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The Nonlinear Schrödinger Equation

i∂tu(t, x) = (−∆x + V (x))u− |u|2pu (1)

where:

• u : [0,∞)× Rn → C; 0 < p < 2
n−2;

• V : Rn → R, lim|x|→∞ |V (x)| = 0, V ∈ Lq(Rn) + Lr(Rn),

max{1, n/2} < q ≤ r ≤ ∞.

Applications: Nonlinear Optics, Water Waves, Quantum Physics

in particular Bose-Einstein Condensates.
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Hamiltonian Formulation

The general Hamiltonian system:

∂tu = JDE(u)

becomes equivalent to the nonlinear Schrödinger equation under
the definitions:

E(u) =
1

2

∫
Rn
|∇u|2dx+

1

2

∫
Rn
V |u|2dx−

1

2p+ 2

∫
Rn
|u|2p+2dx,

J =

[
0 −1
1 0

]
E : H1(Rn,C) 7→ R, J : H−1(Rn,C) 7→ H−1(Rn,C).

The two conserved quantities are the energy E and the mass
(charge): N : H1(Rn,C) 7→ R.

N (u) =
1

2

∫
Rn
|u|2dx.

3



Nonlinear Bound-States

are solutions of the form:

u(t, x) = eiEtψE(x), ψE ∈ H1(Rn).

Hence ψE satisfies in the weak sense:

F (ψE, E) = (−∆ + V + E)ψE − |ψE|2pψE = 0. (2)

In applications the nonlinear bound-states are the most impor-
tant solutions of the full, time-dependent NLS equation (1).
Moreover:

Asymptotic Completeness Conjecture: Any solution of (1)
eventually converges to a superposition of nonlinear bound-states
and a radiative part which disperses to infinity.

Note: If (ψE, E) is a solution of (2) then so are (eiθψE, E) with
0 ≤ θ < 2π.
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The Mathematical Framework: Find zeroes of the map:

F : H2(Rn,C)×R 7→ L2(Rn,C), F (ψ,E) = (−∆+V +E)ψ−|ψ|2pψ,
which is equivariant under the action of O(2), i.e.:

F (eiθψ,E) = eiθF (ψ,E), F (ψ,E) = F (ψ,E),

and is Fréchet differentiable over the real Banach spaces:

H2(Rn,C) ∼= H2(Rn,R)×H2(Rn,R) ↪→ L2(Rn,R)×L2(Rn,R) ∼= L2(Rn,C).

For ψ real valued (hence F (ψ,E) real valued) we have:

DψF (ψ,E)[u+ iv] =

[
L+(ψ,E) 0

0 L−(ψ,E)

] [
u
v

]
,

where

L+(ψ,E)[u] = (−∆ + V + E)u− (2p+ 1)|ψ|2pu
L−(ψ,E)[v] = (−∆ + V + E)v − |ψ|2pv

5



0 E0 E

H1

• (ψ = 0, E), E ∈ R is a solution, and E 6∈ spec(−∆ + V ) ⇒
DψF (0, E) is an isomorphism, hence there are no other solu-
tions around.

• 0 < E0 ∈ spec(−∆ + V )⇒ DψF (0, E0) is Fredholm hence we
can get non-trivial solutions via local bifurcation theory.
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Use Lyapunov-Schmidt reduction i.e. decompose:

H2 = kerDψF (0, E0) ⊕ M

L2 = N ⊕ range DψF (0, E0)

with associated projections P‖, PM , PN , P⊥. Then

F (ψ,E) = 0⇔

 P⊥F
(
P‖ψ + PMψ,E

)
= 0

PNF
(
P‖ψ + PMψ,E

)
= 0

But G : kerDψF (0, E0)×M × R 7→ range DψF (0, E0),

G(ψ1, ψ2, E) = P⊥F (ψ1 + ψ2, E)

has a zero at (0,0, E0) and Dψ2
G(0,0, E0) is an isomorphism,

hence for each (ψ1, E) near (0, E0) there is a unique ψ2 solving
the first equation, call it h(ψ1, E). The second equation becomes

F̃ (P‖ψ,E) = PNF
(
P‖ψ + h(P‖ψ,E), E

)
= 0

where F̃ : kerDψF (0, E0) 7→ N is a finite dimensional map.
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Moreover, if P‖, PM , PN , P⊥ commute with the symmetries of F
then both h and F̃ inherit the symmetries. In the case −E0 is
the lowest e-value of −∆ + V :

kerDψF (0, E0) = span {φ0, iφ0}, M = {φ0, iφ0}⊥ ∩ H2,

N = span {φ0, iφ0}, range DψF (0, E0) = {φ0, iφ0}⊥,

with associated (orthogonal in L2) projections commuting with
rotations and complex conjugation. Consequently, the reduced
finite dimensional equation is of the form:

