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CHAPTER 4

Monotonicity Formula and Type I Singularities

In all this chapter ϕ : M × [0, T ) → Rn+1 is the mean curvature flow of an n–
dimensional compact and connected hypersurface in Rn+1, defined by ∂tϕ = Hν, in
the maximal interval of smooth existence [0, T ).

With H̃n we will denote the n–dimensional Hausdorff measure counting multiplici-
ties.

1. The Monotonicity Formula for Mean Curvature Flow

We show now the important monotonicity formula for mean curvature flow, discov-
ered by Huisken in [54], then generalized by Hamilton in [46, 47]. Such formula will be
the main tool to analyze type I singularities in the next sections.

LEMMA 4.1. Let f : Rn+1 × I → R be a smooth function. By a little abuse of notation, we
denote with

∫
M
f dµt the integral

∫
M
f(ϕ(p, t), t) dµt(p).

Then the following formula holds

d

dt

∫

M

f dµt =

∫

M

(ft − H2f + H〈∇f | ν〉) dµt .

PROOF. Straightforward computation. �

If ut = −∆Rn+1
u is a positive solution of backward heat equation in Rn+1, we have

d

dt

∫

M

u dµt =

∫

M

(ut − H2u+ H〈∇u | ν〉) dµt (4.1)

= −
∫

M

(∆Rn+1

u+ H2u− H〈∇u | ν〉) dµt .

LEMMA 4.2. If ϕ : M → R
n+1 is an isometric immersion, for every smooth function u

defined in a neighborhood of ϕ(M) we have,

∆M(u(ϕ)) = (∆Rn+1

u)(ϕ) − (∇⊥∇⊥u)(ϕ) + H〈ν | (∇u)(ϕ)〉 .
48
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PROOF. Let p ∈M and we choose normal coordinates at p. Set ũ = u ◦ ϕ, then
∆M ũ =∇2

ii(u ◦ ϕ)

=∇i

(
∂u

∂yα

∂ϕα

∂xi

)

=
∂2u

∂yα∂yβ

∂ϕα

∂xi

∂ϕβ

∂xi

+
∂u

∂yα

∂2ϕα

∂x2
i

=
∂2u

∂yα∂yβ

∂ϕα

∂xi

∂ϕβ

∂xi
+

∂u

∂yα
hiiν

α

= (∆Rn+1

u)(ϕ) − (∇⊥∇⊥u)(ϕ) + H〈ν | (∇u)(ϕ)〉 ,
where we used the Gauss–Weingarten relations (2.1). �

It follows that, substituting ∆Rn+1
u in formula (4.1), by means of this lemma, we get

d

dt

∫

M

u dµt = −
∫

M

(∆M(u(ϕ)) + ∇⊥∇⊥u+ H2u− 2H〈∇u | ν〉) dµt

= −
∫

M

(∇⊥∇⊥u+ H2u− 2H〈∇u | ν〉) dµt

= −
∫

M

u

∣∣∣∣H − 〈∇u | ν〉
u

∣∣∣∣
2

dµt +

∫

M

( |∇⊥u|2
u

−∇⊥∇⊥u

)
dµt .

Then the following theorem follows.

THEOREM 4.3 (Huisken’s Monotonicity Formula – Hamilton’s Extension). Suppose
that we have a positive smooth solution of the backward heat equation ut = −∆u inRn+1×[0, τ).
The generalization of Huisken’s monotonicity formula by Hamilton read (see [46, 47])

d

dt

[√
4π(τ − t)

∫

M

u dµt

]
= −

√
4π(τ − t)

∫

M

u |H − 〈∇ log u | ν〉|2 dµt (4.2)

−
√

4π(τ − t)

∫

M

(
∇⊥∇⊥u− |∇⊥u|2

u
+

u

2(τ − t)

)
dµt

in the time interval [0,min{τ, T}), where∇⊥ denotes the covariant derivative along the normal
direction in Rn+1.

As we can see, the right side of the formula consists of a non positive term and a

term which is nonpositive if ∇⊥∇⊥u
u

− |∇⊥u|2
u2 + 1

2(τ−t)
= ∇2

νν log u+ 1
2(τ−t)

is nonnegative.

Setting v(x, t) = u(x, τ − t), the function v : Rn+1 × (0, τ ] → R is a positive solution of
the standard forward heat equation in all Rn+1 and ∇2

νν log u + 1
2(τ−t)

= ∇2
νν log v + 1

2t
.

This last expression is exactly the Li–Yau–Hamilton 2–form∇2 log v+g/(2t) for positive
solutions of the heat equation on a compact manifold, evaluated on ν ⊗ ν (see [46]).
In the paper [46] (see also [74]) Hamilton generalized Li–Yau differential Harnack in-
equality in [70] (concerning the nonnegativity of∆ log v+ dimM

2t
) showing that, under the
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hypotheses on (M, g) of parallel Ricci tensor (∇Ric = 0) and of non negative sectional
curvatures, the 2–form∇2 log v+ g/(2t) is nonnegative definite (Hamilton’s matrix Har-
nack inequality). In particular, in Rn+1 with the canonical flat metric such hypotheses

clearly hold and ∇2
νν log u + 1

2(τ−t)
=
(
∇2 log v + gRn+1

can /(2t)
)
(ν ⊗ ν) ≥ 0. Hence, assum-

ing boundedness in space of v and its derivatives (equivalently of u), the monotonicity

formula implies that
√

4π(τ − t)
∫

M
u dµt is nonincreasing in time.

REMARK 4.4. We asked for boundedness in space of u and its derivatives as Rn+1

lacks of the compactness which is required for the ambient space in the original paper of
Hamilton (the proof is based on the maximum principle), but his result can be extended
to Rn+1 (and other noncompact spaces), by localization, under such hypothesis. See
Appendix D for details.

Choosing in particular a backward heat kernel of Rn+1, that is, u(x, t) = ρx0,τ (x, t) =

e
−|x−x0|2

4(τ−t)

[4π(τ−t)](n+1)/2 , we get the standardHuisken’smonotonicity formula, as the Li–Yau–Hamilton

expression is identically zero in this case.

THEOREM 4.5 (Huisken’s Monotonicity Formula). For every τ > 0 we have (see [54])

d

dt

∫

M

e−
|x−x0|2
4(τ−t)

[4π(τ − t)]n/2
dµt = −

∫

M

e−
|x−x0|2
4(τ−t)

[4π(τ − t)]n/2

∣∣∣∣H +
〈x− x0 | ν〉

2(τ − t)

∣∣∣∣
2

dµt (4.3)

in the time interval [0,min{τ, T}).

2. Type I Singularities and the Rescaling Procedure

In the previous chapter we showed that the curvature must blow up at the maximal
time T with the following lower bound

max
p∈M

|A(p, t)| ≥ 1√
2(T − t)

.

DEFINITION 4.6. Let T the maximal time of existence of a mean curvature flow. If
there exist a constant C > 1 such that we have the upper bound

max
p∈M

|A(p, t)| ≤ C√
2(T − t)

,

we say that the flow is developing, at time T , a type I singularity.
If such constant does not exist, that is,

lim sup
t→T

max
p∈M

|A(p, t)|
√
T − t = +∞

we say that we have a type II singularity.
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In the rest of this chapter wewill deal with the first case, the next one will be devoted
to type II singularities.
Thus, from now on, we suppose that there is some C0 > 1 such that

1√
2(T − t)

≤ max
p∈M

|A(p, t)| ≤ C0√
2(T − t)

, (4.4)

for every t ∈ [0, T ).
Let p ∈M and 0 ≤ t ≤ s < T , then

|ϕ(p, s)−ϕ(p, t)| =

∣∣∣∣
∫ s

t

∂ϕ(p, ξ)

∂t
dξ

∣∣∣∣ ≤
∫ s

t

|H(p, ξ)| dξ ≤
∫ s

t

C0

√
n√

2(T − ξ)
dξ ≤ C0

√
n(T − t)

which implies that the sequence of functions ϕ(·, t) converges as t→ T to some function
ϕT : M → Rn+1. Moreover, as the constant C0 is independent of p ∈ M , such conver-
gence is uniform and the limit function ϕT is continuous. Finally, passing to the limit in
the above inequality, we get

|ϕ(p, t) − ϕT (p)| ≤ C0

√
n(T − t) . (4.5)

Often we will denote ϕT (p) = p̂.

DEFINITION 4.7. Let S be the set of points x ∈ Rn+1 such that there exists a sequence
of pairs (pi, ti) with ti ր T and ϕ(pi, ti) → x.
We call S the set of reachable points.
We have seen in Proposition 3.13 that S is compact and x ∈ S if and only if, for every

t ∈ [0, T ) the closed ball of radius
√

2n(T − t) and center x intersects ϕ(M, t). We show
now that S = {p̂ | p ∈M}.
Clearly {p̂ | p ∈ M} ⊂ S, suppose that x ∈ S and ϕ(pi, ti) → x, then, by inequality (4.5)
we have |ϕ(pi, ti) − p̂i| ≤ C0

√
T − ti, hence, p̂i → x as i → ∞. As the set {p̂ | p ∈ M} is

closed we have that xmust belong to it.
We define now a tool which will be fundamental in the sequel.

DEFINITION 4.8. For every p ∈M , we define the heat density function

θ(p, t) =

∫

M

e−
|x−bp|2
4(T−t)

[4π(T − t)]n/2
dµt

and the limit heat density function as

Θ(p) = lim
t→T

θ(p, t) .

