
 D
ra

ft
CHAPTER 5

Type II Singularities

We suppose now to be in the type II singularity case, that is,

lim sup
t→T

max
p∈M

|A(p, t)|
√

T − t = +∞ (5.1)

for a mean curvature flow of a compact hypersurface ϕ : M × [0, T ) → Rn+1 in its
maximal interval of existence.
A good question is if actually type II singularities can develop.

The simplest example is given by a closed self–intersecting curve with the shape of a
“eight” figure in the plane, with zero rotation number. If T > 0 is the singularity time,
and we suppose to have a type I singularity, by the results of previous chapter there is
a nonflat limit of rescaled curves, then such limit must be a circle or one of Abresch–
Langer curves (with possible integer multiplicity larger than 1). In both cases, the limit
would be a compact closed curve, and by the smooth convergence, the rotation number
would still be zero. Hence, the circle has to be excluded and the contradiction with the
hypotheses is given by the fact that there are no Abresch–Langer curves with rotation
number zero. This shows that type I singularities do not describe all the possible ones.
Another example is given by a cardioid curve in the plane with a small loop: at some
time the small loop has shrunk while the rest of the curve remained smooth, and a cusp
has developed, it can be shown that such a singularity is of type II (see [10, 12] and in
particular [11] where the blow up rate of the curvature is also discussed).
One could conjecture that all the singularities of embedded surfaces (at least in low

dimension) are of Type I. Unfortunately, this is not true if the dimension is at least two,
the following example excludes such a reasonable good behavior.

EXAMPLE 5.1 (The Degenerate Neckpinch). For a given λ > 0, let us set

φλ(x) =
√

(1 − x2)(x2 + λ), −1 ≤ x ≤ 1.

For any n ≥ 2, letMλ be the n–dimensional hypersurface inR
n+1 obtained by rotation of

the graph of φλ in R2. The hypersurfaceMλ looks like a dumbbell, where the parameter
λ measures the width of the central part. Then, it is possible to prove the following
properties (see [5]):

(1) if λ is large enough, the hypersurfaceMλ
t eventually becomes convex and shrinks

to a point in finite time;
(2) if λ is small enough, Mλ

t exhibits a neckpinch singularity as in the case of the
standard neckpinch (see Section 4);
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(3) there exists at least one intermediate value of λ > 0 such that Mλ
t shrinks to a

point in finite time, has positive mean curvature up to the singular time, but
never becomes convex. The maximum of the curvature is attained at the two
points where the surface meets the axis of rotation;

(4) the singularity is of type II, otherwise the blow up at the singular time would
give a sphere (for all p ∈ M we would have p̂ = O ∈ Rn+1 hence, by estimate 4.5
in the previous chapter, any limit hypersurface is bounded). This is impossible
as it would imply that the surface would have been convex at some time.

The flowing hypersurface at point (3) is called the degenerate neckpinch and was first
conjectured by Hamilton for the Ricci flow [49, Section 3]. Intuitively speaking, it is a
limiting case of the neckpinch where the cylinder in the middle and the balls on the
sides shrink at the same time. One can also build the example in an asymmetric way,
with only one of the two balls shrinking simultaneously with the neck, while the other
one remains nonsingular.
A sharp analysis of the singular behavior for a class of rotationally symmetric surfaces
exhibiting a degenerate neckpinch has been done by Angenent and Velázquez in [15].
Another interesting example of singularity formation (a family of evolving tori, pro-
posed by De Giorgi) was carefully studied by Soner and Souganidis in [88, Prop. 3] (see
also the numerical analysis performed by Paolini and Verdi in [80, Sect. 7.5]).

1. Hamilton’s Blow Up

In order to deal with the blow up around type II singularities, we need a new set of
estimates, which are actually independent of hypothesis (5.1) and are scaling invariant
(see [4] and [84]).

PROPOSITION 5.2. Let ϕ : M × [0, T ) → Rn+1 be a mean curvature flow of a compact
hypersurface such that supp∈M |A(p, 0)| ≤ Λ < +∞. Then, there exists a time τ = τ(Λ) > 0
and constants Cm = Cm(Λ), for everym ∈ N such that |∇mA(p, t)|2 ≤ Cm/tm for every p ∈ M
and t ∈ (0, τ).

PROOF. We prove the claim by induction. By the evolution equation for |A|2,

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 ≤ ∆|A|2 + 2|A|4

we get

∂

∂t
|A|2max ≤ 2|A|4max

hence, there exists a time τ = τ(Λ) > 0 and a constant C0 = C0(Λ) such that |A(p, t)|2 ≤
C0 for every p ∈ M and t ∈ [0, τ). This is the casem = 0.
Recalling equation (3.4), setting f =

∑m
k=0 |∇kA|2λkt

k and assuming the inductive hy-
pothesis, |∇kA(p, t)|2 ≤ Ck(Λ)/tk for any k ∈ {0, . . . , m − 1}, p ∈ M and t ∈ (0, τ), we
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compute,

∂

∂t
f =

∂

∂t

m∑

k=0

|∇kA|2λkt
k

=

m∑

k=1

|∇kA|2kλkt
k−1

+

m∑

k=0

λkt
k
(
∆|∇kA|2 − 2|∇k+1A|2 +

∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA
)

≤∆f +

m∑

k=1

|∇kA|2(kλk − 2λk−1)t
k−1 − 2|∇m+1A|2λmtm

+

m∑

k=0

λkt
kC(k)

∑

p+q+r=k | p,q,r∈N

|∇pA||∇qA||∇rA||∇kA|

≤∆f +
m∑

k=1

|∇kA|2(kλk − 2λk−1)t
k−1 +

m−1∑

k=0

λkC(k)
∑

p+q+r=k | p,q,r∈N

CpCqCrCk

+ λmtm/2C(m)
( ∑

p+q+r=m | p,q,r<m

CpCqCr

)
|∇mA| + λmtmC(m)|A|2|∇mA|2

≤∆f +
m∑

k=1

|∇kA|2(kλk − 2λk−1)t
k−1 + Cλmtm|∇mA|2 + D

where in the last passage we applied Peter–Paul inequality. If now we choose induc-
tively positive constants λ1, . . . , λm such that λk = 2λk−1/k, starting with λ0 = 1 (easily
λk = 2k/k!), we have,

∂

∂t
f ≤ ∆f + Cλmtm|∇mA|2 + D ≤ ∆f + Cf + D

for every p ∈ M and t ∈ (0, τ), and the constants C andD depends only onm and Λ, by
the inductive hypothesis. Notice that the inequality holds also at t = 0 as the function f
is smooth onM × [0, τ).
This differential inequality, by maximum principle then implies that fmax(t) is bounded
in the interval [0, τ) by some constantC depending only onm,Λ and fmax(0) = |A|max(0) ≤
Λ2, hence

tm|∇mA(p, t)|2 ≤ f(t)/λm ≤ C/λm = Cm

and we are done, Cm = Cm(Λ). �

The following corollary is an easy consequence.

COROLLARY 5.3. Let ϕ : M × [0, T ) → Rn+1 be a mean curvature flow of a compact
hypersurface such that supp∈M |A(p, 0)| ≤ Λ < +∞. Then, there exists a value τ > 0 and
constants Cm, for every m ∈ N, depending only on Λ such that |∇mA(p, t)|2 ≤ Cm for every
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p ∈ M and t ∈ (τ/2, τ).
For instance, one can choose τ = 1/(4Λ2).

PROOF. Only the last claim need an explanation, it follows by integrating the differ-
ential inequality

∂

∂t
|A|2max ≤ 2|A|4max .

�

We describe now Hamilton’s procedure to get a blow up flow in the type II singu-
larity case.
Let us choose a sequence of times tk ∈ [0, T − 1/k] and points pk ∈ M such that

|A(pk, tk)|2(T − 1/k − tk) = max
t∈[0,T−1/k]

p∈M

|A(p, t)|2(T − 1/k − t) . (5.2)

Thismaximum goes to+∞ as k → ∞, indeed, if it is bounded on a subsequence ki → ∞,
we would have

|A(p, t)|2(T − t) = lim
i→∞

|A(p, t)|2(T − 1/ki − t) ≤ C

for every t ∈ [0, T − 1/ki] and p ∈ M , hence for every t ∈ [0, T ) and p ∈ M . This is in
contradiction with condition (5.1).
This fact forces the sequence tk to converge to T as k → ∞. If tki

is a subsequence not
converging to T , we would have that the sequence |A(pki

, tki
)|2 is bounded, hence also

max t∈[0,T−1/ki]
p∈M

|A(p, t)|2(T − 1/ki − t).

