9

The canonical measure induced by the metric g is given in a coordinate chart by

µ =
√

GLn where G = det(gij) and Ln is the standard Lebesgue measure on Rn.
The induced covariant derivative on (M, g) of a vector fieldX and of a 1–form ω are

given by

∇jX
i =

∂X i

∂xj

+ Γi
jkX

k , ∇jωi =
∂ωi

∂xj

− Γk
jiωk ,

where the Christoffel symbols Γ = Γi
jk are expressed by the following formula,

Γi
jk =

1

2
gil

(
∂

∂xj

gkl +
∂

∂xk

gjl −
∂

∂xl

gjk

)
.

For a general tensor the covariant derivative is defined by means of Leibniz rule.

In all the paper the covariant derivative ∇T of a general tensor T = T i1...ik
j1...jl

will be

denoted by ∇sT
i1...ik
j1...jl

= (∇T )i1...ik
sj1...jl

(we recall that such covariant derivative is defined
uniquely on the tensor algebra by imposing Leibniz rule and commutativity with con-
tractions).
With ∇mT we will mean them–th iterated covariant derivative of T .
We recall that the gradient ∇f of a function and the divergence div X of a vector

field at a point p ∈ M are defined respectively by

g(∇f(p), v) = dfp(v) ∀v ∈ TpM

and

div X = tr∇X = ∇iX
i =

∂

∂xi

X i + Γi
ikX

k .

The (rough) Laplacian∆T of a tensor T is

∆T = gij∇i∇jT .

IfX is a smooth vector fieldwith compact support onM , as ∂M = ∅, the usual divergence
theorem holds ∫

M

div X dµ = 0 ,

which clearly implies ∫

M

∆f dµ = 0

for every smooth function f : M → R with compact support.
Since ϕ is locally an embedding in Rn+1, at every point p ∈ M we can define up to a

sign a unit normal vector ν(p). Locally, we can always choose ν in order to be smooth,
ifM is orientable, this choice can be done globally.
If the hypersurface M is embedded, that is, the map ϕ is one–to-one, asM is compact,
there will be an inside of the hypersurface, in this case we will consider ν to be the inner
pointing unit normal vector at every point ofM .
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The second fundamental formA = hij ofM is the symmetric 2–form defined as follows:

hij =

〈
ν

∣∣∣∣
∂2ϕ

∂xi∂xj

〉
,

the mean curvature H is the trace of A, that is H = gijhij .

REMARK 2.1. Notice that since ν is defined up to a sign, the same is true for A.
Instead, the vector valued second fundamental form hijν which is a 2–form with values in
Rn+1 is uniquely defined.
With our choice of ν as the inner pointing unit normal, the sphere Sn ⊂ Rn+1 has a
positive definite second fundamental form and positive mean curvature, the same holds
for every strictly convex hypersurface in Rn+1.

The linear mapWp : TpM → TpM given byWp(v) = hi
j(p)vj ∂

∂xi
is called Weingarten

operator and its eigenvalues λ1 ≤ · · · ≤ λn the principal curvatures at the point p ∈ M . It
is easy to see that H = λ1 + · · ·+ λn and |A|2 = λ2

1 + · · · + λ2
n.

EXERCISE 2.2. Show that if the hypersurface M ⊂ Rn+1 is defined locally as the
graph of a function f : Rn → R we have, ϕ(x) = (x, f(x))

gij = δij + fifj , ν = − (∇f,−1)√
1 + |∇f |2

hij =
Hessijf√
1 + |∇f |2

H =
∆f√

1 + |∇f |2
− Hessf(∇f,∇f)

(
√

1 + |∇f |2)3
= div

(
∇f√

1 + |∇f |2

)

where fi = ∂xi
f and Hessf is the Hessian of the function f .

EXERCISE 2.3. Show that if the hypersurfaceM ⊂ Rn+1 is defined locally as the zero
set of a smooth function f : Rn+1 → R, with ∇f 6= 0, we have

H =
∆f

|∇f | −
Hessf(∇f,∇f)

|∇f |3 = div

( ∇f

|∇f |

)
.

The following Gauss–Weingarten relations will be fundamental,

∂2ϕ

∂xi∂xj

= Γk
ij

∂ϕ

∂xk

+ hijν ,
∂

∂xj

ν = −hjlg
ls ∂ϕ

∂xs

. (2.1)

In other words, they express the fact that∇M = ∇Rn+1 −Aν. We recall that, considering

M locally as a regular submanifold of Rn+1 we have ∇M
X Y = (∇R

n+1

X Ỹ )M where M de-

notes the projection on the tangent space to M and Ỹ is a local extension of the field Y
in a local neighborhood Ω ⊂ Rn+1 of ϕ(M).
Notice that, by these relations, it follows

∆ϕ = gij∇2
ijϕ = gij

(
∂2ϕ

∂xi∂xj

− Γk
ij

∂ϕ

∂xk

)
= gijhijν = Hν , (2.2)
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component by component.
By a straightforward computation, we can see that the Riemann tensor, the Ricci tensor
and the scalar curvature can be expressed via the second fundamental form as follows,

Rijkl = g(∇2
ji∂k −∇2

ij∂k, ∂l) = hikhjl − hilhjk ,

Ricij = gklRikjl = H hij − hilg
lkhkj ,

R = gijRicij = gijgklRikjl = H2 − |A|2 .