AsM is compact, we can also define the following maximal heat density,

σ(t) = max
x0∈Rn+1

∫

M

e−
|x−x0|2
4(T−t)

[4π(T − t)]n/2
dµt (4.6)

and its limit Σ = limt→T σ(t).
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Clearly, θ(p, t) ≤ σ(t), for every p ∈M and t ∈ [0, T ) and Θ(p) ≤ Σ for every p ∈ M .
The function Θ is well defined as the limit exists since θ(p, t) is monotone nonincreasing
in t and positive. Moreover, the functions θ(·, t) are all continuous and monotonically
converging to Θ, hence this latter is upper semicontinuous and nonnegative.
The function σ : [0, T ) → R is also positive and monotone nonincreasing, being

the maximum of a family of nonincreasing smooth functions, hence the limit Σ is well
defined. Moreover, such family is uniformly locally Lipschitz (look at the right hand
side of themonotonicity formula), hence also σ is Lipschitz, then byHamilton’s trick 3.3,
at every differentiability time t ∈ [0, T ) of σ, we have

σ′(t) = −
∫

M

e−
|x−xt|2
4(T−t)

[4π(T − t)]n/2

∣∣∣∣H +
〈x− xt | ν〉
2(T − t)

∣∣∣∣
2

dµt (4.7)

where xt ∈ R
2 is any maximum point such that

σ(t) =

∫

M

e−
|x−xt|2
4(T−t)

[4π(T − t)]n/2
dµt .

REMARK 4.9. Notice that we did not define σ(t) as the maximum

max
p∈M

∫

M

e−
|x−bp|2
4(T−t)

[4π(T − t)]n/2
dµt

which is taken among p ∈M . Clearly, this latter maximum can be smaller than σ(t).

We rescale now the moving hypersurfaces around p̂ = limt→T ϕ(p, t) as follows, fol-
lowing Huisken [54],

ϕ̃(q, s) =
ϕ(q, t(s)) − p̂√

2(T − t(s))
s = s(t) = −1

2
log(T − t) .

We now compute the evolution equation of ϕ̃(q, s) in the time interval
[
−1

2
log T,+∞

)
,

∂ϕ̃(q, s)

∂s
=

(
ds

dt

)−1
∂

∂t

ϕ(q, t) − p̂√
2(T − t)

=
√

2(T − t)
∂ϕ(q, t)

∂t
+
ϕ(q, t) − p̂√

2(T − t)

=
√

2(T − t)H(q, t)ν(q, t) + ϕ̃(q, s)

= H̃(q, s)ν̃(q, s) + ϕ̃(q, s) ,

where H̃ is the mean curvature of the rescaled hypersurfaces ϕ̃.

As |Ã| =
√

2(T − t)|A| ≤ C0 < +∞, all the hypersurfaces ϕ̃(·, s) have equibounded
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curvatures, moreover,

|ϕ̃(p, s)| =

∣∣∣∣∣
ϕ(p, t(s)) − p̂√

2(T − t(s))

∣∣∣∣∣ ≤
C0

√
2n(T − t(s))√
2(T − t(s))

= C0

√
n

which means that at every time s the ball of radius C0

√
2n centered at the origin of Rn+1

intersects the hypersurface ϕ̃(·, s), to be precise, the point ϕ̃(p, s) belongs to the interior
of such ball.
We rescale also the monotonicity formula in order to get information on these hy-

persurfaces.

PROPOSITION 4.10 (Rescaled Monotonicity Formula). We have

d

ds

∫

M

e−
|y|2
2 dµ̃s = −

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ≤ 0 (4.8)

which integrated becomes
∫

M

e−
|y|2
2 dµ̃s1 −

∫

M

e−
|y|2
2 dµ̃s2 =

∫ s2

s1

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ds .

In particular,

∫ +∞

− 1
2

log T

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ds ≤
∫

M

e−
|y|2
2 dµ̃− 1

2
log T ≤ C < +∞ ,

for a uniform constant C = C(Area(ϕ0), T ), independent of s and p ∈M .

PROOF. Keeping in mind that y = x−bp√
2(T−t)

and s = −1
2
log(T − t) we have,

d

ds

∫

M

e−
|y|2
2 dµ̃s =

(
ds

dt

)−1
d

dt

∫

M

e−
|y|2
2 dµ̃s

= 2(T − t)
d

dt

∫

M

e
− |x−bp|2

4(T−t)

[2(T − t)]n/2
dµt

= − 2(T − t)

∫

M

e−
|x−bp|2
4(T−t)

[2(T − t)]n/2

∣∣∣∣H +
〈x− p̂ | ν〉
2(T − t)

∣∣∣∣
2

dµt

= − 2(T − t)

∫

M

e−
|y|2
2

∣∣∣∣∣
H̃√

2(T − t)
+

〈y | ν̃〉√
2(T − t)

∣∣∣∣∣

2

dµ̃s

= −
∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s .

The other two statements trivially follow. �
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As a first consequence, we work out an upper estimate on the volume of the rescaled
hypersurfaces in the balls of Rn+1.
Fix a radius R > 0, if BR = BR(0) ⊂ Rn+1, then we have

H̃n(ϕ̃(M, s) ∩ BR) =

∫

M

χBR
(y) dµ̃s (4.9)

≤
∫

M

χBR
(y)e

R2−|y|2
2 dµ̃s

≤ eR2/2

∫

M

e−
|y|2
2 dµ̃s

≤ eR2/2

∫

M

e−
|y|2
2 dµ̃− 1

2
log T

≤ ĈeR2/2

where the constant Ĉ is independent of R and s.

REMARK 4.11. As
∫

M

e−
|y|2
2 dµ̃− 1

2
log T =

∫

M

e−
|x−bp|2

4T

(2T )n/2
dµ0 ≤

Area(ϕ0)

(2T )n/2
,

we can choose the constant Ĉ to be also independent of p ∈M .

Another consequence is the following key technical lemma which is necessary in
order to take the limits in the integrals over the sequences of rescaled hypersurfaces.

LEMMA 4.12 (Stone [91]). The following estimates hold.

(1) There is a uniform constant C = C(n,Area(ϕ0), T ) such that, for any p ∈ M , and for
all s, ∫

M

e−|y| dµ̃s ≤ C . (4.10)

(2) For any ε > 0 there is a uniform radius R = R(ε, n,Area(ϕ0), T ) such that, for any
p ∈M , and for all s,

∫

eϕs(M)\BR(0)

e−|y|2/2 dH̃n ≤ ε . (4.11)

PROOF. By the rescaled monotonicity formula (4.8) we have that, for any p ∈M , and
for all s, ∫

M

e−|y|2/2 dµ̃s ≤
∫

M

e−|y|2/2 dµ̃− 1
2

log T .

By Remark 4.11, the right hand integral may be estimated by a constant depending only
on T and Area(ϕ0), and not on p. Hence, in particular, we have the following estimates,
for all p ∈M , and for all s, ∫

eϕs(M)∩Bn+1(0)

e−|y| dH̃n ≤ C1 (4.12)
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and ∫

eϕs(M)∩B2n+2(0)

e−|y| dH̃n ≤ C2 (4.13)

where C1 and C2 are constants determined only by n, T and Area(ϕ0).
By the evolution equation for the rescaled hypersurfaces ϕ̃s, we can see that

d
ds
µ̃s =

(n− H̃2)µ̃s, then we compute, for any p and s,

d

ds

∫

M

e−|y| dµ̃s =

∫

M

{
n− H̃2 − 1

|y|〈y | H̃ν̃ + y〉
}
e−|y| dµ̃s

≤
∫

M

{
n− H̃2 − |y|+ |H̃|

}
e−|y| dµ̃s

<

∫

M

{
n+ 1 − |y|

}
e−|y| dµ̃s

≤ (n+ 1)

{∫

eϕs(M)∩Bn+1(0)

e−|y| dH̃n −
∫

eϕs(M)\B2n+2(0)

e−|y| dH̃n

}
.

But then, noting (4.12), we see that we must have either

d

ds

∫

M

e−|x| dµ̃s < 0 ,

or ∫

eϕs(M)\B2n+2(0)

e−|y| dH̃n ≤ C1 .

Hence, in view of inequality (4.13), we must have that, for any p ∈ M , and for all s,
either

d

ds

∫

M

e−|y| dµ̃s < 0 ,

or ∫

M

e−|y| dµ̃s ≤ C1 + C2 ,

which immediately implies that, for any p and s,
∫

M

e−|y| dµ̃s ≤ max

{(
C1 + C2

)
,

∫

M

e−|y| dµ̃− 1
2

log T

}
= C3 .

The proof of part (1) is now completed by noting that the integral quantity on the right
hand side can clearly be estimated by a constant depending on T and Area(ϕ0), but not
on p.