Hence, we can choose an increasing (not relabeled) subsequence tk converging to T ,
such that |A(pk, tk)| goes monotonically to +∞ and

|A(pk, tk)|2tk → +∞ , |A(pk, tk)|2(T − 1/k − tk) → +∞ ,

Moreover, we can also assume that pk → p for some p ∈ M .
We rescale now the flow as follows: let ϕk : M × Ik → Rn+1, where

Ik = [−|A(pk, tk)|2tk, |A(pk, tk)|2(T − 1/k − tk)] ,

be the evolution given by

ϕk(p, s) = |A(pk, tk)|[ϕ(p, s/|A(pk, tk)|2 + tk) − ϕ(pk, tk)]

and we set Mk
s = ϕk(M, s) and Ak to be the second fundamental form of the flowing

hypersurfaces ϕk.
It is easy to check that this is a parabolic rescaling hence, every ϕk is still a mean curva-
ture flow, moreover, the following properties hold,

• ϕk(pk, 0) = 0 ∈ Rn+1 and |Ak(pk, 0)| = 1,
• for every ε > 0 and ω > 0 there exists k ∈ N such that

max
p∈M

|Ak(p, s)| ≤ 1 + ε (5.3)

for every k ≥ k and s ∈ [−|A(pk, tk)|2tk, ω].
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Indeed, (the first point is immediate), by the choice of the pair (pk, tk) we get

|Ak(p, s)| = |A(pk, tk)|−1|A(p, s/|A(pk, tk)|2 + tk)|

≤ |A(pk, tk)|−2|A(pk, tk)|2
T − 1/k − tk

T − 1/k − tk − s/|A(pk, tk)|2

=
|A(pk, tk)|2(T − 1/k − tk)

|A(pk, tk)|2(T − 1/k − tk) − s
,

if s/|A(pk, tt)|2 + tk ∈ [0, T − 1/k], that is, s ∈ Ik. Then, assuming that s ≤ ω, the claim
follows as we know that |A(pk, tk)|2(T − 1/k − tk) → +∞.
This discussion implies that if we are able to take a (subsequential) limit of these

flows, smoothly converging on every compact time interval, we would get a mean cur-
vature flow such that the norm of the second fundamental form is uniformly bounded
by one and the interval of existence becomes (−∞, +∞) = limk→∞ Ik, this is assured by
the next proposition.

PROPOSITION 5.4. The family of flows ϕk converges (up to a subsequence) in the C
∞
loc topol-

ogy to a nonempty, smooth evolution of complete, hypersurfaces by mean curvatureM∞
s in the

time interval (−∞, +∞). Such a flow is called eternal.
Moreover, the norm of the second fundamental form is uniformly bounded in space and time and
it takes its absolute maximum, which is 1, at time s = 0 at the origin of Rn+1.
Finally, if the original initial hypersurface was embedded this limit flow consists of embedded
hypersurfaces.

PROOF. By the previous discussion, on every bounded interval of time [s1, s2], the
evolutions ϕk have definitely uniformly bounded curvature, precisely |Ak| ≤ (1 + ε),
then for ε << 1, by Corollary 5.3, in every interval [s1 + 1/16, s1 + 1/8]we have uniform
estimates |∇mA| ≤ Cm with Cm independent of s1, for everym ∈ N.
By means of monotonicity formula we can have an uniform estimate on Hn(ϕk(M, s) ∩
BR) as follows: recall that Hn is the n–dimensional Hausdorff measure, we set µk

s to be
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the measure associated to the hypersurface ϕk at time s,

Hn(ϕk(M, s) ∩ BR) =

∫

M

χBR
(y) dµk

s(y)

≤
∫

M

χBR
(y)e

R2−|y|2

4 dµk
s(y)

≤ eR2/4

∫

M

e−
|y|2

4 dµk
s(y)

= (4π)n/2eR2/4

∫

M

e−
|y|2

4(s+1−s)

[4π(s + 1 − s)]n/2
dµk

s(y)

≤C(R)

∫

M

e
− |y|2

4(s+1+|A(pk,tk)|2tk)

[4π(s + 1 + |A(pk, tk)|2tk)]n/2
dµk

−|A(pk,tk)|2tk
(y)

=C(R)

∫

M

|A(pk, tk)|ne
− |x−ϕ(pk,tk)|2|A(pk,tk)|2

4(s+1+|A(pk,tk)|2tk)

[4π(s + 1 + |A(pk, tk)|2tk)]n/2
dµ0(x)

≤C(R)

∫

M

|A(pk, tk)|n
[4π(s + 1 + |A(pk, tk)|2tk)]n/2

dµ0(x)

≤C(R)Area(ϕ0)
|A(pk, tk)|n

[4π(s + 1 + |A(pk, tk)|2tk)]n/2
,

hence,

lim sup
k→∞

Hn(ϕk(M, s) ∩ BR) ≤ C(R)
Area(ϕ0)

[4πT ]n/2
= C(R, ϕ0) .

This conclusion implies that if s stays in a compact interval J ⊂ R, we have definitely,

Hn(ϕk(M, s) ∩ BR) ≤ C(R, ϕ0, J)

uniformly for s ∈ J , where the constant is independent of k ∈ N.
Then we use the same argument of Proposition 4.15, but applied to flows, that is, we
consider the time–tracks of the flows ϕk as hypersurfaces ϕ̃k : M × Ik → R

n+1 × R =
Rn+2 defined by ϕ̃k(p, s) = (ϕk(p, s), s) and we reparametrize them locally as graphs of
smooth functions.
Reasoning like in the proof of Proposition 3.28, the estimates on the spatial covariant
derivatives of Ak imply uniform locally estimates on space and also time derivatives
(using the evolution equation) of the representing functions, so, up to a subsequence,
we can get locally a limit smooth mean curvature flow. By a diagonal argument, we
show the claim (follow the proof of Proposition 4.15).
The claims about the properties of the limit flow are immediate by the above discussion,
only the embeddedness, if the initial hypersurface is embedded, requires a justification.
In this case, by Proposition 3.14, all the hypersurfaces in the flows ϕk are embedded at
every time, then the only possibility for M∞

s not to be embedded is if two or more of
its “inside” regions ”touch” each other at some point y ∈ Rn+1 with a common tangent
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space.
We define themonotone nondecreasing functionG(t) = max s∈[0,t]

p∈M
|A(p, s)| andwe choose

a smooth monotone nondecreasing function K : [0, T ) → R
+ such that G(t) ≤ K(t) ≤

2G(t) for every t ∈ [0.T ).
Then, we consider the following set Ω ⊂ M × M × [0, T ) given by {(p, q, t) | dg(t)(p, q) ≤
ε/K(t)}, where dg(t) is the geodesic distance in the Riemannian manifold (M, g(t)). Let

C = inf
∂Ω

|ϕ(p, t) − ϕ(q, t)|K(t)

and suppose that C = 0, whatever small ε > 0 we take. This means that there exists
a sequence of times ti ր T and points pi, qi with dg(ti)(pi, qi) = ε/K(ti) and |ϕ(pi, ti) −
ϕ(qi, ti)|K(ti) → 0, that is, |ϕ̃(pi, si) − ϕ̃(qi, si)| → 0 and deg(si)(pi, qi) = ε, where we
rescaled the hypersurfaces at time ti around ϕ(pi) by the dilation factor K(ti) ≥ G(ti).
As the curvatures of these rescaled hypersurfaces ϕ̃i satisfies

|Ai(p, ti)| = |A(p, ti)|2/K(ti) ≤ 1 ,

reasoning now like in the proof of the same statement in Proposition 4.15, we have a
contradiction.
Now, fixed a ε > 0 such that the relative constant C is positive, if we look at the function

L(p, q, t) = |ϕ(p, t) − ϕ(q, t)|K(t)

on ∁Ω ⊂ M × M × [0, T ), we have that if the minimum of L at time t is lower than ε,
then such minimum is not taken on the boundary of the set but in its interior, say at the
pair (p, q), then we compute at the point (p, q, t),

∂L(p, q, t)

∂t
= K(t)

∂

∂t
|ϕ(p, t) − ϕ(q, t)| + |ϕ(p, t) − ϕ(q, t)|K ′(t) ≥ K(t)

∂

∂t
|ϕ(p, t) − ϕ(q, t)|

and a geometric argument analogous to the one in the proof of Proposition 3.14 shows
that this last partial derivative is nonnegative (where it exists, almost everywhere).
Then, by means of maximum principle (Hamilton’s trick, Lemma 3.3) we conclude that
when the minimum of L at time t is under the constant C, it is nondecreasing.
Hence, there is a positive lower bound on

inf
∁Ω

|ϕ(p, t) − ϕ(q, t)|K(t) ,

consequently, also on
inf
∁Ω

|ϕ(p, t) − ϕ(q, t)|G(t) .

Now notice that, for the times tk coming from definition (5.2), we have |A(pk, tk)| =

G(tk), otherwise there would exist a time t̂ < tk with maxp∈M |A(p, p̂)| > |A(pk, tk)| but
this is in contradiction with the maximum in the right hand side of equation (5.2).
Moreover, |A(pk, tk)| ≥ G(t) for every t ≤ tk and, fixed ω, δ > 0, definitely by (5.3),
maxp∈M |Ak(p, s)| ≤ (1 + δ)|A(pk, tk)| for every s ≤ ω, that is,

G(s/|A(pk, tk)|2 + tk) = max
s≤ω
p∈M

|A(p, s/|A(pk, tk)|2 + tk)| ≤ (1 + δ)|A(pk, tk)| = (1 + δ)G(tk) .
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Then, if degk(s)(p, q) > 3ε for s ≤ ω, definitely

dg(s/|A(pk,tk)|2+tk)(p, q) = degk(s)(p, q)/|A(pk, tk)|
≥ degk(s)(p, q)/G(s/|A(pk, tk)|2 + tk)

≥ ε/K(s/|A(pk, tk)|2 + tk)

hence, (p, q, s/|A(pk, tk)|2 + tk) ∈ ∁Ω and

|ϕ(p, s/|A(pk, tk)|2 + tk) − ϕ(q, s/|A(pk, tk)|2 + tk)|G(s/|A(pk, tk)|2 + tk) ≥ C > 0 .