Hence, the formulas for the interchange of covariant derivatives, which involve the
Riemann tensor, become

∇i∇jX
s −∇j∇iX

s =Rijklg
ksX l = (hikhjl − hilhjk) gksX l ,

∇i∇jωk −∇j∇iωk =Rijklg
lsωs = (hikhjl − hilhjk) glsωs .

The symmetry properties of the covariant derivative of A are expressed by the Codazzi
equations,

∇ihjk = ∇jhik = ∇khij

which imply the following Simon’s identity (see [83]),

∆hij = ∇i∇jH + H hilg
lshsj − |A|2hij . (2.3)

We will write T ∗ S, following Hamilton [43], to denote a tensor formed by contrac-
tion on some indices of the tensors T and S using gij and gij.
A very useful property of this ∗–product is that

|T ∗ S| ≤ C|T | |S|
where the constant C depends only on the ”structure” of the tensors T and S.
Sometimes we will need the n–dimensional Hausdorff measure in Rn+1, we will

denote it with Hn.

We advise the reader that in all the paper the constants could vary between different
formulas and from a line to another.

2. First Variation of the Area Functional

Given an immersion ϕ : M → Rn+1 of a smooth hypersurface in Rn+1, we consider
the Area functional

Area(ϕ) =

∫

M

dµ

where µ is the canonical measure associated to the Riemannian metric g which is in-
duced onM by the scalar product of Rn+1 via the immersion ϕ.
In this section we are going to analyze the first variation of such functional which is

nothing else than the volume of the hypersurface.
We consider a smooth one parameter family of immersions ϕt : M → Rn+1, with

t ∈ (−ε, ε) and ϕ0 = ϕ, such that, outside of a compact setK ⊂ M , we have ϕt(p) = ϕ(p)
for every t ∈ (−ε, ε).

Defining the field X = ∂ϕt

∂t

∣∣
t=0
alongM as a submanifold of Rn+1, we see that it is zero
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outside K, we call such field the infinitesimal generator of the variation ϕt.
We compute

∂

∂t
gij

∣∣∣∣
t=0

=
∂

∂t

〈
∂ϕt

∂xi

∣∣∣∣
∂ϕt

∂xj

〉∣∣∣∣
t=0

=

〈
∂X

∂xi

∣∣∣∣
∂ϕ

∂xj

〉
+

〈
∂X

∂xj

∣∣∣∣
∂ϕ

∂xi

〉

=
∂

∂xi

〈
X

∣∣∣∣
∂ϕ

∂xj

〉
+

∂

∂xj

〈
X

∣∣∣∣
∂ϕ

∂xi

〉
− 2

〈
X

∣∣∣∣
∂2ϕ

∂xi∂xj

〉

=
∂

∂xi

〈
XM

∣∣∣∣
∂ϕ

∂xj

〉
+

∂

∂xj

〈
XM

∣∣∣∣
∂ϕ

∂xi

〉
− 2Γk

ij

〈
XM

∣∣∣∣
∂ϕ

∂xk

〉
− 2hij〈X | ν〉 ,

where XM is the tangent component of the field X and we used the Gauss–Weingarten
relations (2.1) in the last step.
Calling ω the 1–form defined by ω(Y ) = g(dϕ∗(XM), Y ), this formula can be rewritten
as

∂

∂t
gij

∣∣∣∣
t=0

=
∂ωj

∂xi

+
∂ωi

∂xj

− 2Γk
ijωk − 2hij〈X | ν〉 = ∇iωj + ∇jωi − 2hij〈X | ν〉 .

Hence, using the formula ∂t det A(t) = det A(t)Trace[A−1(t)∂tA(t)], we get

∂

∂t

√
det(gij)

∣∣∣∣
t=0

=

√
det(gij)g

ij ∂
∂t

gij

∣∣
t=0

2

=

√
det(gij)g

ij(∇iωj + ∇jωi − 2hij〈X | ν〉)
2

=
√

det(gij)(div XM − H〈X | ν〉) .
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If the Area of the immersion ϕ is finite, the same holds for all the maps ϕt, as they are
compact deformations. Supposing that the compact K is contained in a single coordi-
nate chart, we have

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

=
∂

∂t

∫

K

dµt

∣∣∣∣
t=0

=
∂

∂t

∫

K

√
det(gij) dx

∣∣∣∣
t=0

=

∫

K

∂

∂t

√
det(gij)

∣∣∣∣
t=0

dx

=

∫

K

(div XM − H〈X | ν〉)
√

det(gij) dx

=

∫

M

(div XM − H〈X | ν〉) dµ

= −
∫

M

H〈X | ν〉 dµ

where we used the fact that X is zero outside K and in the last step we applied the
divergence theorem. Notice that the integrals are all well defined because actually we
are integrating only on the compactK.
In the case that K is contained in several charts, the same conclusion follows from a
standard argument using a partition of unity.