Let again p ∈ M and s ∈
[
−1

2
logT,+∞

)
arbitrary. Now subdivide ϕ̃s(M) into

“annular pieces”,
{
M̃k

s

}∞
k=0
, by setting

M̃0
s = ϕ̃s(M) ∩B1(0) ,

and, for each k ≥ 1,
M̃k

s =
{
y ∈ ϕ̃s(M) | 2k−1 ≤ |y| < 2k

}
.
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Then, by part (1) of the lemma, H̃n(M̃k
s ) ≤ C3e

(2k), for each k, independently of the
choice of p and s. Hence in turn, for each k, we have

∫

fMk
s

e−|y|2/2 dH̃n ≤ C3e
− 1

2
(2k−1)2e(2

k) = C3e
(2k−22k−3)

again independently of the choice of p and s.
For any ε > 0, we can find a k0 = k0(ε, n,Area(ϕ0), T ), such that

∞∑

k=k0

C3e
(2k−22k−3) ≤ ε ,

then, if R = R(ε, n,Area(ϕ0), T ) is simply taken to be equal to 2k0−1, we have

∫

eϕs(M)\BR(0)

e−|y|2/2 dH̃n =

∞∑

k=k0

∫

fMk
s

e−|y|2/2 dH̃n ≤
∞∑

k=k0

C3e
(2k−22k−3) ≤ ε

and we are done also with part (2) of the lemma. �

COROLLARY 4.13. If a sequence of rescaled hypersurfaces ϕ̃(·, si) locally smoothly con-

verges (up to reparametrization) to some limit hypersurface M̃∞, we have
∫

fM∞

e−|y| dH̃n ≤ C (4.14)

and ∫

fM∞

e−
|y|2
2 dH̃n = lim

i→∞

∫

M

e−
|y|2
2 dµ̃si

,

where the constant C is the same of the previous lemma.

PROOF. Actually, it is only sufficient that the associatedmeasures H̃n ϕ̃(M, si)weakly
∗–

converge to the measure H̃n M̃∞. Indeed, for every R > 0 we have,
∫

fM∞∩BR(0)

e−|y| dH̃n ≤ lim inf
i→∞

∫

eϕ(M,si)∩BR(0)

e−|y| dH̃n ≤ lim inf
i→∞

∫

M

e−|y| dµ̃si
≤ C

by the first part of the lemma above. Sending R to +∞, the first inequality follows.
The second statement is a consequence of the estimate of the second part of the lemma.

�

Now we want to estimate the covariant derivatives of the rescaled hypersurfaces.

PROPOSITION 4.14 (Huisken [54]). There exist constants Ck depending only on n, k, C0

(see formula (4.4)) and the initial hypersurface such that |∇̃kÃ|eg ≤ Ck for every time s ∈[
−1

2
log T,+∞

)
.
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PROOF. By Proposition 3.19 we have for the original flow,

∂

∂t
|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA ,

hence, with a straightforward computation, noticing that |∇̃kÃ|2
eg = |∇kA|2g[2(T − t)]k+1,

we get

∂

∂s
|∇̃kÃ|2eg ≤ − 2(1 + k)|∇̃kÃ|2eg + ∆̃|∇̃kÃ|2eg − 2|∇̃k+1Ã|2eg

+ C(n, k)
∑

p+q+r=k | p,q,r∈N

|∇̃pÃ|eg|∇̃qÃ|eg|∇̃rÃ|eg|∇̃kÃ|eg

As |Ã|eg is bounded by the constant C0, supposing by induction that up to the order

(k − 1) we have uniform bounds on all the covariant derivatives of Ã with constants
Ci = Ci(n, C0), we can conclude by means of Peter–Paul inequality,

∂

∂s
|∇̃kÃ|2eg ≤ ∆̃|∇̃kÃ|2eg +Bk|∇̃kÃ|2eg − 2|∇̃k+1Ã|2eg + C(n, k, C0)

for some constant Bk depending only on n and k.
Then,

∂

∂s
(|∇̃kÃ|2eg +Bk|∇̃k−1Ã|2eg) ≤ ∆̃|∇̃kÃ|2eg +Bk|∇̃kÃ|2eg − 2|∇̃k+1Ã|2eg

+Bk∆̃|∇̃k−1Ã|2eg +BkBk−1|∇̃k−1Ã|2eg − 2Bk|∇̃kÃ|2eg
+ C(n, k, C0) + C(n, k − 1, C0)

≤ ∆̃(|∇̃kÃ|2eg +Bk|∇̃k−1Ã|2eg) − Bk|∇̃kÃ|2eg
+ C(n, k, C0) +BkBk−1|∇̃k−1Ã|2eg + C(n, k − 1, C0)

≤ ∆̃(|∇̃kÃ|2eg +Bk|∇̃k−1Ã|2eg) − Bk|∇̃kÃ|2eg
+ C(n, k, C0) +BkBk−1C

2
k−1(n, C0) + C(n, k − 1, C0)

≤ ∆̃(|∇̃kÃ|2eg +Bk|∇̃k−1Ã|2eg) − Bk(|∇̃kÃ|2eg +Bk|∇̃k−1Ã|2eg)
+ C(n, k, C0)

where we used the inductive hypothesis |∇̃k−1Ã|eg ≤ Ck−1(n, C0).

By maximum principle, the function |∇̃kÃ|2
eg +Bk|∇̃k−1Ã|2

eg is then uniformly bounded in
space and time by a constant depending on n, k, C0 and the initial hypersurface. Again,
by the inductive hypothesis, the thesis follows. �

We are ready to study the convergence of the rescaled hypersurfaces as s→ +∞.
PROPOSITION 4.15. For every point p ∈ M and sequence of times si → +∞ there exists

a subsequence (not relabeled) of times such that the hypersurfaces ϕ̃(·, si), rescaled around p̂, lo-
cally smoothly converge (up to reparametrization) to some nonempty, smooth limit hypersurface
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M̃∞ such that H̃ + 〈y | ν̃〉 = 0 at every y ∈ M̃∞.

Any limit hypersurface satisfies H̃n(M̃∞ ∩ BR) ≤ CR for every ball of radius R in Rn+1 and,

for every k ∈ N, there are constants Ck such that |∇̃kÃ|eg ≤ Ck.

Moreover, if the initial hypersurface was embedded, M̃∞ is embedded.

PROOF. We give a sketch of the proof, following Huisken [54].
By estimate (4.9) there is a uniform bound onHn(ϕ̃(M, s)∩BR) for eachR, independent
of s. Moreover, by the uniform control on the norm of the second fundamental form
of the rescaled hypersurfaces in Proposition 4.14, there is a number r0 > 0 such that,
for each s and each q ∈ M , if Us

r0,q is the connected component of ϕ̃
−1
s (Br0(ϕ̃s(q))) inM

containing q, then ϕ̃s(U
s
r0,q) can be written as a graph of a smooth function f over the

tangent hyperplane to ϕ̃s(M) ⊂ Rn+1 at the point ϕ̃s(q) in Br0(ϕ̃s(q)).
The estimates of Proposition 4.14 then imply that all the derivatives of such function f
up to the order α are bounded by constants Cα independent of s.
Following now the method in [69] we can see that, for each R > 0, a subsequence of
the hypersurfaces ϕ̃(M, s) ∩ BR(0) must converge smoothly to a limit hypersurface in
BR(0). The existence of a limit hypersurface now follows from a diagonal argument,
letting R → +∞, and recalling the fact that every rescaled hypersurface intersects the
ball of radius C0

√
2n centered at 0 ∈ R

n+1, so the limit cannot be empty. The estimates
on the volume and derivatives of the curvature follow from the analogous properties
for the converging sequence.

The fact that any such limit hypersurface must satisfy H̃ + 〈y | ν̃〉 = 0 is a consequence
of the rescaled monotonicity formula and of the uniform estimates on curvature and its
covariant derivatives for the rescaled hypersurfaces. Indeed,

∂

∂s

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

=
(
2∆̃H̃ + H̃ + H̃|Ã|2 + 〈H̃ν̃ + y | ν̃〉 − 〈y | ∇̃H̃〉

) ∣∣∣H̃ + 〈y | ν̃〉
∣∣∣

≤ (|y|+ C)(|y| + C)

≤ |y|2 + C

for a constant C as in Proposition 4.14, that is, independent of s.
Then,

d

ds

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s (4.15)

=

∫

M

e−
|y|2
2

[∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2 (
n− H̃2 − 〈y | H̃ν̃ + y〉

)
+
∂

∂s

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2
]
dµ̃s

≤
∫

M

e−
|y|2
2

[∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

(|y|2 + C) + |y|2 + C

]
dµ̃s

≤
∫

M

e−
|y|2
2 (|y|4 + C) dµ̃s

(4.16)
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and this last term is bounded uniformly in s ∈
[
−1

2
logT,+∞

)
by a positive constant

C = C(n,Area(ϕ0), T ), using the estimates in Stone’s Lemma 4.12.