F̃ (a,E) = 0 ∈ C, a ∈ C, E ∈ R
with symmetries:

F̃ (eiθa,E) = eiθF̃ (a,E), F̃ (a,E) = F̃ (a,E),

hence the solutions are generated by rotating the solutions of

F̃ (a,E) = 0 ∈ R, a ∈ R, E ∈ R.
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F̃ : R2 7→ R has a double zero at (0, E0), i.e. both the function
and its gradient are zero, while the Hessian is nondegenerate and
indefinite, leading to a quadratic normal form (Morse Lemma).
Consequently,

F̃ (a,E) = 0 ∈ R, a ∈ R, E ∈ R
exhibits the pitchfork bifurcation pictured:

0 E0 E

H1
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The spectrum of the linearization along the nontrivial branch:

DψF (ψE, E) = diag{L+(ψE, E), L−(ψE, E)}

L+(ψ,E)[v] = (−∆ + V + E)v − (2p+ 1)|ψ|2pu
L−(ψ,E)[v] = (−∆ + V + E)v − |ψ|2pv
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How far can the branch be extended?

unique local continuation (modulo rotations) when kerL+ = {0}
⇒ existence of a unique maximal branch (ψE, E), E ∈ [E0, E∗) :

• E∗ <∞ and lim supE↗E∗ ‖ψE‖H1 = +∞ or

• E∗ <∞ and lim supE↗E∗ ‖ψE‖H1 <∞ or

• E∗ = +∞.
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Theorem 1. For 0 < E∗ <∞ there are no C1 curves E 7→ ψE of

zeroes of F, defined on intervals [E1, E∗) or (E∗, E1], such that

lim sup
E→E∗

‖ψE‖H1 =∞

Sketch of Proof: Consider such a curve. From the identities:

E(E) = ‖∇ψE‖2 +
∫
Rn
V (x)|ψE(x)|2dx−

1

p+ 1
‖ψE‖

2p+2
L2p+2

∂EE = −E∂E‖ψE‖2L2,

E(E) =
p

p+ 1
‖ψE‖

2p+2
L2p+2 − E‖ψE‖

2
L2

we deduce:

∂E‖ψE‖
2p+2
L2p+2 =

p+ 1

p
‖ψE‖2L2
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Assuming lim infE→E∗
‖ψE‖

2p+2

L2p+2

‖ψE‖2L2
> 0 we get for some ε > 0 on a

small interval [E2, E∗) :

∂E‖ψE‖
2p+2
L2p+2 ≤

p+ 1

εp
‖ψE‖

2p+2
L2p+2

i.e. ‖ψE‖L2p+2 is uniformly bounded which given the blow up of
the L2 norm contradicts the strict positivity of the above limit.
Hence there exists

En → E∗ such that
‖ψEn‖

2p+2
L2p+2

‖ψEn‖2L2

→ 0.

Then un =
ψEn

‖ψEn‖L2
satisfies

‖∇un‖2L2 +
∫
Rn
V (x)|un|2dx→ −E∗ and ‖un‖L2p+2 → 0.

Combined they give the contradiction ‖∇un‖2L2 → −E∗ < 0.
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Theorem 2. compactness: If E∗ <∞ and

lim sup
E↗E∗

‖ψE‖H1 <∞

then for all En ↗ E∗ there exists a subsequence Enk and ψE∗ ∈ H1

such that

• limk→∞ ‖ψEnk − ψE∗‖H1 = 0 and

• F (ψE∗, E∗) = 0.

Remark 1. Consequently, local bifurcation theory applies at (ψE∗, E∗)
and gives the local manifold structure of the zeroes of F.
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Sketch of Proof: Consider En ↗ E∗ then ‖ψEn‖H1 is bounded.

Pass to a subsequence to get ψEn
H1
⇀ ψE∗ and concentration

compactness:

• (compactness mod translations) ψEn(· − yn)
Lp−→ ψE∗, 2 ≤ p <

2n/(n− 2) or

• (vanishing) ψEn
Lq−→ 0, 2 < q < 2n/(n− 2) or

• (splitting) ψEn = un+vn+wn with un in first case, ‖vn‖L2 6→ 0,

the distance between the support of un and vn goes to infinity,

and wn
Lq−→ 0, 2 ≤ q < 2n/(n− 2).
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Vanishing cannot occur: ψEn
L2p+2
−→ 0 implies both

|ψEn|
2pψEn

H−1
−→ 0 and V ψEn

H−1
−→ 0.

