Numerical methods in

(non-hyperbolic) chaos
Part 2: Monte Carlo sampling

Caroline Wormell, Sorbonne Université/CNRS



How rigorous to be?

» As with paper calculations, there are different levels of rigour.
e They are all useful!

= We regularly make mathematical hypotheses based on inductive
(scientist-style) reasoning.



Suppose we use algorithm A to compute proposition X. We could have:
1. X is definitely, mathematically true (i.e. A constitutes a proof).

Example: The Lorenz flow is a Geometric Lorenz flow (Tucker 1999)



1. That A converges is a theorem, (1) would be true if we computed the (small)
approximation errors explicitly.

Example: Running some proven-to-work approximation algorithm but not keeping track of
the errors.



1. That A converges is a theorem, (1) would be true if we computed the (small)
approximation errors explicitly.

Example: Running some proven-to-work approximation algorithm but not keeping track of
the errors.

1. We have a good idea of how to prove A converges, (2) would be true if we did
that.

Example: Minor extensions of existing algorithms. "What if we used a Lipschitz
observable instead of C'! like in the theorem"



1. A would converge if clearly true condition C' holds, (2) or (3) would be true if we
could prove C.

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things



1. A would converge if clearly true condition C' holds, (2) or (3) would be true if we
could prove C.

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things

1. (2) or (3) is true in an analogous setting, and would be true if we could extend it to
our setting.

Example: Applying an algorithm proven for Anosov maps to a non-uniformly hyperbolic
map



1. A would converge if clearly true condition C holds, (2) or (3) would be true if we
could prove C.

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things

1. (2) or (3) is true in an analogous setting, and would be true if we could extend it to
our setting.

Example: Applying an algorithm proven for Anosov maps to a non-uniformly hyperbolic
map

1. We have some formal calculation/intuition that A should compute X (usually plus
some evidence in practice).

Example: Dynamic mode decomposition, etc



All of these are useful for both mathematicians and scientists!

Non-uniformly hyperbolic systems will almost always fall into cases 4—6.



All of these are useful for both mathematicians and scientists!

Non-uniformly hyperbolic systems will almost always fall into cases 4—6.

General exercise: find or recall examples of numerics that you have seen
corresponding to cases 1-6.



Last lecture:

e Physical measures are important
e For most (ie non-structurally stable) systems it is hard or impossible to make a
priori bounds



Estimating a physical measure is easiest done in a weak sense, i.e. by estimating
integrals against bounded observables

/ Adp.
M

We could try doing this by computing a Birkhoff sum. But how can we know our estimates
are correct?



Estimating a physical measure is easiest done in a weak sense, i.e. by estimating
integrals against bounded observables

/ Adp.
M

We could try doing this by computing a Birkhoff sum. But how can we know our estimates
are correct?

Meta-theorem (truth level 4): For regular enough functions A : M — R and n large
enough, A(x) and A(f™(x)) are close to being uncorrelated.

The consequence is that a lot of properties that are true of i.i.d. random variables also
hold for chaotic signals. We can use this to our advantage...



Monte Carlo estimation: iid case

Suppose we have probability measure pu € P(M) "observable" function
A e LY(M,R).

We are given ind. samples A(z1), A(x2),. .., A(xy) ~ p.

We want to estimate [, A dpu.



Monte Carlo estimation: iid case

Suppose we have probability measure pu € P(M) "observable" function
A e LY(M,R).

We are given ind. samples A(z1), A(x2),. .., A(zy) ~ p.

We want to estimate [, , A dpu.

Theorem (Strong Law of Large Numbers): With probability 1,

_ 1 M
AM::—E:A(mm)%/ Ady
Mm:1 M

as M — oo.