Supposing there is a sequence of times si → +∞ such that
∫

M
e−

|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃si
≥

δ for some δ > 0, then we have that in all the intervals [si, si + δ/(2C)) such integral is
larger than δ/2. This is clearly in contradiction with the fact that

∫ +∞

− 1
2

log T

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ds ≤ C(Area(ϕ0), T ) < +∞ ,

stated in Proposition 4.10.
If ϕ̃si

is a (locally) smoothly converging subsequence of rescaled hypersurfaces, we have
that for every ball BR

∫

eϕ(M,si)∩BR

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dH̃n ≤
∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃si
→ 0 ,

hence, the limit hypersurface satisfies H̃ + 〈y | ν̃〉 = 0 at every of its points.
Suppose now that the initial hypersurface was embedded, then by Proposition 3.14,

all the hypersurfaces ϕ̃s are embedded and the only possibility for M̃∞ not to be embed-
ded is if two or more of its regions ”touch” each other at some point y ∈ Rn+1 with a
common tangent space.
We consider the following set Ω ⊂ M × M × [0, T ) given by {(p, q, t) | dg(t)(p, q) ≤
ε
√

2(T − t)}, where dg(t) is the geodesic distance in the Riemannian manifold (M, g(t)).
Let

C = inf
∂Ω

|ϕ(p, t) − ϕ(q, t)|/
√

2(T − t)

and suppose that C = 0, whatever small ε > 0 we take. This means that there exists a

sequence of times ti ր T and points pi, qi with dg(ti)(pi, qi) = ε
√

2(T − ti) and |ϕ(pi, ti)−
ϕ(qi, ti)|/

√
2(T − ti) → 0, that is |ϕ̃(pi, si) − ϕ̃(qi, si)| → 0 and deg(si)(pi, qi) = ε, where we

rescaled the hypersurfaces around ϕ(pi). Reasoning like in the first part of this proof, by
the uniform bound on the second fundamental form of the rescaled hypersurfaces, the
connected component of ϕ̃si

(pi) in ϕ̃si
∩Br0(ϕ̃si

(pi)) is locally the graph of some smooth
function fi on some hyperplane passing through ϕ̃si

(pi).
As degsi

(pi, qi) = ε, if ε > 0 is small (depending on r0 and C0), the Lipschitz constants
of these functions fi are uniformly bounded by a constant depending on r0 and C0,
moreover, for every i ∈ N the point ϕ̃si

(qi) belongs to the graph of fi.
It is then easy to see that there exists a uniform bound from below on |ϕ̃si

(pi) − ϕ̃si
(qi)|,

hence the constant C cannot be zero.
Now, if we look at the function

L(p, q, t) = |ϕ(p, t) − ϕ(q, t)|/
√

2(T − t)

on ∁Ω ⊂ M × M × [0, T ), we can see as before in the proof of Proposition 3.14, that
if the minimum of L at time t is lower than ε, then such minimum is not taken on the
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boundary and the analogous geometric argument says that it is nondecreasing. Hence,
there is a positive lower bound on

inf
∁Ω

|ϕ(p, t) − ϕ(q, t)|/
√

2(T − t) .

Now we are done, because if a limit hypersurface of the rescaling procedure is not em-
bedded, representing the family of converging hypersurfaces locally around a couple of
points with the same image in Rn+1 by the limit immersion, we would have a contra-
diction with this argument. �

OPEN PROBLEM 4.16. The limit hypersurface M̃∞ is unique? That is, independent
of the sequence si → +∞?
This problem is the parabolic analog to the long–standing problem of uniqueness of

the tangent cone in minimal surface theory.

OPEN PROBLEM 4.17. Classify all the hypersurfaces (compact or not) satisfying H +
〈y | ν〉 = 0, or at least the ones arising from blow up of compact and embedded flows.
This problem is difficult, an equivalent formulation is to find the critical points of the
Huisken’s functional ∫

M

e−
|y|2
2 dHn .

Besides the “standard” examples given by the hyperplanes for the origin, the sphere
Sn(

√
n) or one of the cylinders Sm(

√
m) × Rn−m, we have the Angenent torus in [13],

moreover, the computations of Chopp [19] suggest that there could also exist higher
genus surfaces in R

3, see the notes of Ilmanen [66] (see also the works by Nguyen [77,
52, 76]).
As we will see in the next sections, the classification is possible under the extra hypoth-
esis H ≥ 0.

REMARK 4.18. These hypersurfaces are often called “homothetic solutions of mean
curvature flow”, indeed, if a hypersurfaceM = M0 ⊂ Rn+1 satisfies H + 〈y | ν〉 = 0, it is
easy to see that the flowMt = M

√
1 − 2t is an ancient smooth flow by mean curvature

in the time interval (−∞, 1/2), homothetically shrinking. The viceversa is also true, as a
homothetically shrinking flow, collapsing at some time T , must satisfy H + 〈y | ν〉 = 0 at
time t = T − 1/2, by looking at the monotonicity formula (Exercise).
Notice that if a hypersurface moving by mean curvature satisfies H + λ〈y | ν〉 = 0 for
some constant λ > 0 at some time, then it is homothetically shrinking, that is, such a
condition is stable (with a time changing constant λ).
By looking at a slight modification of the function σ defined by formula 4.6 it is pos-

sible to exclude the existence of compact nonhomothetic breathers for mean curvature
flow, that is, solutions such that Mt = λL(Ms) for a couple of times t > s, a constant
λ > 0 and an isometry L of Rn+1.
It is useless to consider nonshrinking (steady or expanding) compact breathers with
λ = 1 or λ > 1, indeed, by comparison with evolving spheres, they simply do not exist.
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We can suppose that s = 0 and t > 0, then, for a compact hypersurfaceM and τ > 0,
we consider the function

σ̃(M, τ) = max
x0∈Rn+1

∫

M

e−
|x−x0|2

4τ

(4πτ)n/2
dH̃n .

It is easy to see that for every λ > 0we have

σ(λM, λ2τ) = σ(M, τ) (4.17)

and, by the same argument following Definition 4.8, for every A > 0, we have

σ(M0, τ(0)) − σ(Mt, τ(t)) =

∫ t

0

∫

Ms

e−
|x−xτ(s)|

2

4τ(s)

(4πτ(s))n/2

∣∣∣∣H − (x− xτ(s))
⊥

2τ(s)

∣∣∣∣
2

dH̃n, ds

where τ(s) = A− s.
By the rescaling property of σ in formula 4.17, we have

σ(M0, A) ≥ σ(Mt, A− t) = σ(λM0, A− t) = σ(M0, (A− t)/λ2)

hence, if we choose A = t
1−λ2 > t as λ < 1, we have (A − t)/λ2 = A. It follows that

σ(M0, A) = σ(Mt, A − t), hence, by the formula above, there exists at least one time

s ∈ (0, t) such that H(x, s) = (x−y)⊥

2(A−s)
for some y ∈ Rn+1, which implies that we are

dealing with a homothetically shrinking solution.

Suppose to fix a point p ∈ M and consider a sequence of rescaled hypersurfaces,
as above, ϕ̃(·, si), locally smoothly converging (up to reparametrization) to some limit

hypersurface M̃∞ which satisfies H̃ + 〈y | ν̃〉 = 0 at every y ∈ M̃∞.
We now relate the limit heat density Θ(p) in Definition 4.8 with the limits of rescaled

hypersurfaces.

Θ(p) = lim
t→T

θ(p, t)

= lim
i→∞

∫

M

e
− |x−bp|2

4(T−t(si))

[4π(T − t(si))]n/2
dµt(si)

= lim
i→∞

∫

M

e−
|y|2
2

(2π)n/2
dµ̃si

=
1

(2π)n/2

∫

fM∞

e−
|y|2
2 dH̃n ,

where in the last passage we applied the previous corollary.

In particular, if M̃∞ is a unit multiplicity hyperplane for the origin of R
n+1, then Θ(p) =

1
(2π)n/2

∫
fM∞

e−
|y|2
2 dH̃n = 1.
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REMARK 4.19. If we choose a time τ > 0which is strictly less than the maximal time
T of existence of the flow and we perform the rescaling procedure around the nonsin-
gular point p̂ = limt→τ ϕ(p, t) = ϕ(p, τ), being the hypersurface regular around p at time
τ , every limit of rescaled hypersurfaces must be flat, actually a union of hyperplanes
through the origin. If moreover at ϕ(p, τ) the hypersurface has no self–intersections,
such limit is a single hyperplane through the origin and

lim
t→τ

∫

M

e
− |x−ϕ(p,τ)|2

4(τ−t)

[4π(τ − t)]n/2
dµt = 1 .

This clearly holds for every p ∈M if the initial hypersurface is embedded.

REMARK 4.20. By the previous remark, if τ ∈ (0, T ) and x0 = ϕτ (p), we have

lim
t→τ

∫

M

e−
|x−x0|2
4(τ−t)

[4π(τ − t)]n/2
dµt = 1

and ∫

M

e−
|x−x0|2

4τ

[4πτ ]n/2
dµ0 ≥ 1

by monotonicity formula, for every p ∈M .
Then,

Area(ϕ0) ≥
∫

M

e−
|x−x0|2

4τ dµ0 ≥ [4πτ ]n/2

and τ ≤ [Area]2/n/(4π). As this holds for every τ < T , we conclude with the following
estimate on the maximal time (independent of the type I singularity hypothesis) T ≤
[Area]2/n/(4π).

LEMMA 4.21 (White [98]). Among all the smooth, complete, hypersurfaces M in Rn+1,

satisfying H + 〈y | ν〉 = 0 and
∫

M
e−|y| dH̃n < +∞, the hyperplanes (with unit multiplicity)

through the origin are the only minimizers of the functional

1

(2π)n/2

∫

M

e−
|y|2
2 dH̃n .

Hence, for all such hypersurfaces the value of this integral is at least 1.

PROOF. Suppose that there exists a smooth hypersurfaceM = M0 such that

1

(2π)n/2

∫

M

e−
|y|2
2 dH̃n ≤ 1

and satisfies H + 〈y | ν〉 = 0, then the flow Mt = M
√

1 − 2t is a smooth flow by mean
curvature in the time interval (−∞, 1/2).
Choosing a point y0 ∈ R

n+1 and a time τ ≤ 1/2we consider the limit

lim
t→−∞

∫

Mt

e−
|y−y0|2
4(τ−t)

[4π(τ − t)]n/2
dH̃n ,
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notice that the integral is well defined by the hypothesis
∫

M
e−|y| dH̃n < +∞.

Changing variables, we have

lim
t→−∞

∫

Mt

e−
|y−y0|2
4(τ−t)

[4π(τ − t)]n/2
dH̃n(y) = lim

t→−∞

∫

M

e−
|x

√
1−2t−y0|2
4(τ−t)

[4π(τ − t)/(1 − 2t)]n/2
dH̃n(x) .