PROPOSITION 2.4. The first variation of the Area functional depends only on the normal

component of the infinitesimal generator X = ∂ϕt

∂t

∣∣
t=0
of the variation, precisely

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

= −
∫

M

H〈X | ν〉 dµ .

Moreover, such dependence is linear.

Given any immersion ϕ : M → Rn+1 and a field X along M , with compact sup-
port, we can always construct a variation with infinitesimal generator X as ϕt(p) =
ϕ(p) + tX(p). It is easy to see that for |t| small the map ϕt is still a smooth immersion.
Hence, as the hypersurfaces which are critical point of the Area functional must satisfy∫

M
H〈X | ν〉 dµ = 0 for every X with compact support, they must have H = 0 every-

where, that is, zero mean curvature (and clearly viceversa). This is the well known
definition of the so called minimal surfaces.
As the quantity −Hν can be interpreted as the gradient of the Area functional (be

careful here, the measure µ is varying with ϕ, we are not taking the gradient with respect
a to a canonical L2 structure on the space of immersions ofM in Rn+1), one is interested
in the motion of a hypersurface by this gradient, that is the mean curvature flow. So, one
looks for hypersurfaces moving with velocity Hν at every point of space and time. This
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means choosing, among all the velocity functions with fixed L2(µ) norm, the one such
that the area decreases most rapidly.
This idea is quite natural and arises often in studying the dynamics of models of

physical situations where the energy is given by the “volume” of the interfaces between
the phases of a system. Moreover, as the Area functional is the simplest (in terms of
derivatives of the parametrization) geometric functional, that is, invariant by isometries
of Rn+1 and diffeomorphisms ofM , the motion by mean curvature is the simplest varia-
tional geometric flow for immersed hypersurfaces. Any other geometric functional, for
instance depending on the next simpler geometric invariant, the curvature, produces a
first variation of order higher than two (actually four at least) in the derivatives of the
parametrization, and a relative higher order PDE’s system.
One can clearly consider other second order flowswhere the velocity of themotion is re-
lated to different functions of the curvature, like the Gauss flow of surfaces, for instance,
where the velocity is given by Gν (G is the Gauss curvature of M , that is, G = det A),
or more complicated flows, but these evolutions are not variational, they do not arise as
“gradients” of geometric functionals (see Section 6).

3. The Mean Curvature Flow – Definition

DEFINITION 2.5. Let ϕ0 : M → R
n+1 be a smooth immersion of a connected n–

dimensional manifold. The mean curvature flow of ϕ0 (or of M) is a family of smooth
immersions ϕt : M → Rn+1 for t ∈ [0, T ) such that setting ϕ(p, t) = ϕt(p) the map
ϕ : M × [0, T ) → Rn+1 is a smooth solution of the following system of PDE’s

{
∂
∂t

ϕ(p, t) = H(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)
(2.4)

where H(p, t) and ν(p, t) are respectively the mean curvature and the normal of the hy-
persurface ϕt at the point p ∈ M .

REMARK 2.6. Notice that even if the unit normal vector is defined up to a sign, the
field H(p, t)ν(p, t) is independent of such choice.

Using equation (2.2), this system can be rewritten in the appealing form

∂ϕ

∂t
= ∆ϕ

but, despite of its formal analogy with the heat equation, actually, it is a second order
quasilinear degenerate parabolic system, as the Laplacian is the one associated to the
evolving hypersurfaces at time t,

∆ϕ(p, t) = ∆g(p,t)ϕ(p, t) = gij(p, t)∇g
i∇g

jϕ(p, t)

and both g and∇g depends on the first derivatives of ϕ and on time t.
Moreover, this operator is degenerate, as its symbol (or the symbol of the linearized op-
erator) admits zero eigenvalues, see [38] for details, due to the invariance of the Lapla-
cian by diffeomorphisms.
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hypothesis on x, we have d2
ti
(x) → 0, hence

d2(t) = lim
i→∞

d2
t (x) − d2

ti
(x) ≤ lim

i→∞
2n(ti − t) = 2n(T − t)

which is the thesis of the proposition.
The closure of S is obvious, boundedness is a consequence of sphere comparison in
Corollary 3.10. �

A very important fact about hypersurfaces moving by mean curvature is the follow-
ing.

PROPOSITION 3.14. Suppose that the initial hypersurface is compact and embedded, then it
remains embedded during the flow.