Consequently:

ψEn = (−∆ + En)−1[−V ψEn + |ψEn|
2pψEn]

H1
−→ 0

which contradicts uniqueness of trivial solution near (0, E∗).
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Splitting cannot occur: because we get at least 2 negative

e-values for L+.

Indeed, at least one, say vn, must drift to infinity (support con-

dition). Then its profile converges to the (positive) solution of

the problem without potential uE∗. The latter has one negative

e-value in the linearization. Same happens to un if it drifts and

(by separation) each contributes one negative e-value to L+.
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If un does not drift then it converges to a solution of the eq and

again the linearization around un has one negative e-value.

All in all we must be in case 1: compactness modulo translations.

We still need to show:
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Case 1: |yn| 6→ ∞

〈∂yuE, V uE + V wE + h.o.t.〉 = 0

where wE ⊥ kerL+(uE, E). Leads to contradiction if for large r :

|∂rV | > Cr−δ |∂rV | > C|∂θiV |, and lim
r→∞V

2/∂rV = 0
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The theorem is now proven and we can go past the bifurcation
point:

No crossing of the E = E0 hyperplane because:

〈(−∆ + V )ψE, ψE〉 = −E‖ψE‖2L2 + ‖ψE‖
2p+2
L2p+2 < −E0‖ψE‖2L2.
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Second turning point needs new compactness argument to pre-
vent splitting: requires grouping + configuration analysis to iden-
tify a nonzero leading term.

Now the branch MUST end up at E =∞.
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Except for this particular case in which the ‖ψE‖L2p+2 cannot be

controlled:
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Theorem 3. If E 7→ ψE is a C1 curve of ground-states on the
interval E ∈ [E1,∞), and x · ∇V ∈ L∞then

lim
E→∞

‖ψE‖
2p+2
L2p+2

E1−n/2+1/p
= b, 0 < b <∞

lim
E→∞

‖ψE‖2L2

E−n/2+1/p
=

(2− n)p+ 2

2(p+ 1)
b

lim
E→∞

‖∇ψE‖2L2

E1−n/2+1/p
=

np

2(p+ 1)
b

uE(x) = E−1/(2p)ψE(x/
√
E)

H1
→ u∞(x) =

∑
k

u(x− xk
√
E),

where u is the unique positive solution of

−∆u+ u− |u|2pu = 0 (3)

and {xk} is a (nonempty) subset of critical points of the potential
V.
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The behavior of the norms as E → ∞ was anticipated by Rose-

Weinstein ’88.

Theorem 4. If the potential V has only non-degenerate critical

points then from each possible u∞ defined as above bifurcates

(via the above re-scaling) exactly one curve of zeroes of F. The

number of negative e-values of L+ can be calculated along each

of these curves.

The theorem is a much stronger version (includes uniqueness)

of the results previously obtained in the semi-classical limit, see

Oh ’90 and Floer & Weinstein ’86.

Still need to cover the case of more than one profile approaching

the same maxima, see Yan-Noussair ’00, Yan-Dancer ’01.
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An Example: x ∈ R1, symmetric double well potential

−0.2 −0.1 0 0.1

0

Ω

N

−10 −5 0 5 10

−0.2

−0.1

0

0.1

V
L
(x)

x

with xV ′(x) ∈ L∞(R), and p integer. Partial results appeared in
Kirr-Kevrekidis-Pelinovsky ’11.
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Conclusions:

1. The results have direct applications to rough ripplings (maybe

even rough waves), and vortices in BEC.

2. We are on the verge of understanding the correlation between

critical points of the potential and the bifurcations along the

ground-state (and excited-state) manifolds. The missing link is

a classification of possible bifurcations in higher dimensions when

a multiple eigenvalue crosses zero.

3. Once all bound-state manifolds have been identified one

can approach the asymptotic completeness conjecture in NLS

by starting with the dynamics near the bifurcation points (very

hard).
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4. The technique is rather general for Hamiltonian PDE’s, re-

lying on energy estimates, analysis of the linearized operator,

concentration compactness and properties of the limiting equa-

tion (as the parameter approaches a certain limit). Applications

to rotating BEC’s are underway. Other equations...

Thank you!
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