As t → −∞, the sequence of functions inside the integral pointwise converges to the
function e−

|x|2
2 /(2π)n/2 and they are definitely uniformly bounded above, outside some

large fixed ball BR(0) ⊂ Rn+1, by the function e−|x|. Since this last function is integrable
onM by the hypothesis, by the dominated convergence theorem, we get

lim
t→−∞

∫

Mt

e
− |y−y0|2

4(τ−t)

[4π(τ − t)]n/2
dH̃n =

1

(2π)n/2

∫

M

e−
|x|2
2 dH̃n ≤ 1

By the monotonicity formula this implies that

∫

Mt

e−
|y−y0|2
4(τ−t)

[4π(τ − t)]n/2
dH̃n ≤ 1

for every y0 ∈ Rn+1 and t < τ ∈ (−∞, 1/2).
Choosing now y0 ∈ M and τ = 0, repeating the argument in Remark 4.19 (in this

noncompact case it can be carried on by means of the hypothesis
∫

M
e−|y| dH̃n < +∞),

we have

lim
t→0

∫

Mt

e−
|y−y0|2

−4t

[−4πt]n/2
dH̃n = 1

hence, we conclude that the function

∫

Mt

e−
|y−y0|2

−4t

[−4πt]n/2
dH̃n

is constant equal to 1 for every t ∈ (−∞, 0). Even if the evolving hypersurfaces Mt are

not compact, by the hypothesis
∫

M
e−|y| dH̃n < +∞, it is straightforward to check that

the monotonicity formula still holds (writing every integral as an integral onM fixed).
Hence, we must have that the right side is identically zero and H + 〈y − y0 | ν〉 = 0 for
every y ∈M .
Since this relation holds for every y0 ∈ M , it follows that for every x, y ∈ M we have
〈x | ν(y)〉 = 0, which easily implies thatM is a hyperplane for the origin of Rn+1. �

REMARK 4.22. The smoothness hypothesis can beweakened in this lemma, provided
that the set M owns some definition of mean curvature to give sense to the condition
H+ 〈y | ν〉 = 0 and coherent with the monotonicity formula (for instance, one can allows
integral varifolds with bounded variation, see [17, 65]).
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It is unknown to the author if the hypothesis
∫

M
e−|y| dH̃n < +∞ can be removed. Any-

way, it is satisfied by every limit hypersurface obtained by the rescaling procedure, by
Corollary 4.13.

COROLLARY 4.23. The function Θ : M → R satisfies Θ ≥ 1 on all M . Moreover, if
Θ(p) = 1, every converging sequence of rescaled hypersurfaces ϕ̃(·, si) around p̂ converges to a
unit multiplicity hyperplane for the origin of Rn+1.
It follows that Σ ≥ 1.

REMARK 4.24. The fact that Θ ≥ 1 on allM can be also proved directly by the argu-
ment in Remark 4.20. Since for every τ < T and x0 = ϕτ (p) we have

lim
t→τ

∫

M

e−
|x−x0|2
4(τ−t)

[4π(τ − t)]n/2
dµt = 1

we get
∫

M

e
− |x−x0|2

4(τ−t)

[4π(τ − t)]n/2
dµt ≥ 1

for every t < τ . Keeping t < T fixed and sending τ → T , we have ϕτ (p) → p̂ and

θ(p, t) =

∫

M

e−
|x−bp|2
4(T−t)

[4π(T − t)]n/2
dµt = lim

τ→T

∫

M

e−
|x−x0|2
4(τ−t)

[4π(τ − t)]n/2
dµt ≥ 1 .

This clearly implies that Θ(p) = limt→T θ(p, t) ≥ 1.

REMARK 4.25. Rescaling around some p̂, by the discussion after Definition 4.7, means
rescaling around some reachable point. Actually, we could rescale around any point
x0 ∈ Rn+1 but if x0 6∈ S, as the distance from ϕ(M, t) and x0 is definitely positive,
the limit hypersurface is empty. This would imply that

∫

M

e−
|x−x0|2
4(T−t)

[4π(T − t)]n/2
dµt → 0 ,

as t→ T .
By this corollary, if instead we consider x0 ∈ S, that is, x0 = p̂ for some p ∈ M , there
holds Θ(p) ≥ 1. Hence, there is a dichotomy between the points of R

n+1, according to
the value of the limit heat density function which can be either zero or larger or equal
to one.
Moreover, by looking carefully at the first part of the proof of Lemma 4.21, we can see
that this fact is independent of the type I hypothesis (it is only a consequence of the
upper semicontinuity of θ(p, t)).

Actually, one can saymore by the following result ofWhite [98] (see also [26, Thm. 5.6,
5.7] and [91], moreover compare with [17, Thm. 6.11]), which also gives a partial answer
to Problem 4.16.
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THEOREM 4.26 (White [98]). There exist constants ε = ε(n) > 0 and C = C(n) such that
if Θ(p) < 1 + ε, then |A| ≤ C(n) in a ball of Rn+1 around p̂, uniformly in time t ∈ [0, T ).

If the limit of a subsequence of rescalings is a hyperplane through the origin, then
Θ(p) = 1 and (by the conclusion of the theorem) there is ball around p̂ where the cur-
vature is bounded. Then in such a ball, the unscaled hypersurfaces ϕt (possibly af-
ter a reparametrization) converge locally uniformly in C0 to some ϕT with uniformly
bounded curvature, this implies that the convergence is actually C∞, by the interior
estimates of Ecker and Huisken in [29]. Hence, it follows easily that the tangent hyper-
plane to ϕT at the point p̂ (after translating it to the origin of R

n+1) coincides with the
limit of any sequence of rescaled hypersurfaces, that is, there is full convergence of the
sequence of rescalings, hence, the limit hypersurface is unique, solving affirmatively
Problem 4.16 in this special case.

REMARK 4.27. The strength of White’s result is that it does not assume any condi-
tion on the blow up rate of the curvature. The theorem holds also without the type I
hypothesis.
Another consequence is that there is a “gap” between the value 1 realized by the

hyperplanes through the origin of Rn+1 in the functional

1

(2π)n/2

∫

M

e−
|y|2
2 dH̃n

and any other smooth, complete, hypersurfaceM in Rn+1, satisfying H + 〈y | ν〉 = 0 and∫
M
e−|y| dH̃n < +∞.

3. Analysis of Singularities

DEFINITION 4.28. We say that p ∈ M is a singular point if there exists a sequence of
points pi → p inM and times ti → T such that for some constant δ > 0 there holds

|A(pi, ti)| ≥
δ√

2(T − ti)
.

We say that p ∈ M is a special singular point if there exists a sequence of times ti → T
such that for some constant δ > 0 there holds

|A(p, ti)| ≥
δ√

2(T − ti)
.

Suppose that p ∈M is a special singular point, then, after rescaling the hypersurface
as before around p̂, we have for si = −1

2
log (T − ti),

|Ã(p, si)| =
√

2(T − ti)|A(p, ti)| ≥ δ > 0

which implies that, taking a subsequence of si → +∞, any limit hypersurface obtained
by Proposition 4.15 cannot be flat as Ã 6= 0 at some point in the ball BC0

√
2n.

If p ∈M is not a special singular point, clearly, for every sequence si → +∞,
|Ã(p, si)| =

√
2(T − ti)|A(p, ti)| → 0,
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that is, any limit hypersurface satisfies Ã = 0 at some point in the ball BC0

√
2n.

OPEN PROBLEM 4.29. Any limit hypersurface associated to a nonspecial singular
point is a union of hyperplanes through the origin?
This conclusion would follows if any nonflat hypersurfaceM satisfying H + 〈y | ν〉 = 0

and
∫

M
e−|y| dH̃n < +∞ cannot have a point where the second fundamental form is zero.

By means of a small variation of an argument by Stone, we have a good description
when the limit hypersurface is a single hyperplane.

PROPOSITION 4.30 (Stone [91]). If the limit of rescaled hypersurfaces around p̂, is a unit
multiplicity hyperplane through the origin of Rn+1, or equivalently by Lemma 4.21, Θ(p) = 1,
then p cannot be a singular point.

PROOF. By Corollary 4.23, the point p ∈ M is a minimum of Θ : M → R which is an
upper semicontinuous function. Hence, p is actually a continuity point for Θ. We want
to show that for every sequence pi → p and ti ր T we have θ(pi, ti) → 1 = Θ(p).
Suppose there exists δ > 0 such that θ(pi, ti) → 1 + δ, then, keeping fixed i, for every
j > i we have θ(pj , tj) ≤ θ(pj , ti) and sending j → ∞ we get 1 + δ ≤ θ(p, ti). This is
clearly a contradiction, as sending now i → ∞, we have θ(p, ti) → Θ(p) = 1 (what we
did is closely related to Dini’s Theorem on monotone convergence of functions).
If p is a singular point with pi → p and ti → T such that for some constant δ > 0 there
holds |A(pi, ti)| ≥ δ√

2(T−ti)
we consider the families of rescaled hypersurfaces around p̂i,

ϕ̃i(q, s) =
ϕ(q, t) − p̂i√

2(T − t)
s = s(t) = −1

2
log(T − t)

with associated measures µ̃i,s, and we set

ψi(q) = ϕ̃i(q, si) =
ϕ(q, ti) − p̂i√

2(T − ti)
si = −1

2
log(T − ti) ,

with associated measures µ̃i,si
.