PROOF. Let ϕ : M × [0, T ] → Rn+1 be the evolving hypersurface. It is clear that if
ϕ0 is an embedding it remains so for a small positive time, otherwise we will have a
sequence of points and times, with ϕ(pi, ti) = ϕ(qi, ti) and ti → 0, then, extracting a sub-
sequence (not relabeled) such that pi → p and qi → q, either p 6= q so ϕ(p, 0) = ϕ(q, 0),
which is a contradiction, or p = q. By the smooth existence of the flow, in particular
by the nonsingularity of the differential of ∂xϕ(p, t) there exists a ball B ⊂ M around
p such that for t ∈ [0, ε) the map ϕt|B is one–to–one, which is in contradiction with the
hypotheses.
This small time embeddedness property is immediate by revisiting the proof of the
small time existence theorem, representing the moving hypersurfaces as graphs on the
initial one, for small time.
This argument also implies that embeddedness holds in a open interval [0, T ), sup-

pose then that T is the first time the hypersurface is not embedded. The set S of pairs
(p, q) with p 6= q and ϕ(p, T ) = ϕ(q, T ) is a nonempty closed set disjoint from the diago-
nal inM × M , otherwise ϕT fails to be an immersion at some point inM . Then, we can
find a smooth open neighborhood Ω of the diagonal with Ω ∩ S = ∅.
We consider the following quantity,

C = inf
t∈[0,T ]

inf
(p,q)∈∂Ω

|ϕ(p, t) − ϕ(q, t)| ,

then C is positive, as Ω∩S = ∅ and ∂Ω is compact. We claim that the following function

L(t) = min
(p,q)∈M×M\Ω

|ϕ(p, t) − ϕ(q, t)| ,

is bounded below by min{L(0), C} > 0 on [0, T ], this is clearly in contradiction with the
fact that S is nonempty and contained inM × M \ Ω.
If at some time L(t) < C then L(t) is achieved by pairs (p, q) not belonging to ∂Ω, then
(p, q) are inner points inM × M \ Ω and a geometric argument analogous to the one of

the comparison Theorem 3.7 shows that dL(t)
dt

≥ 0, hence L(t) is nondecreasing in time.
This last fact clearly implies the claim. �

REMARK 3.15. Theorem 3.7 and Proposition 3.14 also hold if the involved hypersur-
faces are not compact, with some assumptions on the behavior at infinity (for instance,
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uniform bounds on the curvature).
The analysis is anyway more complicated, one has possibly to use the interior estimates
of Ecker and Huisken in [29].

3. Evolution of Curvature

Now we derive the evolution equations for g, ν, Γi
jk and A. We already know that

∂

∂t
gij = −2Hhij .

Differentiating the formula gisg
sj = δj

i we get

∂

∂t
gij = −gis ∂

∂t
gslg

lj = 2Hgishslg
lj = 2Hhij .

The derivative of the normal ν is given by

〈
∂ν

∂t

∣∣∣∣
∂ϕ

∂xi

〉
= −

〈
ν

∣∣∣∣
∂2ϕ

∂t∂xi

〉
= −

〈
ν

∣∣∣∣
∂(Hν)

∂xi

〉
= −∂H

∂xi

.

Finally the derivative of the Christoffel symbols is

∂

∂t
Γi

jk =
1

2
gil

{
∂

∂xj

(
∂

∂t
gkl

)
+

∂

∂xk

(
∂

∂t
gjl

)
− ∂

∂xl

(
∂

∂t
gjk

)}

+
1

2

∂

∂t
gil

{
∂

∂xj

gkl +
∂

∂xk

gjl −
∂

∂xl

gjk

}

=
1

2
gil

{
∇j

(
∂

∂t
gkl

)
+ ∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}

+
1

2
gil

{
∂

∂t
gkzΓ

z
jl +

∂

∂t
glzΓ

z
jk +

∂

∂t
gjzΓ

z
kl +

∂

∂t
glzΓ

z
jk −

∂

∂t
gjzΓ

z
kl −

∂

∂t
gkzΓ

z
jl

}

− 1

2
gis ∂

∂t
gszg

zl

{
∂

∂xj

gkl +
∂

∂xk

gjl −
∂

∂xl

gjk

}

=
1

2
gil

{
∇j

(
∂

∂t
gkl

)
+ ∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}

+ gil ∂

∂t
glzΓ

z
jk − gis ∂

∂t
gszΓ

z
jk

=
1

2
gil

{
∇j

(
∂

∂t
gkl

)
+ ∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}

= − gil {∇j(Hhkl) + ∇k(Hhjl) −∇l(Hhjk)}
= − hi

k∇jH − hi
j∇kH + hjk∇iH − H(∇jh

i
k + ∇kh

i
j −∇ihjk) .
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Resuming, we have

∂

∂t
gij = − 2Hhij

∂

∂t
gij =2Hhij

∂

∂t
ν = −∇H

∂

∂t
Γi

jk =∇H ∗ A + H ∗ ∇A = ∇A ∗ A .