Then, if degk(s)(p, q) > 3ε, definitely

|ϕ̃k(p, s) − ϕ̃k(q, s)| = |ϕ(p, s/|A(pk, tk)|2 + tk) − ϕ(q, s/|A(pk, tk)|2 + tk)| |A(pk, tk)|
≥ C|A(pk, tk)|/G(s/|A(pk, tk)|2 + tk)

≥ C

1 + δ
.

This conclusion, obviously passes to the limit hypersurface M∞
s , that is, if a couple of

points has intrinsic distance larger than 2ε, then their extrinsic distance is bounded be-
low by some uniform positive constant. If ε is chosen smaller enough such that any hy-
persurface with |A| ≤ 1 (likeM∞

s ) is an embedding on any intrinsic ball of radius smaller
than 3ε, we are done, the hypersurface M∞

s cannot have self–intersections, hence it is
embedded. �

EXERCISE 5.5. This blow up procedure can be applied also in the type I singularity
case. The are some differences and the sequence tk must be chosen in order that tk → T ,
it is not a consequence of the construction.
The limit mean curvature flow that one obtains is no more eternal but only ancient, that
is, defined on some interval (−∞, Ω) with Ω > 0, and |A∞| ≤ 1 holds only on (∞, 0].
We let the analysis to the interested reader.

The analysis of singularities in the type II case is so reduced to classify all the eternal
flows with bounded curvature (and its covariant derivatives) with the extra property
that the norm of the second fundamental form takes its maximum, equal to one, at
some point in space and time.
Examples of this class of flows are the translating solutions to mean curvature flow

(with bounded second fundamental form and achieving its maximum), that is, hyper-
surfaces M ⊂ Rn+1 such that during the motion do not change their shape but simply
move in a fixed direction with constant velocity. One can see that this condition is equiv-
alent to the existence of a vector v ∈ Rn+1 such that H(p) + λ〈v | ν(p)〉 = 0 at every point
p ∈ M .
InR2 all the possible translating solutions are given by rotations,translations and homo-
theties of the graph of the function y = − log cos x in the interval (−π/2, π/2), called the
grim reaper [41].
In higher dimension, looking for convex graph solutions over the hyperplane {xn+1 =
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0} = Rn, translating in the en+1 direction with unit speed, one has to find a convex
function u : Rn → R such that

∆u − Hu(∇u,∇u)

1 + |∇u|2 = 1

and u(0) = ∇u(0) = 0 ,where Hu is the Hessian of u.
Imposing rotational symmetry around the origin, that is, u(x) = u(ρ) with ρ = |x|, this
problem becomes the following ODE

uρρ +
(n − 1)uρ

ρ
−

uρρu
2
ρ

1 + u2
ρ

= 1 ,

that is,

uρρ = (1 + u2
ρ)

(
1 − (n − 1)uρ

ρ

)

with limρ→0 u(ρ) = limρ→0 u′(ρ) = 0 for a convex function u : R+ → R.
When n = 1 this ODE gives the grim reaper, when n > 1 there is only one solution,
defined on all R+ and growing quadratically at infinity. This solution provides the only
rotationally symmetric, convex, translating hypersurface moving by mean curvature,
up to isometries and dilations.

EXERCISE 5.6. Show the claimed properties of the solution of such ODE.

It is a controversial open problem (to my knowledge) whether all the convex, trans-
lating hypersurfaces moving by mean curvature in Rn+1 are given by the product of a
rotationally symmetric one in Rm times Rn−m (see [95] and [97, p. 536, end of Section 6]).

REMARK 5.7. Recently, Nguyen [76] exhibited some new nonconvex, embedded ex-
amples of translating hypersurfaces, with a trident–like shape at “large scales”.

OPEN PROBLEM 5.8. Classify all the eternal mean curvature flows Ms of complete,
connected, hypersurfaces inRn+1 such thatA and its derivatives are uniformly bounded
in space and time and |A| takes its maximum at some point in space–time. Same prob-
lem assuming embeddedness. Same problem assuming the flow comes from Hamil-
ton’s blow up procedure.
Another problem is the analogous classification for ancient complete solutions with

bounded curvature at every fixed time (see the discussion in [97, p. 536]). For closed con-
vex curves, this problem has been solved by Daskalopoulos, Hamilton and Sesum [24].
Same problem for the immortal flows, that is, defined on [0, +∞).

Because of the results of the next section, we also state the following.

OPEN PROBLEM 5.9. All the eternal mean curvature flowsMs of complete hypersur-
faces in Rn+1 coming from Hamilton’s blow up procedure are translating solutions? At
least if they are embedded?



 D
ra

ft

2. NONNEGATIVE MEAN CURVATURE 87

These problems are difficult in general, but like in the type I singularity case, if the
evolving hypersurfaces are mean convex (H ≥ 0) or we are dealing with curves in the
plane, they have a positive answer. This will be the subject of the next sections.
We point out that the rescaled hypersurfaces are unbounded, complete but not com-

pact, since any compact hypersurface cannot be eternal by Corollary 3.12. Even if they
satisfy uniform bounds on the curvature, the “bad blow up rate” is an obstacle to the
use of Huisken’s monotonicity formula in the contest of type II singularities analysis.
We conclude this section by givingHamilton’s line of proof of Theorems 4.41 and 4.42,

which is different from the original ones.

PROOF OF 4.41, 4.42. Let T the maximal time of smooth existence of the flow. If
n = 1, as the initial curve is embedded we will see, by a geometric argument in Sec-
tion 5, that type II singularities cannot develops (Proposition 5.31).
If n > 1, as the initial hypersurface is convex, by the results of Section 5, in particular
Proposition 3.38, we have that after any positive time, H > 0 and there exists a positive
constant α, independent of time, such that A ≥ αHg as forms.
If at time T we have a type II singularity, we have an unbounded, eternal convex blow
up limit with H ≥ 0. By strong maximum principle, actually H > 0 for every time
(otherwise H ≡ 0 everywhere, but this with the convexity would imply that the limit
hypersurface is a hyperplane) and the condition A ≥ αHg passes to the limit. Then, by
the following theorem of Hamilton [48], the limit hypersurface is compact, in contradic-
tion with the unboundedness, hence type II singularities are excluded.

THEOREM 5.10. Let M be a smooth strictly convex n–dimensional complete hypersurface
in Euclidean space, with n ≥ 2. Suppose that for some α > 0 its second fundamental form is
α–pinched in the sense that A ≥ αHg, where g is the induced metric and H its mean curvature.
ThenM is compact.

Since we have to deal only with type I singularities, in dimension one, the limit
of a sequence of rescaled curves around a singular point must be the unit circle, in
dimension higher than one, we have an embedded, strictly convex limit due to the fact
that the smallest eigenvalue of hij/H is uniformly bounded below by a positive constant,
around the singular time T , and H ∼ 1√

T−t
. By Corollary 4.38 such limit must be the unit

sphere.
As the convergence of the sequence of rescaled hypersurfaces is inC∞ to the unit sphere,
a comparison argument with a slightly larger ball shows the shrinking to a point.
Rescaling then the flow with the procedure above (see Exercise 5.5), one can then prove
that the full rescaled sequence converges in C∞. �

2. Nonnegative Mean Curvature

We shall now consider the formation of type II singularities for hypersurfaces which
are mean convex, that is, with nonnegative mean curvature everywhere.
An important result for the analysis of singularities of mean convex hypersurfaces is
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the following estimate on the elementary symmetric polynomials of the curvatures Sk,
proved in [59], which holds in general for any mean curvature flow.

THEOREM 5.11 (Huisken–Sinestrari [59]). Let ϕ : M × [0, T ) → R
n+1 be the mean

curvature flow of a compact mean convex immersed hypersurface. Then, for any η > 0 there
exists a constant C = C(η, ϕ0) such that Sk ≥ −ηHk − C for any k = 2, . . . , n at every point
ofM and t ∈ [0, T ).

Such an estimate easily implies the following one, which has a more immediate in-
terpretation.

COROLLARY 5.12. Under the same hypotheses of the previous theorem, for any η > 0 there
exists a constant C = C(η, ϕ0) such that λ

min ≥ −ηH − C at every point ofM and t ∈ [0, T ),
where λmin is the smallest eigenvalue of the second fundamental form.

The interest of the above estimates lies in the fact that η can be chosen arbitrarily
small and C is a constant not depending on the curvatures and on time. Thus we see
that, roughly speaking, the negative curvatures become negligible with respect to the
others when the singular time is approached. This implies that the hypersurface be-
comes asymptotically convex near a singularity.
Let us observe that these results cannot be valid for general hypersurfaces, even in low
dimension. In fact, Angenent’s homothetically shrinking torus in [13] has a behavior
which is incompatible with the validity of these convexity estimates.

PROPOSITION 5.13. The hypersurfaces of the limit flow M∞
s obtained by the Hamilton’s

procedure described above are all convex.