For every ε > 0, definitely

ε ≥ θ(pi, ti) − 1 ≥ θ(pi, ti) − Θ(pi)

=

∫

M

e
− |x−bpi|2

4(T−ti)

[4π(T − ti)]n/2
dµti − Θ(pi)

=
1

(2π)n/2

∫

M

e−
|y|2
2 dµ̃i,si

− Θ(pi)

≥
∫ +∞

si

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃i,s ds .
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Hence, since by the uniform curvature estimates of Proposition 4.14, see computa-
tion 4.15, we have,

d

ds

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ≤ C

where C = C(n,Area(ϕ0), T ) is a positive constant independent of s, we get

ε ≥
∫ +∞

si

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃i,s ds

≥ 1

C2

(∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃i,si

)2

.

If now we proceed like in Proposition 4.15 and we extract from the sequence ψi a

smoothly converging subsequence to some limit hypersurface M̃∞, by Lemma 4.12, we
have

ε ≥
∫

fM∞

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dH̃n ,

for every ε > 0, that is, M̃∞ also satisfies H̃ + 〈y | ν̃〉 = 0.
Finally, by Corollary 4.13,

1

(2π)n/2

∫

fM∞

e−
|y|2
2 dH̃n = lim

i→∞

1

(2π)n/2

∫

M

e−
|y|2
2 dµ̃i,si

= lim
i→∞

θ(pi, ti) = 1

then, by Lemma 4.21, the hypersurface M̃∞ has to be a hyperplane. But since the points

ψi(pi) all belong to the ball of radius C0

√
2n ⊂ Rn+1 and the second fundamental form

Ai of ψi satisfies |Ai(pi)| ≥ δ > 0, for every i ∈ N, by construction, passing to the limit,

the second fundamental form of M̃∞ is not zero at some point in the ball BC0

√
2n(0).

Then, we get a contradiction and p cannot be a singular point of the flow. �

REMARK 4.31. This lemma is an immediate consequence of White’s Theorem 4.26,
but we wanted to emphasize the fact that the only needed “ingredient” by the line
of analysis of Stone is the uniqueness of the hyperplanes as minimizers the integral

1
(2π)n/2

∫
M
e−

|y|2
2 dH̃n.

The lower estimate on the blow up rate of the curvature

max
p∈M

|A(p, t)| ≥ 1√
2(T − t)

.

and the compactness of M clearly imply that there always exists at least one singular
point but do not imply that there exists at least one special singular point.

OPEN PROBLEM 4.32. To our knowledge, in the general case, even if we are dealing
with the flow of embedded hypersurfaces, the existence of at least one special singular
point is an open problem.
A related stronger statement would be every singular point is a special singular point.
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This problem and Problem 4.29, in the embedded situation at least, are strongly

connected. Indeed, if the initial hypersurface is embedded, any limit hypersurface M̃∞
is also embedded, so the union of two or more hyperplanes cannot arise.
This means that if Problem 4.29 has a positive answer, for every nonspecial singular
point p ∈ M the limit hypersurfaces can be only single unit multiplicity hyperplanes
through the origin, hence, by Proposition 4.30, the point is not singular.
If there are not special singular point then it would follows that there are no singular
points at all, which is a contradiction.
In the general case, repeating this argument, unfortunately, one could obtain a union

of hyperplanes, or evenmore disturbing, higher integermultiplicity hyperplanes. Hence,
a possible flat limit.

COROLLARY 4.33. At a singular point p ∈ M a limit M̃∞ of rescaled hypersurfaces is not
empty, satisfies H + 〈x | ν〉 = 0 and it is not a unit multiplicity hyperplane through the origin.

In the embedded case M̃∞ cannot be flat.

REMARK 4.34. Another line to produce a homothetic blow up limit, is to apply, in-
stead of Stone’s argument, White’s Theorem 4.26, excluding the presence of singularities
in the case Σ = 1 (recall Definition 4.8). As the set of reachable points S is compact, if
Σ > 1 there must exists a point x0 = p̂ such that Θ(p) > 1, otherwise, by a covering
argument, White’s Theorem would imply that the curvature is uniformly bounded as
tր T and Σ would be 1.

REMARK 4.35. Finally, we can also obtain a homothetic limit by rescaling the hy-
persurfaces around moving points as follows. Rescaling the maximal monotonicity for-
mula (4.7) around the points xt which are the maximum points realizing σ(t) in Defini-
tion 4.8, that is,

σ(t) = max
x0∈Rn+1

∫

M

e−
|x−x0|2
4(T−t)

[4π(T − t)]n/2
dµt =

∫

M

e−
|x−xt|2
4(T−t)

[4π(T − t)]n/2
dµt ,

where now the rescaled hypersurfaces with associated measures µ̃s are given by

ϕ̃(q, s) =
ϕ(q, t(s)) − xt(s)√

2(T − t(s))
s = s(t) = −1

2
log(T − t) ,

we get

d

ds

∫

M

e−
|y|2
2 dµ̃s = −

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ≤ 0 .

It follows that, integrating this formula as before, we get

σ(0) − Σ =

∫ +∞

− 1
2

log T

∫

M

e−
|y|2
2

∣∣∣H̃ + 〈y | ν̃〉
∣∣∣
2

dµ̃s ds < +∞ ,



 D
ra

ft

4. EMBEDDED HYPERSURFACES WITH NONNEGATIVE MEAN CURVATURE 69

and with the same argument we can produce a homothetic limit hypersurface M̃∞ such
that ∫

fM∞

e−
|y|2
2 dH̃n = Σ ≥ 1 .

Since when Σ = 1 the curvature is bounded, the limit hypersurface M̃∞ cannot be a
single hyperplane for the origin. If the initial hypersurface was embedded, this limit
also cannot be flat.

4. Embedded Hypersurfaces with Nonnegative Mean Curvature

If the compact initial hypersurface is embedded and has H ≥ 0 (this condition is
often called mean convexity) or at some time the evolving hypersurface achieve it, then
the analysis of the previous section can be pushed forward, since we have a new con-
dition that all the possible limits of rescaled hypersurfaces have to satisfy. Under such
hypothesis, Problem 4.29 and consequently Problem 4.32 have a satisfying solution.
Actually, in this class, every singular point is a special singular point and it is indeed
possible to classify all the embedded hypersurfaces in Rn+1 such that H+ 〈x | ν〉 = 0 and
H ≥ 0, arising from a rescaling around a singularity point, see [54, 66] or [92].
We recall here that in this case, after a positive time ε > 0, there exist a constant α > 0

such that α|A| ≤ H ≤ n|A| everywhere onM for every time t ≥ ε, Corollary 3.22.
Hence, for every t ∈ [ε, T )we have

α√
2(T − t)

≤ max
p∈M

H(p, t) ≤ C√
2(T − t)

.

PROPOSITION 4.36 (Huisken [54, 66]). LetM ⊂ Rn+1 be a mean convex, smooth, embed-
ded hypersurface in Rn+1 such that H + 〈x | ν〉 = 0 at every x ∈ M and there exists a constant
C such that |A|, |∇A| ≤ C andHn(M ∩BR) ≤ CeR, for every ball of radius R > 0 in Rn+1.
Then, up to rotation in Rn+1, M must be one of only (n + 1) possible hypersurfaces, namely,
either a hyperplane for the origin, or the sphere Sn(

√
n) or one of the cylinders Sm(

√
m)×Rn−m.

In the special one–dimensional case the only embedded smooth curves in R2 satisfying the
structural equation k + 〈x | ν〉 = 0 are the lines through the origin and the unit circle.

PROOF. Let us assume that M is connected. If the theorem is true in this case, it
it easy to see that it is not possible to have a nonconnected embedded hypersurface
satisfying the hypotheses. Indeed, any connected component has to belong to the list
of the statement and every two hypersurfaces in such list either coincide or have some
intersections.
We deal separately with the case n = 1.

Fixing a reference point on a curve γ we have an arclength parameter s which gives a
unit tangent vector field and a unit normal vector field ν which is the rotation of π/2 in
R2 of the vector τ . Then, it follows that k = 〈∂sτ | ν〉.
The relation k = −〈γ | ν〉 implies ks = k〈γ | τ〉. Suppose that at some point k = 0, then
also ks = 0 at the same point, hence, by the uniqueness theorem applied to this ODE for
the curvature k we can conclude that k is identically zero and we are dealing with a line
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L, which then, as 〈x | ν〉 = 0 for every x ∈ L, it must pass for the origin of R2.
So we suppose that k is always nonzero and possibly reversing the orientation of the
curve we can also assume that k > 0 at every point, that is, the curve is strictly convex.
Computing the derivative of |γ|2,

∂s|γ|2 = 2〈γ | τ〉 = 2ks/k = 2∂s log k

we get k = Ce|γ|
2/2 for some constant C > 0, so if k is bounded above and below away

from zero, the curve is also bounded in R2, hence, it is compact being embedded. As a
consequence, it is closed.
We consider now a new coordinate θ = arccos 〈e1 | ν〉, this can be done globally as we
know that the curve is convex.
Then, we have ∂sθ = k and

kθ = ks/k = 〈γ | τ〉 kθθ =
∂skθ

k
=

1 + k〈γ | ν〉
k

=
1

k
− k .