LEMMA 3.16. The second fundamental form satisfies the evolution equation

∂

∂t
hij = ∆hij − 2Hhilg

lshsj + |A|2hij . (3.1)

It follows,
∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 (3.2)

and
∂

∂t
H = ∆H + H|A|2 . (3.3)

PROOF. Keeping in mind the Gauss–Weingarten relations (2.1) and the equations
above, we compute

∂

∂t
hij =

∂

∂t

〈
ν

∣∣∣∣
∂2ϕ

∂xi∂xj

〉

=

〈
ν

∣∣∣∣
∂2(Hν)

∂xi∂xj

〉
−
〈
∇H

∣∣∣∣
∂2ϕ

∂xi∂xj

〉

=
∂2H

∂xi∂xj

− H

〈
ν

∣∣∣∣
∂

∂xi

(
hjlg

ls ∂ϕ

∂xs

)〉

−
〈

∂H

∂xl

· ∂ϕ

∂xs

gls

∣∣∣∣ Γk
ij

∂ϕ

∂xk

+ hijν

〉

=
∂2H

∂xi∂xj

− Hhjlg
ls

〈
ν

∣∣∣∣
∂2ϕ

∂xi∂xs

〉
− Γk

ij

∂H

∂xk

=∇i∇jH − Hhilg
lshsj .

then using Simon’s identity (2.3) we conclude

∂

∂t
hij = ∆hij − 2Hhilg

lshsj + |A|2hij .

The second equation follows from a straightforward computation as ∂
∂t

gij = 2Hhij . �

Now we deal with the covariant derivatives of A.
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LEMMA 3.17. The following formula for the interchange of time and covariant derivative of
a tensor T holds

∂

∂t
∇T = ∇ ∂

∂t
T + T ∗ A ∗ ∇A .

PROOF. We suppose that T = Ti1...ik is a covariant tensor, the general case is analo-
gous, as it will be clear by the following computation,

∂

∂t
∇jTi1...ik =

∂

∂t

(
∂Ti1...ik

∂xj

−
k∑

s=1

Γl
jis

Ti1...is−1lis+1...ik

)

=
∂

∂xj

∂Ti1...ik

∂t
−

k∑

s=1

Γl
jis

∂Ti1...is−1lis+1...ik

∂t
−

k∑

s=1

∂

∂t
Γl

jis
Ti1...is−1lis+1...ik

=∇j

∂Ti1...ik

∂t
−

k∑

s=1

(A ∗ ∇A)l
jis

Ti1...is−1lis+1...ik ,

which is the formula we wanted. �

LEMMA 3.18. We have for k > 0, denoting with∇k the k–th iterated covariant derivative,

∂

∂t
∇khij = ∆∇khij +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA

PROOF. We work by induction on k ∈ N. The case k = 0 is given by equation (3.1),
we then suppose that the formula holds for (k − 1). We have, by the previous lemma,

∂

∂t
∇khij =∇ ∂

∂t
∇k−1hij + ∇k−1A ∗ ∇A ∗ A

=∇(∆∇k−1hij +
∑

p+q+r=k−1 | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA) + ∇k−1A ∗ ∇A ∗ A

=∇∆∇k−1hij +
∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA

Interchanging now Laplacian and covariant derivative and recalling that Riem = A ∗A,
we have the conclusion, as all extra terms we get are of the form A ∗ A ∗ ∇kA and
A ∗ ∇A ∗ ∇k−1A. �

PROPOSITION 3.19. The following formula holds,

∂

∂t
|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA (3.4)
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PROOF. We compute

∂

∂t
|∇kA|2 = 2g

(
∇kA,

∂

∂t
∇kA

)
+ ∇kA ∗ ∇kA ∗ A ∗ A

= 2g


∇kA, ∆∇kA +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA


 + ∇kA ∗ ∇kA ∗ A ∗ A

= 2g
(
∇kA, ∆∇kA

)
+

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA

= ∆|∇kA|2 − 2|∇k+1A|2 +
∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA .

�

4. Consequences of Evolution Equations

Let us see some consequences of the application of the maximum principle to the
evolution equations for the curvature.
Suppose we have a mean curvature flow of a compact hypersurface M on the time
interval [0, T ). We have seen that

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 ≤ ∆|A|2 + 2|A|4

and
∂

∂t
H = ∆H + H|A|2 .

First we deal with the so called mean convex hypersurfaces that play a major role in
the subject.
A hypersurface is mean convex ifH ≥ 0 everywhere. We will see in the next proposition
that this property is preserved by the mean curvature flow.
Mean convexity is a significant generalization of convexity, for instance, it is enough
general to allow for the neckpinch behavior described in Section 4, in particular, mean
convex hypersurfaces do not necessarily shrink to a point at the singular time.

PROPOSITION 3.20. Suppose that the initial compact hypersurface satisfies H ≥ 0. Then,
under the mean curvature flow, the minimum of H is increasing, hence H is positive for every
positive time.

PROOF. Arguing by contradiction, suppose that in an interval (t0, t1) ⊂ R+ we have
Hmin(t) < 0 and Hmin(t0) = 0 (Hmin is continuous).
Let |A|2 ≤ C in such interval, then

∂H

∂t
= ∆H + H|A|2
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implies

∂Hmin

∂t
≥ CHmin

for almost every t ∈ (t0, t1).
Integrating this differential inequality in [s, t] ⊂ (t0, t1) we get Hmin(t) ≥ eC(t−s)Hmin(s),
then sending s → t+0 we conclude Hmin(t) = 0 for every t ∈ (t0, t1) which is a contradic-
tion.
Since then H ≥ 0we get

∂H

∂t
= ∆H + H|A|2 ≥ ∆H + H3/n .