PROOF. First, since we are taking the limit of hypersurfaces withH ≥ 0, also the limit
ismean convex. By strongmaximumprinciple applied to the equation ∂tH = ∆H+H|A|2
actually H∞(p, t) > 0 for the limit flow, for every point in space and time.
Fixing a pair (p, s), ifQk → +∞ is the rescaling factor for the flow ϕk, we haveHk(p, s) =
H(p, s/Qk + tk)/Q

k → H∞(p, t) > 0, hence, H(p, s/Qk + tk) → +∞. Now, since we have
λmin ≥ −ηH − C for the original flow ϕ and H > ε at least for t > δ > 0, we have
λmin/H ≥ −η − C/H everywhere. When we rescale the hypersurfaces,

λmin
k (p, s)

Hk(p, s)
=

λmin(p, s/Qk + tk)

H(p, s/Qk + tk)
≥ −η − C

H(p, s/Qk + tk)

and sending k → ∞we conclude λmin
∞ (p, s)/H∞(p, s) ≥ −η.

Since η > 0 was arbitrary and the argument holds for every pair (p, s), the second fun-
damental is nonnegative definite on the whole limit flow, hence the hypersurfaces are
all convex. �

REMARK 5.14. Instead of using Corollary 5.12, one can apply the same argument to
the estimates of Theorem 5.11 obtaining that all the elementary symmetric functions of
the eigenvalues of the second fundamental form are nonnegative at every point in space
and time of the limit flow. By relation 3.5 it follows that the hypersurfaces are convex at
every time.
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REMARK 5.15. This conclusion holds also if the procedure is applied in the case of
type I singularities, see Exercise 5.5. Actually, it is a consequence of the classification
result in Chapter 4.

REMARK 5.16. This proposition (in a slightly stronger form) has been also obtained
by White [98] by completely different techniques. His approach also works for the sin-
gularities of weak solutions which are defined after the first singular time.

The limiting hypersurfaces are convex, but in general not strictly convex. However,
if they are not strictly convex then they necessarily split as the product of a flat factor
and of a strictly convex one, as shown by the following result.

PROPOSITION 5.17 (Theorem 4.1 in [59]). Let M∞
s be as in the previous proposition. If

the hypersurfaces are not strictly convex, then (up to a rigid motion) they can be written as
M∞

s = Nk
s × Rn−k, where 1 ≤ k ≤ n and Nk

s is a family of strictly convex k–dimensional
hypersurfaces moving by mean curvature in R

k+1.

PROOF. The proof is based on Hamilton’s strong maximum principle for tensors
in [44, Section 8] (see Appendix C, Theorem C.3).
Arguing as in Remark 3.36, as the conclusion of Hamilton’s strong maximum principle
for tensors in not affected if themanifoldM is not compact (as it can happen in our case),
we have that M (as a subset of Rn+1) contains an (n − k)–dimensional affine subspace
of Rn+1 which is invariant in time.
Thus, the hypersurface splits at a product of an (n − k)–dimensional flat part and a
strictly convex k–dimensional submanifold of Rn+1 evolving by mean curvature. �

REMARK 5.18. If the singularity is of type I (see Exercise 5.5), then M∞
s is a family

of homothetically shrinking hypersurfaces. More precisely, the hypersurfaces M∞
s are

either of the form Sn−k
s × Rk, for some 0 ≤ k ≤ (n − 1) where Sn−k

s is an (n − k)–
dimensional shrinking sphere, or of the form γ(s) × Rn−1, where γ(s) is an Abresch–
Langer curve, homothetically shrinking in the plane.

In the case of the evolution of mean convex hypersurfaces in a time interval [0, T ), by
Proposition 3.21 and Corollary 3.22, the mean curvature H and |A| are comparable quan-
tities, that is, there exists a constant α, independent of time such that α|A| ≤ H ≤ √

n|A|
for t ∈ [δ, T ). This implies that we can modify Hamilton’s blow up procedure, substitut-
ing H2 in place of |A|2 in equation (5.2), obtaining the same estimates on the second fun-
damental form and its derivatives. We still get an eternal smooth limit flow, complete
with bounded curvature with the only difference that this time it is the mean curvature
H which gets a global maximum (equal to one) at some point in space and time. This
will be crucial to continue the analysis in the next sections.
Analogously, it is easy to see that the conclusions of Propositions 5.13 and 5.17 are not
affected by this modification so also in this case the limit flow consists of convex hyper-
surfaces.
We call this limit flow “modified” Hamilton’s blow up.
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REMARK 5.19. Notice that for curves in R2 the two procedures coincide as |A| =
|H| = |k|, where k is the usual curvature of a curve in the plane.

3. Curves in the Plane

Again, the case of a closed curve in R2 is special.
We suppose to deal with a generic, non convex, initial closed curve γ0 in the plane R2

moving by mean curvature γ : S1 × [0, T ) → R2 where at time t = T we have a type
II singularity. Setting ξ and k to be respectively the arclength and the curvature of γt,
we have the evolution equation kt = kξξ + k3, then we define the function z(t) = #{p ∈
γt | k(p) = 0}, counting the number of points on γt such that k = 0.
We need the following result of Angenent in [10, Proposition 1.2] (see [9] for the proof).

PROPOSITION 5.20. If we have a mean curvature flow of a (possibly unbounded) curve in
R2 in a open interval of time (a, b), at every fixed time, the points where k is zero are isolated in
space. In particular, this implies that for a closed curve, the function z is finite at every positive
time.
The function z is nonincreasing during the flow, hence if at some time it is finite, it remains
finite.
Finally, if at some point p ∈ γt we have k(p) = 0 and kξ(p) = 0 then the zero point p for k
immediately vanishes. To be precise, this means that there exists a small space interval I around
p and a small r > t such that k is never zero in I × (t, r).

We only mention that the proof is based on the application of maximum principle to
the above evolution equation for the curvature.
By this proposition, we can define It to be the finite family of open intervals on γt where
k 6= 0 and the following computation is justified,

d

dt

∫

γt

|k| dξ =
∑

I∈Ii

∫

I

[(signk)(kξξ + k3) − |k|3] dξ

=
∑

I∈Ii

∫

I

[(signk)(kξξ + k3) − |k|3] dξ

=
∑

I∈It

∫

I

(sgnk)kξξ dξ

= − 2
∑

p∈γt | k(p)=0

|kξ(p)| .

Hence, the integral
∫

γt
|k| dξ, which is positive and finite (by compactness), is not in-

creasing during the flow, so it converges to some value as t → T , moreover, it is scaling
invariant. We have, for every t1 < t2,

∫

γt1

|k| dξ −
∫

γt2

|k| dξ = 2

∫ t2

t1

∑

p∈γt | k(p)=0

|kξ(p)| dt .
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If now we rescale the curves following the procedure above for type II singularities,
calling γn

s the rescaled flow at step n, converging to γ∞
s and denoting with Kn → +∞

the rescaling factor, we have

2

∫ b

a

∑

p∈γn
s | kn(p)=0

|kn
ξ | ds =

∫

γn
a

|kn| dξ −
∫

γn
b

|kn| dξ

=

∫

γa/Kn+tn

|kn| dξ −
∫

γb/Kn+tn

|kn| dξ .

Then, passing to the limit in n → ∞ we conclude that at almost every s ∈ R, by the
arbitrariness of a and b, that

∑

p∈γ∞
s | k∞(p)=0

|k∞
ξ (p)| = 0

that is k∞
ξ (p, s) is zero at every point p in space and s in time, where k∞(p, s) is zero.

Again bymeans of Proposition 5.20, we conclude that for every s ∈ R as above, choosing
any small r > s, the zero points of the curvature vanish for the curve γ∞

r , hence k is
positive and γ∞

r is strictly convex for every r > s (strict convexity is preserved). Since
we can draw this conclusion for almost every s ∈ R, at every time the flow γ∞ consists
of strictly convex curves and k∞ is never zero.

4. Hamilton’s Harnack Estimate for Mean Curvature Flow

We have seen in the previous two sections that if a closed curve or a compact hy-
persurface with H ≥ 0 develops a type II singularity then the limit of the rescaled flows
by the “modified” Hamilton’s procedure is an eternal mean curvature flow of a con-
vex, complete, hypersurface such that H takes its maximum in space and time at some
point. We want now to see that this implies that this limit flow is a translating solution
of motion by mean curvature. This can be obtained by means of the following two deep
results of Hamilton [50].

THEOREM 5.21 (Harnack Estimate for Mean Curvature Flow). Let ϕ : M × (A, T )
be the mean curvature flow of complete convex hypersurfaces with uniformly bounded second
fundamental forms.
Let C ∈ [A, T ) and X a time dependent smooth tangent vector field onM . Then the following
inequality holds,

∂H

∂t
+

H

2(t − C)
+ 2〈∇H |X〉 + hijX

iXj ≥ 0

for every t ∈ (C, T ).

THEOREM 5.22. Let ϕ : M × (A, T ) be a complete strictly convex eternal solution to mean
curvature flow with bounded curvature and be such that H takes its maximum in space and time
at some point. Then, ϕ is a translating solution in Rn+1.
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The proofs of these two theorems involve some smart and heavy computations with
a strong use of maximum principle, we show the proof only in the one–dimensional and
compact case, referring the interested reader to the original paper [50] (see also [45]).