Multiplying both sides for 2kθ we get ∂θ[k
2
θ + k2 − log k2] = 0, that is, the quantity

k2
θ +k2− log k2 is equal to some constant E along all the curve. Notice that such quantity
E cannot be less than 1, moreover, if E = 1 we have k constant equal to one and the
curve must be the unit circle.
For other values of E > 1 it is easy to see, as the function, x− log x is convex, that kmust
be bounded above and below away from zero, hence, by what we said before the curve
is a simple closed curve.
We look now at the critical points of the curvature k, they must be isolated (hence finite)
and non degenerate (kθθ 6= 0), otherwise the ODE kθθ = 1

k
−k implies that kθ is identically

zero, k is constant and again we are dealing with the unit circle.
Suppose now that k− and k+ are a pair of consecutive critical values of k, hence the two
distinct positive zeroes of the function E + log k2 − k2 when E > 1.
We have that the change ∆θ in the angle θ along the piece of curve from the points
corresponding to k− and k+ on γ is given by the integral

I(E) =

∫ k+

k−

dk√
E − k2 + log k2

.

As the four vertex theorem [73, 79] says that there are at least four critical points of k on
the curve, there must be at least four pieces like the one above, hence, the total change
in the angle θ along the curve must be at least 4I(E).
As the curve γ is simple, the total change must be 2π, so we have 4I(E) ≤ 2π, that is,

I(E) =

∫ k+

k−

dk√
E − k2 + log k2

≤ π/2 .

The analysis of Abresch and Langer in [1] (see also the work of Epstein and Wein-
stein [31]) shows that I(E) is always strictly larger than π/2 for every E > 1, which
is a contradiction and γ must be a circle.
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Actually, Abresch and Langer (and also Epstein andWeinstein) classify all the closed
curves in R2 satisfying the structural equation k + 〈γ | ν〉 = 0.
We remark that, like for other results, the one–dimensional case does not follows from
the general one below. Moreover, even if the study of the integral I(E) is done with
elementary tools, the proof of the inequality I(E) > π/2 is quite involved making def-
initely nontrivial this classification result even for simple closed curves (we underline
that the n–dimensional generalization, Problem 4.37, is open).
Suppose now that n ≥ 2.

By covariant differentiation of the equation H + 〈x | ν〉 = 0 in an orthonormal frame
{e1, . . . , en} onM we get

∇iH = 〈x | ek〉hik

∇i∇jH = hij + 〈x | ν〉hikhjk + 〈x | ek〉∇ihjk = hij − Hhikhjk + 〈x | ek〉∇khij (4.18)

where we used Codazzi and Gauss–Weingarten equations.
Contracting now with gij and hij respectively we have

∆H = H − H|A|2 + 〈x | ek〉∇kH = H(1 − |A|2) + 〈x | ∇H〉 (4.19)

hij∇i∇jH = |A|2 − Htr(A3) + 〈x | ek〉∇k|A|2/2

which implies, by Simons’ identity (2.3),

∆|A|2 = 2|A|2(1 − |A|2) + 2|∇A|2 + 〈x | ∇|A|2〉 . (4.20)

From equation (4.19) and the strong maximum principle for elliptic equations we see
that, since M satisfies H ≥ 0 by assumption and ∆H ≤ H + 〈x | ∇H〉, we must either
have that H ≡ 0 or H > 0 on allM .
Of these two possibilities the situation that H ≡ 0 is easily handled: as x is tangent
vector field on M , by the equation 〈x | ν〉 = 0, there is a solution of the ODE γ′(t) =
x(γ(t)) = γ(t) in M for t ∈ R, but the solution is simply the line passing by x and the
origin in Rn+1, so M has to be a cone in Rn+1. Being M smooth, the only possibility is
thatM is a hyperplane through the origin of Rn+1.
Therefore we may assume henceforth, as we do, that the mean curvature satisfies the
strict inequality H > 0 everywhere (so that division by H and |A| is allowed).
Now let R > 0 and define η to be the inward unit conormal toM ∩ BR(0) along ∂

(
M ∩

BR(0)
)
, which is a smooth boundary for almost every R > 0 (by Sard’s theorem). Then,

supposing that R is a regular value for the function |x| on M , from equation (4.19) and
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the divergence theorem, we obtain

εR = −
∫

∂(M∩BR(0))

|A|〈∇H | η〉e−R2/2 dHn−1 (4.21)

=

∫

M∩BR(0)

|A|∆He−|x|2/2 + 〈∇(|A|e−|x|2/2) | ∇H〉 dHn

=

∫

M∩BR(0)

|A|H(1 − |A|2)e−|x|2/2 + |A|〈x | ∇H〉e−|x|2/2 dHn

+

∫

M∩BR(0)

1

2|A|〈∇|A|2 | ∇H〉e−|x|2/2 − |A|〈x | ∇H〉e−|x|2/2 dHn

=

∫

M∩BR(0)

(
|A|H(1 − |A|2) +

1

2|A|〈∇|A|2 | ∇H〉
)
e−|x|2/2 dHn .

Similarly,

δR = −
∫

∂(M∩BR(0))

H

|A| 〈∇|A|2 | η〉e−R2/2 dHn−1 (4.22)

=

∫

M∩BR(0)

H

|A|∆|A|2e−|x|2/2 +
〈
∇
( H

|A| |e
−|x|2/2

) ∣∣∣∇|A|2
〉
dHn

=

∫

M∩BR(0)

2|A|H(1 − |A|2)e−|x|2/2 +
2H|∇A|2

|A| e−|x|2/2 +
H

|A| 〈x | ∇|A|2〉e−|x|2/2 dHn

+

∫

M∩BR(0)

〈∇H | ∇|A|2〉
|A| e−|x|2/2 − H|∇|A|2|2

2|A|3 e−|x|2/2 − H

|A|〈x | ∇|A|2〉e−|x|2/2 dHn

=

∫

M∩BR(0)

(
2|A|H(1 − |A|2) +

2H|∇A|2
|A| +

〈∇H | ∇|A|2〉
|A| − H|∇|A|2|2

2|A|3
)
e−|x|2/2 dHn .

Hence,

σR = 2δR − 4εR =

∫

M∩BR(0)

(
4H|∇A|2

|A| − H|∇|A|2|2
|A|3

)
e−|x|2/2 dHn (4.23)

=

∫

M∩BR(0)

(4|A|2|∇A|2 − |∇|A|2|2) H

|A|3 e
−|x|2/2 dHn .

As we have 4|A|2|∇A|2 ≥ |∇|A|2|2, this quantity σR is nonnegative and nondecreasing
in R.
If now we show that lim infR→+∞ σR = 0 (on the set of regular values) we can conclude
that at every point ofM ,

4|A|2|∇A|2 = |∇|A|2|2 . (4.24)
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We have,

|σR| =

∣∣∣∣−2

∫

∂(M∩BR(0))

H

|A|〈∇|A|2 | η〉e−R2/2 dHn−1 + 4

∫

∂(M∩BR(0))

|A|〈∇H | η〉e−R2/2 dHn−1

∣∣∣∣

≤ 4e−R2/2

∫

∂(M∩BR(0))

H

|A| |∇|A|2| + |A||∇H| dHn−1

≤ 8e−R2/2

∫

∂(M∩BR(0))

H|∇A| + |A||∇H| dHn−1

≤Ce−R2/2Hn−1(∂(M ∩BR(0))) ,

by the estimates on A and ∇A in the hypotheses.
Now, suppose that definitely on the set of regular values in R+ we have

Hn−1(∂(M ∩BR(0))) ≥ δReR2/4

for some constant δ > 0, for every R > r1. Setting x
M to be the projection of the vector

x on the tangent space to M , as the function R 7→ Hn(M ∩ BR(0)) is monotone and
continuous from the left and actually continuous at every regular value of |x| on M ,
we can differentiate it almost everywhere in R+ and we have (by the coarea formula,
see [32] or [84]),

Hn(M ∩ BR(0)) −Hn(M ∩ Br(0)) ≥
∫ R

r

d

dξ
Hn(M ∩ Bξ(0)) dξ

≥
∫ R

r

∫

∂(M∩Bξ(0))

|∇M |x||−1 dHn−1 dξ

=

∫ R

r

∫

∂(M∩Bξ(0))

|x|/|xM | dHn−1 dξ

≥
∫ R

r

∫

∂(M∩Bξ(0))

dHn−1 dξ ,

where the derivative in the integral is taken only at the points where it exists and∇M |x|
denotes the projection of the gradient of the function |x| on the tangent space toM .
Hence, if r is larger than r1,

Hn(M ∩BR(0)) −Hn(M ∩ Br(0)) ≥
∫ R

r

∫

∂(M∩Bξ(0))

dHn−1 dξ

≥ δ

∫ R

r

ξeξ2/4 dξ

=2δ(eR2/4 − er2/4)

so ifR goes to+∞, the quantityHn(M∩BR(0))e−R diverges, contradicting the hypothe-
ses in the statement. Hence, the lim inf on the set of regular values as R goes to +∞ of
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the quantity e−R2/4Hn−1(∂(M ∩ BR(0))) has to be zero. It follows the same for σR and
equation (4.24) holds.
Making explicit such equation, by the equality condition in the Cauchy–Schwartz

inequality, it immediately follows that, fixing k, at every point there exists a constant ck
such that

∇khij = ckhij

for every i, j. Tracing with the metric and with hij , we get ∇kH = ckH and ∇k|A|2 =
2ck|A|2, hence ck = ∇k log H and ∇k log |A|2 = 2ck = 2∇k log H.
This implies that locally |A| = αH for some constant α > 0, by connectedness, this rela-
tion has to hold globally onM .
Suppose now that at a point |∇H| 6= 0, then, ∇khij = ckhij = ∇kH

H
hij which is a symmet-

ric 3–tensor by Codazzi equations, hence,∇kHhij = ∇jHhik. Computing then in normal
coordinates, with an orthonormal basis {e1 . . . , en} such that e1 = ∇H/|∇H| we have

0 = |∇kHhij −∇jHhik|2 = 2|∇H|2
(
|A|2 −

n∑

i=1

h2
1i

)
.