With the notation of Theorem 3.1, we let u = −H, X = 0 and b(x) = x3/n, then if
Hmin(0) = 0 the ODE solution h(t) is always zero, so if at some positive time Hmin(τ) = 0,
we have that H(·, τ) is constant equal to zero onM , but there are no compact hypersur-
faces with zero mean curvature. Hence, Hmin is always increasing during the flow and
H is positive on allM at every positive time. �

Actually, this proposition can be slightly improved as follows.

PROPOSITION 3.21. If the initial compact hypersurface satisfies |A| ≤ αH for some constant
α, then |A| ≤ αH for every positive time.

PROOF. We know that H is positive for every positive time, hence also |A| > 0 for
every positive time which implies that it is smooth as |A|2.
Let [0, T ) be the interval of smooth existence of the flow. Computing the evolution
equation of the function f = |A| − αH, we get

∂f

∂t
=

1

2|A|(∆|A|2 − 2|∇A|2 + 2|A|4) − α(∆H + H|A|2)

= ∆|A| + 1

2|A|(2|∇|A||2 − 2|∇A|2) + |A|3 − α(∆H + H|A|2)

= ∆f + |A|2f +
1

2|A|(2|∇|A||2 − 2|∇A|2)

≤∆f + |A|2|f | ,
as the term |∇|A||2 − |∇A|2 is nonpositive.
Hence, choosing any T ′ < T , if C is the maximum of |A|2 on M × [0, T ′], we have
∂tf ≤ ∆f + C|f | onM × [0, T ′]. By maximum principle 3.1, as fmax(0) ≤ 0, we conclude
f ≤ 0 onM × [0, T ′]. By the arbitrariness of T ′ < T , the thesis follows. �

COROLLARY 3.22. IfH > 0 for the initial compact n–dimensional hypersurface, then there
exists α0 > 0 such that α0|A|2 ≤ H2 ≤ n|A|2 everywhere onM for every time.
If the initial hypersurface has positive scalar curvature, then the same holds for all the positive
times.
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PROOF. The first claim is immediate by compactness ofM and previous proposition
(the right hand inequality is algebraic)
Recalling that the scalar curvature is equal to H2−|A|2, positive scalar curvature implies
that H > 0 (H cannot change sign onM and there is always a point where it is positive,
asM is compact) and H2/|A|2 > 1, the second part of this corollary is also consequence
of Proposition 3.21. �

COROLLARY 3.23. Suppose that the initial compact hypersurface has H ≥ 0, then, if A is
not bounded as t → T , the same holds for H.

PROOF. Immediate consequence of Proposition 3.20 and the estimate of the previous
corollary. �

Now we look at the evolution equation of |A|2, it implies
∂

∂t
|A|2max ≤ 2|A|4max .

Notice that |A|2max is always positive, otherwise at some time t we would have A = 0
identically on M , which would imply that M is a plane in R

n+1 in contradiction with
the compactness hypothesis. Hence, we can divide both members by |A|2max, obtaining
the differential inequality for the locally Lipschitz function 1/|A|2max, holding at almost
every time t ∈ [0, T ), with T < +∞,

− d

dt

1

|A|2max

≤ 2 .

Integrating in time in any interval [t, s] ⊂ [0, T ), we get

1

|A(·, t)|2max

− 1

|A(·, s)|2max

≤ 2(s − t) .

Suppose now thatA is not bounded in [0, T ), that is, there exists a sequence of times si ր
T such that |A(·, si)|2max → +∞. Substituting these times si in the previous inequality
and sending i → ∞, we get

1

|A(·, t)|2max

≤ 2(T − t) .

EXERCISE 3.24. Show that the only compact hypersurfaces in Rn+1 with constant
mean curvature are the spheres.
What about a compact hypersurfaces in Rn+1 with constant |A|?
In other words, we proved the following.

PROPOSITION 3.25. If the second fundamental form A during the mean curvature flow of a
compact hypersurface, is not bounded as t → T < +∞, then it must satisfy the following lower
bound for the explosion rate

max
p∈M

|A(p, t)| ≥ 1√
2(T − t)

.
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Hence,

lim
t→T

max
p∈M

|A(p, t)| = +∞ .

Moreover, if the inequality is an equality at some time, then the hypersurface is a sphere at every
time.

EXERCISE 3.26. Suppose that the initial compact hypersurface has H > 0, then the
maximal time of smooth existence of the flow can be estimated as Tmax ≤ n/2H2

min(0).