PROOF OF THEOREM 5.21 – ONE–DIMENSIONAL COMPACT CASE. We suppose that
the curves are compact andC > A, then k and all its derivatives are bounded in [C, T−ε],
for a small ε > 0. Moreover, by Proposition 3.20, in the same interval, k > k0 > 0 for
some positive constant k0.
We fix the following notations: given the flow of convex curves γ : S1× (τ, T )we denote
with θ the parameter on S

1 and with s the arclength, τ is the tangent unit vector and
ν = Rτ is the unit normal, where R : R2 → R2 is the counterclockwise rotation of π/2,
finally k = 〈∂sτ | ν〉 is the curvature.
Notice that ∂s = |γθ|−1∂θ.
We have the following commutation rule,

∂t∂s = ∂s∂t + k2∂s (5.4)

which implies easily the evolution equations

∂tτ = ∂t∂sγ = ∂s∂tγ + k2∂sγ = ∂s(kν) + k2τ = ksν

∂tν = ∂t(Rτ) = R ∂tτ = −ksτ

∂tk = ∂t〈∂sτ | ν〉 = 〈∂t∂sτ | ν〉 = 〈∂s∂tτ | ν〉 + k2〈∂sτ | ν〉 = ∂s〈∂tτ | ν〉 + k3 = kss + k3 .

We define the Hamilton’s quadratic

Z(λ) = ∂tk +
k

2(t − C)
+ 2λks + kλ2 = kss + k3 +

k

2(t − C)
+ 2λks + kλ2

which clearly is bounded below by

Z = kss + k3 − k2
s/k +

k

2(t − C)
.

We also define

W = kss + k3 − k2
s/k
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and we start computing the evolution equation for this latter quantity,

(∂t − ∂ss)W = ∂tkss −
2ks∂tks

k
+

k2
skt

k2
+ 3k2kt − kssss +

2ksksss

k
+

2k2
ss

k

− 5k2
skss

k2
+

2k4
s

k3
− 6kk2

s − 3k2kss

= ∂s∂tks + k2kss −
2ks∂skt

k
− 2kk2

s +
k2

skss

k2
+ kk2

s + 3k2kss + 3k5

− kssss +
2ksksss

k
+

2k2
ss

k
− 5k2

skss

k2
+

2k4
s

k3
− 6kk2

s − 3k2kss

= ∂ss(kss + k3) + 2k2kss − 5kk2
s −

2ks∂s(kss + k3)

k

+
k2

skss

k2
+ 3k5 − kssss +

2ksksss

k
+

2k2
ss

k
− 5k2

skss

k2
+

2k4
s

k3

= kssss + 5k2kss − 5kk2
s −

2ksksss

k

− 4k2
skss

k2
+ 3k5 − kssss +

2ksksss

k
+

2k2
ss

k
+

2k4
s

k3

= − 5kk2
s + 3k5 +

2k4
s

k3
+ 5k2kss +

2k2
ss

k
− 4k2

skss

k2

as kss = (W + k2
s/k − k3), substituting, we get

(∂t − ∂ss)W = − 5kk2
s + 3k5 +

2k4
s

k3
(5.5)

+ 5k2(W + k2
s/k − k3)

+
2(W + k2

s/k − k3)2

k
− 4k2

s(W + k2
s/k − k3)

k2

= − 5kk2
s + 3k5 +

2k4
s

k3

+ 5k2W + 5kk2
s − 5k5

+
2W 2

k
+

2k4
s

k3
+ 2k5 +

4Wk2
s

k2
− 4Wk2 − 4kk2

s

=
2W 2

k
+ Wk2 .

Notice that, by maximum principle, if W is positive at some time, it stays positive.
Unfortunately it can happen that the minimum of W can be negative at every time, so
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we add the strongly positive term k/(2(t − C)), that is Z = W + k/(2(t − C)).

(∂t − ∂ss)Z =(∂t − ∂ss)W +
k3

2(t − C)
− k

2(t − C)2

=
2W 2

k
+ Wk2 +

k3

2(t − C)
− k

2(t − C)2

=
2(Z − k/(2(t − C))2) + k3(Z − k/(2(t − C)))

k
+

k3

2(t − C)
− k

2(t − C)2

=
2Z2 + k2/(2(t − C)2) − 2Zk/(t− C)

k
+

k3Z − k4/(2(t − C))

k

+
k3

2(t − C)
− k

2(t − C)2

=
2Z2

k
− 2Z

t − C
+ k2Z .

Letting Z(t) = minγt Z(·, t)we have limt→C+ Z(t) = +∞, so Z ≥ Z(t) is positive in some
interval (C, C + δ), by maximum principle, Z cannot be zero on γt for t ∈ (C, T − ε).
Clearly, as we have that Z > 0, also Z(λ) > 0 for every function λ. Sending ε → 0 and C
to A (if necessary) we have the claim of the theorem. �

REMARK 5.23. When the curves γt are not compact there are two nontrivial technical
points to take care of: the possible non existence of the minimum of Z(t) and the fact
that it is not granted that limt→C+ infγt Z(·, t) = +∞, as k can go to zero at infinity. This
requires some ε–perturbation in space of Z by means of a function growing enough at
infinity and the addition of another function assuring that the resulting term diverges
as t → C+ (see [45] for these technical details).

REMARK 5.24. The higher complexity in dealing with the case of general dimension
is essentially due to the fact that the minimum of the quadratic

Z(X) =
∂H

∂t
+

H

2(t − C)
+ 2〈∇H |X〉+ hijX

iXj

is not so explicit like for curves. Indeed, it is preferable to keep generic the vector field
X in doing the computations.

PROOF OF THEOREM 5.22 – ONE–DIMENSIONAL COMPACT CASE. Suppose we have
an eternal mean curvature flow γt of strictly convex curves in the plane. By Theo-
rem 5.21 we have

Z = ∂tk − k2
s/k + k/(t − C) ≥ 0

at every point and for every t, C ∈ Rwith t > C. Sending C → −∞ we get

W = ∂tk − k2
s/k ≥ 0 .
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As we computed in equation (5.5) that

(∂t − ∂ss)W =
2W 2

k
+ Wk2 ,

if W is zero at some point in space and time, it must be zero everywhere. But, by
hypotheses k takes a maximum at some point, hence, at such a point kt = ks = 0 which
impliesW = 0.
Hence, kt = k2

s/k for all the curves of the evolution or equivalently, kss + k3 − k2
s/k = 0.

We set v = −(κs/k)τ + kν as a vector field in R2 along γt, obviously 〈v | ν〉R2 = k. Then,

∂sv = − (kss/k − k2
s/k

2)τ − (κs/k)kν + ksν − k2τ

= − (−k2 + k2
s/k

2 − k2
s/k

2)τ − k2τ = 0

and

∂tv = (−kts/k + kskt/k
2 − kks)τ + (−k2

s/k + kt)ν

= (−kst/k − kks + k3
s/k

3 − kks)τ

= (−[∂s(k
2
s/k)]/k + k3

s/k
3 − 2kks)τ

= (−2kskss/k
2 + 2k2

s/k
3 − 2kks)τ

= − 2
ks

k
(kss − k2

s/k + k3)τ = 0 .

Hence, v is a vector field along γt, constant in space and time.
As k = 〈v | ν〉R2 , we have that γt moves by translation under mean curvature flow. �

Then, we have the following theorem.

THEOREM 5.25. The blow up limit by the Hamilton’s modified procedure at a type II
singularity of a closed curve in the plane or of a hypersurface with H ≥ 0 is a convex translating
solution of mean curvature flow (possibly with multiplicities if the initial hypersurface is not
embedded).

REMARK 5.26. For curves in the plane, possibly with self–intersections, such that
the initial curvature is never zero, this result was obtained via a different method by
Angenent [11] (see also [4]), studying directly the parabolic equation satisfied by the
curvature function.

In view of these results and the discussion about the classification of translating so-
lution in Section 1, the strongest conjecture in this context is that every blow up limit
via the Hamilton’s modified procedure at a type II singularity of the evolution of an em-
bedded hypersurface with H ≥ 0 is the only rotationally symmetric, strictly convex,
translating solution.
In [98], White was able to exclude the possibility to get as a blow up limit the product
of a grim reaper with Rn−1.
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More in general, also without assuming the condition H ≥ 0, one can conjecture that
blow up limits like the minimal catenoid surfaceM in R3 given by

Ω =
{
(x, y) ∈ R

2 × R | cosh |y| = |x|
}

.

See Ecker [27] for more details and check the recent paper by Sheng and Wang [83].