Hence, |A|2 =
∑n

i h
2
1i then

|A|2 = h2
11 + 2

n∑

i=2

h2
1i +

n∑

i,j 6=1

hij = |A|2
n∑

i=2

h2
1i +

n∑

i,j 6=1

hij

so hij = 0 unless i = j = 1. This means that A has rank one.
Thus, we have two possible (non mutually excluding) situations at every point of M :
either A has rank one or∇H = 0.
If the kernel ofA is empty everywhere,Amust have rank at least two, aswe assumed

n ≥ 2, then we have ∇H = 0 which implies ∇A = 0 and, by equation (4.18) hij =
Hhikhkj. This means that all the eigenvalues of A are 0 or 1/H. As the kernel is empty,
A = Hg/n, precisely H =

√
n and A = g/

√
n. Then, the hypersurface M has to be the

sphere Sn(
√
n).

Indeed, computing

∆|x|2 = 2n+ 2〈x |∆x〉 = 2n+ 2H〈x | ν〉 = 2n− 2H2 = 0 ,

by the structural equationH+〈x | ν〉 = 0, being |x|2 a harmonic function onM , looking at
the point ofM of minimum distance from the origin, by the strong maximum principle
for elliptic equations, it must be constant onM .
We suppose now that the kernel of A is not empty at some point p ∈ M , then let

v1(p), . . . , vn−m(p) ∈ R
n+1 be a family of unit orthonormal tangent vectors spanning

such (n−m)–dimensional kernel, that is hijv
j
k = 0. Then the geodesic γ(s) inM from p

with initial velocity vk(p) satisfies

∇s(hijγ
j
s) = H−1〈∇H | γs〉hijγ

j
s

hence, by Gronwall’s lemma, it holds hij(γ(s))γ
j
s(s) = 0 for every s.

Being γ a geodesic inM , the normal to the curve inRn+1 is the normal toM , then setting
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k to be the curvature of γ in Rn+1, we have

k =
〈
ν
∣∣∣ d
ds
γs

〉
= hijγ

i
sγ

j
s = 0 ,

thus γ is a line in Rn+1.
Hence, all the (n−m)–dimensional affine subspace p + S(p) ⊂ Rn+1 is contained inM ,
where we set S(p) = 〈v1(p), . . . , vm(p)〉 ⊂ Rn+1.
Let now σ(s) a geodesic from p to another point q, parametrized in arclength, and extend
by parallel transport the vectors vk along σ,

∇s(hijv
j
k) = 〈∇H | σs〉hijv

j
k

and again by Gronwall’s lemma, hijv
j
k(s) = for every s, in particular vk(q) is contained

in the kernel of A at q ∈ M . This argument clearly shows that the kernel of S(p) of A at
p has constant dimension (n−m) with 0 < m < n (as A is never zero) and all the affine
(n−m)–dimensional subspaces p+ S(p) ⊂ Rn+1 are all contained inM .

Moreover, as hijv
j
k = 0 along such geodesic, looking at things in Rn+1, denoting with D

the covariant derivative in Rn+1, we have

Dsvk = ∇svk + hijv
j
kσ

i
sν = 0

so the subspaces S(p) are all a common (n −m)–dimensional vector subspace that we
denote with S andM = M + S ⊂ Rn+1.
By Sard’s theorem, there exist a vector y ∈ S such thatN = M ∩ (y+S⊥) is a smoothm–
dimensional submanifold of Rn+1, then asM = M + S, it is easy to see thatM = N × S,
but this means that L = S⊥ ∩M is a smoothm–dimensional submanifold of S⊥ = Rm+1

withM = L× S.
Moreover, as S is in the tangent space to every point of L, the normal ν toM at a point
of L stays in S⊥ = Rm+1 so it coincides with the normal to L in S⊥ = Rm+1, then a simple
computation shows that the mean curvature ofM at the points of L is equal to the mean
curvature of L as a hypersurface in S⊥ = Rm+1. This shows that L is a hypersurface in
R

m+1 satisfying the relative structural equation. Finally, as, by construction, the second
fundamental form of L has empty kernel, by the previous discussion, L = Sm(

√
m) and

M = Sm(
√
m) × Rn−m and we are done.

�

OPEN PROBLEM 4.37. Without the assumption H > 0 this result is not true, an exam-
ple is the Angenent torus [13]. It is an open question if there exists a smooth embedding
of Sn in Rn+1 such that H + 〈x | ν〉 = 0, different by the unit sphere.

COROLLARY 4.38. Every limit hypersurface obtained by rescaling around a type I singu-
larity point of the motion by mean curvature of a compact, embedded initial hypersurface with
H ≥ 0, up to rotation in Rn+1, M must be either a hyperplane for the origin, or the sphere
Sn(

√
n) or one of the cylinders Sm(

√
m) × Rn−m.

We discuss now what are the possible values of the limit heat density function, fol-
lowing Stone [91]. As the value of Θ(p) is the Huisken’s functional on any limit of
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rescaled hypersurfaces, and these latter are “finite”, we have that the possible values
are 1 in the case of a hyperplane and

Θn,m =
1

(2π)n/2

∫

Sm(
√

m)×Rn−m

e−
|x|2
2 dHn

for m ∈ {1, . . . , n}.
A straightforward computation gives for m > 0

Θn,m =
( m

2πe

)m/2

ωm

where ωm denotes the volume of the unit m–sphere. Notice that Θ
n,m does not depend

on n, so we can simply write Θm = Θn,m.

LEMMA 4.39 (Stone [91]). The values of Θm are all distinct and larger than 1 for m > 0.
Indeed the numbers

{
Θm : m = 1, 2, . . .

}
form a strictly decreasing sequence in m, with

Θm ց
√

2 asm→ ∞.
This lemma implies that the “shape” of the limit hypersurfaces arising from a blow

up at a type I singularity of mean curvature flow of a mean convex, compact, embedded
hypersurfaces are classified by the value of the limit heat density function at the blow
up points.
This discussion gives a positive answer to problems 4.17 and 4.29, in the subclass

with H ≥ 0 of the possible limit embedded hypersurfaces. Indeed, the limit of rescal-
ings around a non special singular point is an embedded hypersurface with at least one
point with A = 0, the only possibility is then a single hyperplane, by the classification
result.
Finally, as we noticed also in the general case, combining such conclusion with Propo-
sition 4.30, also Problem 4.32 has a full answer in this class.

PROPOSITION 4.40. Every singular point of a type I singularity of the motion by mean
curvature of a compact, embedded initial hypersurface with H ≥ 0 is a special singular point.

In the special situation that the singularity is asymptotically spherical, we can infer
(as the convergence is in C∞) that the hypersurface moving by mean curvature has
become convex at some time. Then the following pair of theorems describes the last
part of the evolution.

THEOREM 4.41 (Gage and Hamilton [36, 37, 38]). Under the mean curvature flow a
convex closed curve of R2 smoothly shrinks to a point in finite time. Rescaling in order to keep
the length constant, it converges to a circle in C∞.

THEOREM 4.42 (Huisken [53]). Under the mean curvature flow a compact and convex
hypersurface in Rn+1 with n ≥ 2 smoothly shrinks to a point in finite time. Rescaling in order
to keep the Area constant, it converges to a sphere in C∞.

REMARK 4.43. The theorem for curves is not merely a consequence of the general
result. The proof in dimension n ≥ 2 does not work in the one–dimensional case.
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At the end of the first section of next chapter, we will show a line of proof by Hamil-
ton in [48], different by the original ones.
Another proof was also given byAndrews in [8], analyzing the behavior of the eigen-

values of the second fundamental form, close to the singular time.

As a consequence, if the flow develops a type I singularities and some blow up is a
sphere, the flow is smooth till the hypersurface shrinks to a point becoming asymptoti-
cally spherical.

REMARK 4.44. What is missing in all this story, even in the mean convex case, is a
full solution to Problem 4.16. The limit heat density function tell us that any limit gives
the same value of the Huisken’s integral, hence its “shape” is fixed: plane, sphere or
cylinder. If the limit is a sphere, the limit is unique and there is full convergence, if it
is a plane we already had such conclusion by White’s Theorem 4.26. But, if the limit is
a cylinder, its axis could possibly change, depending on the choice of the converging
sequence.

5. Embedded Curves in the Plane

The case of an embedded, closed curve γ in R2 is special, indeed, the classification
theorem 4.36 holds without a priori assumptions on the curvature. So there are only two
possible limit of rescaled curves without self–intersections: a line through the origin or
the circle S

1. This gives immediately a general positive answer to problems 4.17 and 4.29
and implies as before that every singular point is a special singular point.
In this very special case also Problem 4.16 is solved affirmatively, as there are no “cylin-
ders”. The limit is always unique.

COROLLARY 4.45. Let γ ⊂ R
2 be a simple closed curve, then every curve obtained by limit

of rescalings around a type I singularity point of the motion by mean curvature, is a line through
the origin or the circle S1.

By the same reasoning of the previous section, at a type I singularity any simple
closed curve vanishes becoming asymptotically spherical.

REMARK 4.46. We mention here that an extensive and deep analysis of the behavior
of general curves moving by curvature (even when the ambient is a generic surface
different from R2) is provided by the pair of papers by Angenent [10, 12] (see also the
discussion in [13]).