PROPOSITION 3.27. If the second fundamental form is bounded in the interval [0, T ), T <
+∞, then all its covariant derivatives are also bounded.
PROOF. By Proposition 3.19 we have

∂

∂t
|∇kA|2 =∆|∇kA|2 − 2|∇k+1A|2 +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA

≤∆|∇kA|2 + P (|A|, . . . , |∇k−1A|)|∇kA|2 + Q(|A|, . . . , |∇k−1A|) ,

where P andQ are smooth functions independent of time (actually they are polynomials
in their arguments). Notice that in the arguments of P, Q there is not ∇kA, indeed, in
the terms ∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA there can be only one, or two occurrences of ∇kA,
by the condition p + q + r = k and p, q, r ∈ N. If there are two, suppose r = k, then
necessarily p = q = 0 and we estimate |A ∗ A ∗ ∇kA ∗ ∇kA| ≤ |A|2|∇kA|2, if there is
only one, this means that p, q, r < k and we again estimate |∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA| ≤
|∇pA ∗ ∇qA ∗ ∇rA|2/2 + |∇kA|2/2.
Reasoning by induction on k, being the case k = 0 in the hypotheses, we suppose

that all the covariant derivatives of A up to the order (k − 1) are bounded, hence also
P (|A|, . . . , |∇k−1A|) and Q(|A|, . . . , |∇k−1A|) are bounded, thus

∂

∂t
|∇kA|2 ≤ ∆|∇kA|2 + C|∇kA|2 + D .

By maximum principle, this implies

d

dt
|∇kA|2max ≤ C|∇kA|2max + D ,

and since the interval [0, T ) is bounded, the quantity |∇kA|2max is also bounded, as one
can obtain an easy exponential estimate for the function u(t) = |∇kA|2max, integrating the
ordinary differential inequality u′ ≤ Cu+D, holding for almost every time t ∈ [0, T ). �

PROPOSITION 3.28. If the second fundamental form is bounded in the interval [0, T ), T <
+∞, then T cannot be a singularity time for the mean curvature flow of a compact hypersurface
ϕ(p, t) : M × [0, T ) → Rn+1.

PROOF. By the previous proposition we know that all the covariant derivatives of A
are bounded by constants depending on T and the geometry of the initial hypersurface.
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We look at the map ϕ, as H is bounded,

|ϕ(p, t) − ϕ(p, s)| ≤
∫ t

s

|H(p, ξ)| dξ ≤ C(t − s)

for every 0 ≤ s ≤ t < T , then the maps ϕt = ϕ(·, t) uniformly converge to a continuous
limit map ϕT : M → Rn+1 as t → T .
We fix now a vector v = {vi} ∈ TpM ,

d

dt
log |v|2g =

∂gij

∂t
vivj

|v|2g
=

−2Hhijv
ivj

|v|2g
≤ C

|A||v|2g
|v|2g

≤ C

then, for every 0 ≤ s ≤ t < T
∣∣∣∣∣log

|v|2g(t)

|v|2
g(s)

∣∣∣∣∣ ≤
∫ t

s

∣∣∣∣
d

dξ
log |v|2g(ξ)

∣∣∣∣ dξ ≤ C(t − s)

which implies that the metrics g(t) are all equivalent and the norms | · |g(t) uniformly
converge, as t → T to another equivalent norm | · |T , which is continuous. By the
parallelogram identity, it also follows that this limit norm | · |T comes from a metric
tensor gT which, since it is equivalent to all the other metrics, it is also positive definite.
As a consequence, we are free to use any of these metrics in doing our estimates.
By the evolution equation for the Christoffel symbols, we see that

∣∣Γk
ij(t)

∣∣ ≤
∣∣Γk

ij(0)
∣∣+
∫ t

0

∣∣∣∣
∂

∂t
Γk

ij

∣∣∣∣ dt ≤ C +

∫ T

0

|A ∗ ∇A| dt ≤ C + DT ,

for some constants depending only on the initial hypersurface. Thus, the Christoffel
symbols are equibounded in time, after fixing a local chart. This implies that for every
tensor S ∣∣∣∣

∣∣∣∣
∂S

∂xi

∣∣∣∣− |∇iS|
∣∣∣∣ ≤ C|S|

that is, the derivatives in coordinates differ by the relative covariant ones by equi-
bounded terms.
In the following, by simplicity we will denote with ∂ the coordinate derivatives and with ∇

the covariant ones.
As the time derivative the Christoffel symbols is a tensor of the form A ∗ ∇A, we

have
|∂t∂

s
l1...ls

Γk
ij| = |∂s

l1...ls
∂tΓ

k
ij | = |∂s

l1...ls
A ∗ ∇A| ,

hence, by an induction argument on the order s and integration as above, one can show
that

∣∣∂s
l1...ls

Γk
ij

∣∣ ≤ C for every s ∈ N.
Then, again by induction, the following formula (where we avoid to indicate the in-
dices) relating the iterated covariant and coordinate derivatives of a tensor S, holds

| |∇sS| − |∂sS| | ≤
s∑

i=1

∑

j1+···+ji+k≤s−1

∣∣∂j1Γ . . . ∂jiΓ∂kS
∣∣ ≤ C

s−1∑

k=1

∣∣∂kS
∣∣ .
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This implies that if a tensor has all its covariant derivatives bounded, the same holds for
the coordinates derivatives. In particular this holds for the tensor A, that is,

∣∣∂kA
∣∣ ≤ Ck.