5. The Special Case of Embedded Closed Curves in the Plane

In the special case of the evolution of an embedded closed curve in the plane, it is
possible to exclude at all type II singularities. This, together with the case of convex,
compact, hypersurfaces (as we have seen in the proof of Theorem 4.41 and 4.42) are the
only cases in which this can be done.
By the previous section and embeddedness, any blow up limit must be translating

and with unit multiplicity, that is, a grim reaper. We apply now a very geometric ar-
gument by Huisken in [57] in order to exclude also such possibility (see also [51] for
another similar quantity).
Given the smooth flow γt of an initial embedded closed curve γ0 on some interval

[0, T ), we know that the curve stay embedded during the flow, so we can refer to every
curve γt as a subset of R

2. At every time t ∈ [0, T ), for every pair of points p and q in γt

we define dt(p, q) to be the geodesic distance in γt of p and q, |p− q| the standard distance
in R2 and Lt the length of γt.
We consider the function Φt : γt × γt → R defined as

Φt(p, q) =

{
π|p−q|

Lt
/ sin πdt(p,q)

Lt
if p 6= q,

1 if p = q ,

which is a perturbation of the quotient between the extrinsic and the intrinsic distance
of a pair of points on γt.
Since γt is smooth and embedded for every time, the function Φt is well defined and
positive. Moreover, it is easy to check that even if dt is not C

1 at the pairs of points such
that dt(p, q) = Lt/2, the function Φt isC

1 in the open set {p 6= q} ⊂ γt×γt and continuous
on γt × γt.
By compactness, for every t ∈ [0, T ), the following infimum is actually a minimum in
this case,

E(t) = inf
p,q∈γt

Φt(p, q) . (5.6)

As the curve γt has no self–intersections we have 0 < E(t) ≤ 1, the converse is clearly
also true. Finally, since the evolution is smooth it is easy to see that the function E :
[0, T ) → R is continuous.

LEMMA 5.27 (Huisken [57]). The function E(t) is monotone increasing in every interval
where E(t) < 1.
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PROOF. We start differentiating in time Φt(p, q),

d

dt
Φt(p, q) =

π

Lt

〈p − q | k(p)ν(p) − k(q)ν(q)〉
|p − q| / sin

πdt(p, q)

Lt

+

(
π|p − q|

L2
t

∫

γt

k2 ds

)
/ sin

πdt(p, q)

Lt

− π2|p − q|
L2

t

cos
πdt(p, q)

Lt

(
dt(p, q)

Lt

∫

γt

k2 ds −
∫ p

q

k2 ds

)
/ sin2 πdt(p, q)

Lt

=

[〈p − q | k(p)ν(p) − k(q)ν(q)〉
|p − q|2 +

1

Lt

∫

γt

k2 ds

− π

Lt
cot

πdt(p, q)

Lt

(
dt(p, q)

Lt

∫

γt

k2 ds −
∫ p

q

k2 ds

)]
Φt(p, q)

=

[〈p − q | k(p)ν(p) − k(q)ν(q)〉
|p − q|2 +

1

Lt

(
1 − πdt(p, q)

Lt
cot

πdt(p, q)

Lt

) ∫

γt

k2 ds

+
π

Lt

cot
πdt(p, q)

Lt

∫ p

q

k2 ds

]
Φt(p, q)

where s is the arclength and k the curvature of γt. It is then easy to see that being the
function E the infimum of a family of locally uniformly Lipschitz functions, it is also
locally Lipschitz, hence differentiable almost everywhere. Then, to prove the statement

it is enough to show that dE(t)
dt

> 0 for every time t such that this derivative exists. We
will do that as usual, by Hamilton’s trick, Lemma 3.3.
Let (p, q) a minimizing pair at a differentiability time t and suppose that E(t) < 1. By
the very definition of Φt, it must be p 6= q.
We set α = πdt(p, q)/Lt and notice that α cot α < 1 as α ∈ (0, π/2]. Moreover,

∫
γt

k2 ds ≥
(∫

γt
k ds

)2

/Lt ≥ 4π2/Lt. Then, we have

d

dt
E(t) ≥

[〈p − q | k(p)ν(p) − k(q)ν(q)〉
|p − q|2 +

4π2

L2
t

(1 − α cotα) +
π

Lt

cotα

∫ p

q

k2 ds

]
E(t)

that is,

d

dt
log E(t) ≥ 〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|2 +
4π2

L2
t

(1 − α cotα) +
π

Lt
cotα

∫ p

q

k2 ds , (5.7)

at any minimizing pair (p, q).
Assume that the curve is parametrized counterclockwise in arclength, that dt(p, q) <
Lt/2 and that the geodesic connecting p and q is the counterclockwise oriented part of
the curve from q to p, like in the figure.
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β(q)

p

γt

qβ(p)

FIGURE 1.

We set p(s) = γt(s0 + s)with p = γt(s0), then, by minimality we have

0 =
d

ds
Φt(p(s), q)

∣∣∣∣
s=0

=
π

Lt

〈p − q | τ(p)〉
|p − q| / sin

πdt(p, q)

Lt

− π|p − q|
Lt sin

2 πdt(p,q)
Lt

π cos πdt(p,q)
Lt

Lt

where we denoted with τ(p) the oriented unit tangent vector to γt at p.
By this last equality we get

cos β(p) =
〈p − q | τ(p)〉

|p − q| =
π|p − q|

Lt sin
πdt(p,q)

Lt

cos
πdt(p, q)

Lt

= E(t) cos α

where β(p) is the angle between the vectors p − q and τ(p).
Repeating this argument for the other point q we get

cos β(q) = −E(t) cos α

where, as before, β(q) is the angle between q − p and τ(q), see Figure 1. Clearly, β(q) =
π − β(p).
Notice that if one of these intersection is tangential, we would have E(t) cos α = 1
which is impossible as we assumed that E(t) < 1. Moreover, by the relation cos β(p) =
E(t) cos α < cos α it follows that β > α.
We look now at the second variation of Φt, at the same minimizing pair of points

(p, q). With the same notation, if p = γt(s1) and q = γt(s2) we set p(s) = γt(s1 + s) and
q(s) = γs(s2 − s). After a straightforward computation one gets,

0 ≤ d2

ds2
Φt(p(s), q(s))

∣∣∣∣
s=0

=
π

Lt

(〈p − q | k(p)ν(p) − k(q)ν(q)〉
|p − q| +

4π2|p − q|
L2

t

)
/ sin

πdt(p, q)

Lt

=

[〈p − q | k(p)ν(p) − k(q)ν(q)〉
|p − q|2 +

4π2

L2
t

]
E(t) .
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Hence, getting back to inequality (5.7), we have

d

dt
log E(t) ≥ 〈p − q | k(p)ν(p) − k(q)ν(q)〉

|p − q|2 +
4π2

L2
t

(1 − α cotα) +
π

Lt
cotα

∫ p

q

k2 ds

≥ − 4π2

L2
t

α cot α +
π

Lt
cot α

∫ p

q

k2 ds

=
π cot α

Lt

(∫ p

q

k2 ds − 4π

Lt
α

)
,

so it remains to show that this last expression is positive. As
∫ q

p

k2 ds ≥
(∫ q

p

k ds

)2

/dt(p, q)

and noticing that
∫ q

p
k ds is the angle between the tangent vectors τ(p) and τ(q), we have

(∫ q

p
k ds

)2

= 4β(p)2 > 4α2, as we concluded above.

Thus,

d

dt
log E(t) ≥ π cotα

Lt

(∫ p

q

k2 ds − 4π

Lt
α

)

>
π cotα

Lt

(
4α2

dt(p, q)
− 4π

Lt

α

)

=0

recalling that α = πdt(p, q)/Lt. �

REMARK 5.28. Clearly, by its definition and this lemma, the function E is always
nondecreasing. Actually, to be more precise, by means of a simple geometric argument
it can be proved that if E(t) = 1 the curve must be a circle. Hence, in any other case E
is strictly increasing in time.

REMARK 5.29. This lemma clearly implies that an initial embedded closed curve
cannot develop a self–intersection during mean curvature flow, otherwise E would get
zero, which is impossible as E(0) > 0 and E is nondecreasing.

An immediate consequence of this lemma is that for every initial embedded, closed
curve in R2, there exists a positive constant C depending on the initial curve such that
on all [0, T ) we have E(t) ≥ C. The same conclusion holds for any rescaling of such
curves as the function E is scaling invariant by construction.

REMARK 5.30. This lemma also provide an alternative proof of the fact that an initial
embedded, closed curve stays embedded, that is, it cannot develop a self–intersection
during mean curvature flow, otherwise E would get zero.

We can then exclude Type II singularities, indeed, as γ∞ is a grim reaper and it is the
limit of rescalings of curves of the family γt, the function E for such grim reaper (which
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is constant in time, since it moves by translation) is not smaller, at any time, than the
infimum of the corresponding functions for the approximating curves, hence, by the
discussion above, following the lemma, it is bounded below by some positive constant
C.
But, if we consider a pair of points p, q on any grim reaper Γt such that the segment
[p, q] is orthogonal to the velocity vector w ∈ R2 and we send such segment infinity, we
can see that Φt(p, q) → 0, hence E(Γt) = 0, indeed, the distance |p − q| is bounded by a
constant (the width of the strip where the grim reaper lives) and the intrinsic distance
dt(p, q) diverges.
This is in contradiction with the above conclusion.

PROPOSITION 5.31. Type II singularities cannot develop during the mean curvature flow
of an embedded, closed curve in R2.

Collecting together the results of Chapter 4 about type I singularities and this last
proposition, we obtain the following Theoremdue to Grayson [41], whose original proof
is more geometric and direct, showing that the intervals of negative curvature vanish in
finite time, before any singularity.

THEOREM 5.32. Let γ0 be a closed, smooth embedded curve in the plane and let γt, for

t ∈ [0, T ) be its maximal evolution by mean curvature. There exists a time t̂ < T such that γbt is
convex.
As a consequence, the result of Gage and Hamilton 4.41 applies and subsequently the curve
shrinks smoothly to a point t → T .

PROOF. As we said no type II singularities are possible and the only type I singular-
ities have a circle as limit of rescalings, see Section 5.
Hence, at some point the curve must have become convex. �

We add a final remark in this case of embedded curves.
Letting A(t) to be the area enclosed by γt which moves by mean curvature, we have

d

dt
A(t) = −

∫

γt

k ds = −2π ,

hence, as the evolution is smooth till the curve shrinks to a point at time T > 0 and
clearly A(t) goes to zero, we have A(0) = 2πT . That is, the existence time is exactly
equal to the initial enclosed area divided by 2π.

5.1. An Alternative Proof of Grayson’s Theorem. Ideas and techniques are related
to the work of Ilmanen [65].
In the very special case of curves in the plane, one can avoid the use of Hamil-

ton’s Harnack inequality in order to deal with type II singularities, but still work with
Huisken’s monotonicity formula and produce a homothetic blow up.
As underlined in Remarks 4.25 and 4.27, in general Σ > 1, otherwise the curvature

is uniformly bounded as t ր T . Moreover, the estimates in Lemma 4.12 also are inde-
pendent of the type I hypothesis. Then, rescaling the curves around the moving points
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xt like in Remark 4.35, we have

σ(0) − Σ =

∫ +∞

− 1
2

log T

∫

γr

e−
|y|2

2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣
2

ds dr < +∞ .

Clearly, since we are not assuming the type I hypothesis, the curvatures of the rescaled

curves k̃ are not bounded, but by this formula, it follows that for every family of disjoint
intervals (ai, bi) ⊂ [−1

2
log T, +∞) such that

∑
i∈N

(bi − ai) = +∞we can find a sequence
ri ∈ (ai, bi) such that

lim
i→∞

1√
2π

∫

eγri

e−
|y|2

2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣
2

ds = 0 (5.8)

and

lim
i→∞

1√
2π

∫

eγri

e−
|y|2

2 ds = lim
i→∞

σ(t(ri)) = Σ . (5.9)

Clearly, the sequence ri converges monotonically increasing to +∞. From the esti-
mate (4.9) on the local length, it follows that the sequence of curves γ̃ri

has curvatures
locally equibounded in L2. Hence, we can extract a subsequence (not relabeled) that,
after a possible reparametrization, converges in C1

loc
to a limit curve γ̃∞. Such curve

satisfies k̃ + 〈x | ν̃〉 = 0, as the integral
∫

eγ
e−

|y|2

2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣
2

ds is lower semicontinuous

under C1
loc
–convergence. Moreover, by a bootstrap argument, γ̃∞ is smooth, then, it

must be an Abresch–Langer curve.
If the initial curve was embedded, as the Huisken’s quantity E is scaling invariant and
upper semicontinuous under the C1

loc
–convergence of curves, E is bounded below also

for the limit curve by a positive constant, hence, γ̃∞ is embedded, then it must be a line
for the origin or the unit circle by the classification theorem 4.36.
Since the second point of Lemma 4.12 implies that

lim
i→∞

1√
2π

∫

eγqi

e−
|y|2

2 ds =
1√
2π

∫

eγ∞

e−
|y|2

2 ds ,

and the first limit is equal to Σ > 1 by equation (5.9), we conclude that γ̃∞ is the unit
circle.
By what we said above we can find ri ր +∞ such that the curves γri

converge in C1
loc

to the unit circle. Moreover, being the unit circle compact, the convergence is actually
C1 with equibounded curvatures in L2 (not only locally).
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Fixing i ∈ N and letting ρ = r − ri, we look at the evolution of the following quantity,

d

dr

∫

eγr

(k̃2 + ρk̃2
s) ds = 2(T − t)

d

dt

∫

γt

√
2(T − t) k2 ds +

∫

eγr

k̃2
s ds

+ 2(T − t)ρ
d

dt

∫

γt

(
√

2(T − t))3 k2
s ds

= −
√

2(T − t)

∫

γt

k2 ds + (
√

2(T − t))3

∫

γt

(2kkss + k4) ds +

∫

eγr

k̃2
s ds

− 3(
√

2(T − t))
3
ρ

∫

γt

k2
s ds + (

√
2(T − t))

5
ρ

∫

γt

(2ksksss + 7k2k2
s) ds

=

∫

eγr

[−k̃2 + 2k̃k̃ss + k̃4 + k̃2
s − 3ρk̃2

s + 2ρk̃sk̃sss + 7ρk̃2k̃2
s ] ds

≤
∫

eγr

[−k̃2
s + k̃4 − 2ρk̃2

ss + 7ρk̃2k̃2
s ] ds

=

∫

eγr

[−k̃2
s + k̃4 + ρ(−2k̃2

ss + 7k̃3k̃ss/3)] ds

≤
∫

eγr

[−k̃2
s + k̃4 + ρ(−2k̃2

ss + Ck̃6 + k̃2
ss)] ds

=

∫

eγr

[−k̃2
s + k̃4 + Cρk̃6] ds .

Using the following interpolation inequalities for any closed curve in the plane of length
L (see Aubin [16, p. 93]),

‖k̃‖4
L4 ≤ C‖k̃s‖L2‖k̃‖3

L2 +
C

L
‖k̃‖4

L2 and ‖k̃‖6
L6 ≤ C‖k̃s‖2

L2‖k̃‖4
L2 +

C

L2
‖k̃‖6

L2

which imply, by means of Young inequality,
∫

eγr

k̃4 ds ≤ 1/2

∫

eγr

k̃2
s ds + C

(∫

eγr

k̃2 ds

)3

+

(∫

eγr

k̃2 ds

)3

+
C

L3(γ̃r)

Cρ

∫

eγr

k̃6 ds ≤
(

ρ

∫

eγr

k̃2
s ds

)3

+ C

(∫

eγr

k̃2 ds

)3

+
C

L2(γ̃r)

(∫

eγr

k̃2 ds

)3

,

we can conclude, as we know that L(γ̃r) ≥
∫

eγr
e−

|y|2

2 ds ≥
√

2π,

d

dr

∫

eγr

(k̃2 + ρk̃2
s) ds ≤ C

(∫

eγr

k̃2 ds

)3

+

(
ρ

∫

eγr

k̃2
s ds

)3

+ C ≤ C

(∫

eγr

(k̃2 + ρk̃2
s) ds

)3

+ C ,

for a constant C independent of r ≥ ri and i ∈ N.

Integrating this differential inequality for the quantity Qi(r) =
∫

eγr
(k̃2 + (r − ri)k̃

2
s) ds in

the interval [ri, ri + δ] it is easy to see that if δ > 0 is small enough, we have Qi(r) ≤
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C(δ, Qi(ri)) = C
(
δ,

∫
eγri

k̃2 ds
)

= C(δ), for every r ∈ [ri, ri + 2δ], as the curves γ̃ri
have

uniformly bounded curvature in L2. Hence, if r ∈ [ri + δ, ri + 2δ]we have the estimate
∫

eγr

(k̃2 + δk̃2
s/2) ds ≤

∫

eγr

(k̃2 + (r − ri)k̃
2
s) ds ≤ C(δ)

which implies ∫

eγr

k̃2 ds ≤ C(δ) and

∫

eγr

k̃2
s ds ≤ 2C(δ)

δ
.

We can now, as before, find a sequence of values qi ∈ [ri + δ/2, ri + δ] such that

lim
i→∞

1√
2π

∫

eγqi

e−
|y|2

2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣
2

ds = 0 .

As this new sequence of rescaled curves γ̃qi
also satisfies the length estimate (4.9) and

has k̃ and k̃s uniformly bounded in L2, we can extract another subsequence (not rela-
beled) that, after a possible reparametrization, converges in C2 to a limit curve which is
still the unit circle.
Then, the curves γ̃qi

definitely have positive curvature, hence, they are convex. This
means that the same hold for γt for some time t, which is Grayson’s result.

REMARK 5.33. Pushing a little forward this analysis, one can actually prove along
the same lines also the asymptotic convergence of the full sequence of rescaled curves
to the unit circle in C∞, as proved by Gage and Hamilton in [36, 37, 38].

REMARK 5.34. Actually, the C1
loc
–convergence to a line in the case Σ = 1 also sim-

plifies the application of White’s Theorem in this special case of curves. Indeed, the
boundedness of the curvature around every x0 ∈ S also follows by the interior esti-
mates of Ecker and Huisken. We give a sketch of the proof.
As Σ = 1, by the C1

loc
–convergence of the rescaled curves, for every R > 2 there is

a sequence of times ti ր T and a line L passing for x0 such that every curve γti is a
graph over L in the ball B

2R
√

2(T−ti)
(x0), indeed, the distance of γti ∩ B

2R
√

2(T−ti)
(x0)

from L ∩ B
2R
√

2(T−ti)
(x0) in the C1–norm goes to zero.