Moreover, by induction, as∇kg = 0 all the coordinate derivatives of the metric tensor g
are equibounded.
We already know that |ϕ| is bounded and |∂ϕ| = 1, by the Gauss–Weingarten rela-

tions (2.1)

∂2ϕ = Γ∂ϕ + Aν , ∂ν = A ∗ ∂ϕ

we get

|∂kϕ| =

∣∣∣∣∣

k−2∑

i=0

(
k − 2

i

)
∂k−2−iΓ∂i+1ϕ +

k−2∑

i=0

(
k − 2

i

)
∂k−2−iA∂iν

∣∣∣∣∣

≤C
k−2∑

i=0

|∂i+1ϕ| + C
k−2∑

i=1

|∂i−1(A ∗ ∂ϕ)| + C

= C
k−2∑

i=0

|∂i+1ϕ| + C
k−2∑

i=1

∣∣∣
∑

p+q+r=i−1

∂pA ∗ ∂qg ∗ ∂r+1ϕ
∣∣∣+ C

≤C
k−2∑

i=0

|∂i+1ϕ| + C
k−2∑

i=1

i−1∑

r=0

|∂r+1ϕ| + C

≤C

k−2∑

i=0

|∂i+1ϕ| + C

k−2∑

i=1

|∂iϕ| + C

≤C

k−1∑

i=0

|∂iϕ|

where we estimated with a constant all the occurrences of ∂kA and ∂kg. Hence, we can
conclude by induction that |∂kϕ| < Ck for constant Ck independent of time t ∈ [0, T ).
By Ascoli–Arzelà theorem we can conclude that ϕT : M → Rn+1 is a smooth immersion
and the convergence ϕ(·, t) → ϕT is in C∞.
Moreover, with the same argument, differentiating the evolution equation ∂tϕ =

Hν one gets also uniform boundedness of the time derivatives of the map ϕ, that is
|∂s

t ∂
k
xϕ| ≤ Cs,k. Hence the map ϕ : M × [0, T ) → Rn+1 can be extended smoothly to the

boundary of the domain of ϕ with the map ϕT .
By means of the small time existence Theorem 2.15 we can now “restart” the flow

with the immersion ϕ, obtaining a smooth extension of the map ϕ which is in contra-
diction with the fact that T was the maximal existence time. �

We can so give a slightly improved version of Theorem 2.15 as follows.

THEOREM 3.29. For any smooth compact hypersurface immersed in Rn+1, there exists a
unique mean curvature flow which is smooth on a maximal time interval [0, Tmax).
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Moreover, Tmax is finite and

max
p∈M

|A(p, t)| ≥ 1√
2(Tmax − t)

for every t ∈ [0, Tmax).

EXERCISE 3.30. Show that the maximal time of smooth existence of the flow can be
estimated as Tmax ≥ 1/2|A(·, 0)|2max.

5. Convexity Invariance

Corollary 3.22 is a consequence of a more general invariance property of the elemen-
tary symmetric polynomials of the curvatures, as we are going to to show.
We recall that the elementary symmetric function of degree k of λ1, . . . , λn is defined as

Sk =
∑

1≤i1<i2<···<ik≤n

λi1λi2 . . . λik

for k = 1, . . . , n. In particular, if λi are the eigenvalues of the second fundamental form
Awe have S1 = H, S2 is the scalar curvature and |A|2 = S2

1 + 2S2.
It is not difficult to show that

λ1 ≥ 0, . . . , λn ≥ 0 ⇐⇒ S1 ≥ 0, . . . , Sn ≥ 0 , (3.5)

λ1 > 0, . . . , λn > 0 ⇐⇒ S1 > 0, . . . , Sn > 0 .

These polynomials enjoy various concavity properties, see [71, 58].

PROPOSITION 3.31. Let Γk ⊂ Rn denote the connected component of Sk > 0 containing
the positive cone. Then Sl > 0 in Γk for all l = 1, . . . , k and the quotient Sk+1/Sk is concave on
Γk.

The above properties remain unchanged if we regard the polynomials Sk as func-
tions of the Weingarten operator hi

j, instead of the principal curvatures, as we have the
following algebraic result, see [8, Lemma 2.22] or [58, Lemma 2.11].

PROPOSITION 3.32. Let f(λ1, . . . , λn) be a symmetric convex (concave) function of its vari-
ables and let F (A) = f(eigenvalues of A) for any n× n symmetric matrix A whose eigenvalues
belong to the domain of f . Then F is convex (concave).

We are now ready to derive the evolution equation of relevant quantities and to
apply the maximum principle to obtain invariance properties.

PROPOSITION 3.33. Let F (hi
j) be a function homogeneous of degree one. Let ϕ be a mean

curvature flow of compact n–dimensional hypersurfaces with H > 0 and such that hi
j belongs

everywhere to the domain of F . Then,

∂

∂t

F

H
− ∆

F

H
=

2

H

〈
∇H

∣∣∣∇F

H

〉
− 1

H

∂2F

∂hi
j∂hk

l

∇phj
i∇ph

k
l .