Then, supposing that x0 = 0 and that L is 〈e1〉 in R
2, the pieces of curves γt ∩B

2R
√

2(T−ti)

can be represented as a graph of a function at least for a small time. Moreover, the
quantity v(x, t) = 〈ν(x, t) | e2〉−1 is small at time t = ti and x ∈ γti ∩ B

2R
√

2(T−ti)
. As the

sphere ∂B√
2(T+ε−t)

is moving by curvature and, choosing ε > 0 small enough, at time

t = ti it is contained in the ball B2R
√

2(T−ti)
, by a geometric comparison argument it is

not possible that other parts of the moving curve “get into” the ball B√
2(T+ε−t)

at time

t > ti. Hence, the only way that γt∩B√
2(T+ε−t)

can possibly stop to be a graph is that the

tangent vector to such graph becomes vertical at some time, equivalently, the function
v is not bounded.
The interior estimates of Ecker and Huisken (B.1) and (B.2) exclude this fact if we start
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with v small enough. Hence, with a suitable choice of one of the times ti, the curva-
ture of γt for t ∈ [ti, T ) is bounded in the ball B√

2(T+ε−t)
, in particular it is bounded in

B√
2ε(x0) ⊂ B√

2(T+ε−t)
for every t ∈ [ti, T ).

By a compactness argument, the curvature is then uniformly bounded as t → T , which
is impossible as T is the maximal time of existence of the flow.
Notice the key point in getting a bound on the curvature by means of this argument

which is the C1
loc
–convergence of the rescaled curves to a line, implying that locally they

are graphs.

We underline that the interesting point of this line in proving Grayson’s Theorem
(or equivalently, in analysing the possible singularities) is the fact that we did not dis-
tinguish between type I and type II singularities. Indeed, the curvature of the rescaled
curves can be unbounded, but the control inL2

loc
is enough to imply theC1

loc
–convergence

which is sufficient to have the smoothness of the limit curve. The fact that the control
of the mean curvature in L2

loc
is not strong enough to imply give the C1

loc
–convergence

of a subsequence, is the main reason why this unitary line of analysis is difficult to be
pursued in higher dimensions, in order to obtain homothetic blow up limits even for
type II singularities.
Look anyway at the very interesting results of Ilmanen in dimension two [65] (which is,
in some sense, the critical case).
All this discussion underline the variational nature of the arguments (in particular,
monotonicity formula) in the analysis of type I singularities, against the non–variational
point of view (substantially maximum principle) in dealing with type II ones. Indeed,
one is always able to produce an “homothetic” blow up limit, even dealing with “non-
smooth hypersurfaces” (or simply sets) moving according to some generalized (varia-
tional) notion of mean curvature, if monotonicity formula holds (see [65, Lemma 7]).
The difficulty is to show the regularity of such limit. In some special cases this is pos-
sible, even if considering evolutions of singular sets, see [62] for networks of curves
and [65, Lemma 7], for surfaces in R3.
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pp. 21–38.

14. S. Angenent, T. Ilmanen, and D. L. Chopp, A computed example of nonuniqueness of mean curvature flow
in R3, Comm. Partial Differential Equations 20 (1995), no. 11-12, 1937–1958.

15. S. B. Angenent and J. J. L. Velázquez, Degenerate neckpinches in mean curvature flow, J. Reine Angew.
Math. 482 (1997), 15–66.

16. T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, 1998.
17. K. A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton, N.J.,
1978.

18. Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curva-
ture flow equations, J. Diff. Geom. 33 (1991), 749–786.

19. D. L. Chopp, Computation of self–similar solutions for mean curvature flow, Experiment. Math. 3 (1994),
no. 1, 1–15.

20. K.-S. Chou and X.-P. Zhu, Shortening complete plane curves, J. Diff. Geom. 50 (1998), no. 3, 471–504.
21. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and
L. Ni, The Ricci flow: techniques and applications. Part II, Mathematical Surveys and Monographs, vol.
144, American Mathematical Society, Providence, RI, 2008, Analytic aspects.

106



 D
ra

ft

BIBLIOGRAPHY 107

22. T. H. Colding and B. Kleiner, Singularity structure in mean curvature flow of mean–convex sets, Electron.
Res. Announc. Amer. Math. Soc. 9 (2003), 121–124 (electronic).

23. T. H. Colding and II W. P. Minicozzi, Sharp estimates for mean curvature flow of graphs, J. Reine Angew.
Math. 574 (2004), 187–195.

24. P. Daskalopoulos, R. S. Hamilton, and N. Sesum, Classification of compact ancient solutions to the curve
shortening flow, ArXiv Preprint Server – http://arxiv.org, 2008.

25. K. Ecker, Lectures on geometric evolution equations, Instructional Workshop on Analysis and Geometry,
Part II (Canberra, 1995), Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 34, Austral. Nat. Univ.,
Canberra, 1996, pp. 79–107.

26. , Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and
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APPENDIX B

Interior Estimates of Ecker and Huisken

LetMt = graph u( · , t) be a mean curvature flow such that it is locally the graph of a
function u(y, t) over the hyperplane e⊥n+1 ≈ Rn, for t ∈ [0, T ].
Let ν be the normal to the moving graph of u and define the function v = 〈ν | en+1〉−1

which we assume being positive.
The estimates contained in the following series of theorems have been obtained by

Ecker and Huisken in the paper [29], see also [55] and [26].

THEOREM B.1. Let R > 0 and x0 ∈ Rn+1 be arbitrary and define

ϕ(x, t) = R2 − |x − x0|2 − 2nt .

If ϕ+ denotes the positive part of ϕ, we have the estimate

v(x, t)ϕ+(x, t) ≤ sup
M0

vϕ+ (B.1)

as long as v(x, t) is defined everywhere on the support of ϕ+.

THEOREM B.2. The gradient of the height function u satisfies the estimate
√

1 + |∇u(y0, t)|2 ≤C1(n) sup
BR(y0)

√
1 + |∇u0|2

× exp

[
C2(n)R−2 sup

s∈[0,T ]

( sup
r∈[0,T ],y∈BR(y0)

u(y, r)− u(y0, s))
2

]

where t ∈ [0, T ], BR(y0) is a ball in e⊥n+1 and u0 = u( · , 0).

THEOREM B.3. Let R > 0 and θ ∈ [0, 1), then for x0 ∈ Rn+1 we have the estimate

sup
K(x0,t,θR2)

|A|2 ≤ C(n)(1 − θ)−2t−1 sup
0≤s≤t

sup
K(x0,s,R2)

v4 (B.2)

for all t ∈ [0, T ], whereK(x0, t, θR
2) = {x ∈ Mt | |x − x0|2 + 2nt ≤ θR2}.

Working by induction, one gets the following general result.

THEOREM B.4. (1) For arbitrary R > 0, θ ∈ [0, 1) andm ∈ N, we have the estimates

sup
K(x0,t,θR2)

|∇mA|2 ≤ Cm(n)t−(m+1) ,

where Cm(n) depends on n, m, θ and sup0≤s≤t supK(x0,s,R2) v2.
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(2) In case of additional smoothness, the constants above can be replaced by constants
Dm,k(n), depending on n, m, k, θ and sup0≤s≤t supK(x0,s,R2)

∑m
i=0 |∇iA|2 obtaining the

improved estimates

sup
K(x0,t,θR2)

|∇m+kA|2 ≤ Dm,k(n)t−k .

(3) In particular, choosingm = 0 and k = 1,

sup
K(x0,t,θR2)

|∇A|2 ≤ E(n)/t ,

where E(n) depends on n, θ and sup0≤s≤t supK(x0,s,R2) |A|2.
Analogous estimates were obtained by Angenent [12] for evolving curves in the

plane, and by Altschuler [4] and Altschuler and Grayson [3] for curves in space.

REMARK B.5. Compare these interior estimates with the ones of Colding and Mini-
cozzi [23].
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APPENDIX C

Hamilton’s Maximum Principle for Tensors

Let V a vector bundle over a compact manifold M . Let h a fixed metric on V , g
a Riemannian metric on M and L a connection on V compatible with h. Both g and

L = {Lβ
iα} may depend on time t. We can form the Laplacian of a section f of V as the

trace of the second covariant derivative with respect to g, using the connection L on V
and the Levi–Civita connection on TM .
Let U an open subset of V and Ψ(f) a vector field on V tangent to the fibers. We

consider the nonlinear PDE
∂tf = ∆f + Ψ(f) (PDE)

and the ODE
∂tf = ∆f . (ODE)

THEOREM C.1 (Hamilton [44, Section 4]). Let X be a closed subset of U ⊂ V invariant
under parallel transport by the connection L and every fiber of X is convex.
If the solutions of the ODE starting in a fiber of X remain in X , then also any solution of the
PDE remains in X .

THEOREM C.2 (Hamilton [44, Section 8]). Let f a smooth section of V satisfying ∂tf =
∆f + Ψ(f). Let Z(f) be a convex function on the bundle, invariant under parallel translation
whose level curves Z(f) ≤ λ are preserved by the ODE. Then, the inequality Z(f) ≤ λ is
preserved by the PDE for any constant λ.
Moreover, if at time t = 0 at some point we have Z(f) < λ, then Z(f) < λ everywhere onM at
time t > 0.

THEOREM C.3 (Hamilton [44, Section 8]). Let B be a symmetric bilinear form on V .
Suppose that B satisfies a heat equation ∂tB ≥ ∆B + Ψ(B) where the matrix Ψ(B) ≥ 0 for all
B ≥ 0.
Then, if B ≥ 0 at time t = 0 it remains nonnegative for t ≥ 0. Moreover, there exists an interval
0 < t < δ on which the rank of B is constant and the null space of B is invariant under parallel
translation and invariant in time, finally it also lies in the null space of Ψ(B).
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