So, we can estimate the average by taking a really large sample:






So, we can estimate the average by taking a really large sample:

A(x) = x~(-0.9)

using QuadGK
expectationA = quadgk(A,0,1)[1] # true expectation of A

9.999999279144092






So, we can estimate the average by taking a really large sample:

A(x) = x~(-0.9)

using QuadGK
expectationA = quadgk(A,0,1)[1] # true expectation of A

9.999999279144092

Mmax = 30000000

sample = rand(Mmax) # p is uniform on [0,1]
plot(1l:Mmax, cummean(A. (sample[l:Mmax])))
xLlabel("\$M\$"); xLim(1,Mmax)
ylabel("\$\\bar{A} M\$")

plot(1l:Mmax,fill(expectationA,Mmax), "k--");
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So: we want some quantitative convergence estimates!



Convergence rates

The SLLN says:
"If an expectation of A exists, then sample means of A will converge."

This is as general as possible, and completely qualitative: there are L' functions A for
which the sample means converge arbitrarily slowly.

To get quantitative convergence rates, we will need quantitative assumptions on A (in
particularly, on its tails).



Let's make a strong quantitative assumption on the tails of A: A is bounded (or
A€ L>®(u)).



Let's make a strong quantitative assumption on the tails of A: A is bounded (or
A€ L>®(p)).

Theorem (concentration bound): Suppose A is a bounded random variable. In
particular suppose |A — E[A]| < a and V[A] < o2, Then

2
= w 2
P[|A, — E[A]l > w] < 2exp| ——————(2 — e¥@/@
|~ Bl4] > 0] < 20xp( 51 )
as M — oo.
This says that except at the tails (A > o’ /a) then Ay has exponential decay like a

normal random variable of standard deviation o /v M.

Note also that V[A] < a.



Example: p is uniform on [0, 1], A = sin(100/z). (Soo < a < 2.)

We can therefore estimate

using Statistics
M = 10000; A(x) = sin(100/x)

sample_means = Array{Float64}(undef,100)

for i = 1:100 # generate 100 sample means
x_vector = rand(M) # generate M sample points
sample means[i] = mean(A.(x vector))

end



using Roots
a=2;, 6=trueoc
w = fzero(w->log(2exp(-w"2/(20"2/M)*(2-exp(w*a/0"2)))/0.1),1/sqrt(M))

0.01795346111089137



using Roots
a=2;, 6=trueoc
w = fzero(w->log(2exp(-w"2/(20"2/M)*(2-exp(w*a/0"2)))/0.1),1/sqrt(M))

0.01795346111089137

figure(figsize=(10,2))

scatter(sample means,zeros(100))

errorbar([true Amean],[0],xerr=[w],c="k")
plot(fill(true Amean,2),[-1,11,"k--"); ylim(-1,1)
yticks([]);
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Our theorem tells us that AM are w close to [E[ A] almost always, but we can swap which
of the two we put the error bound on:



figure(figsize=(10,6))

errorbar(sample means,1:100,xerr=w, linestyle="",marker=".")
plot(fill(true Amean,2),[0,101],"k--"); ylim(0,101)
yticks([1]);
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figure(figsize=(10,6))

errorbar(sample means,1:100,xerr=w, linestyle="",marker=".")
plot(fill(true Amean,2),[0,101],"k--"); ylim(0,101)
yticks([1]);
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We are only asking for the true mean to lie inside the sample mean 90% of the time. So



our error bars are a bit wide.



Central Limit Theorem

The central limit theorem gives us asymptotically the correct bounds:

Theorem (CLT): Suppose A has bounded variance o2. Then for all @ € R,

Jim P |4y — B[] > % — 2P(N(0,02) > 0)

Again, this is qualitative. There are ways to make it tighter, but statisticians have some
guidelines for when it's reasonable to use in statistical tests:

« M is sufficiently large (> 20 for unimodal data with short tails), or
« the distribution of A(x) already approximates a Gaussian



using Distributions
w = cquantile(Normal(0,true o),0.01/2)/sqrt(M)

figure(figsize=(10,6))

errorbar(sample means,1:100,xerr=w, linestyle="",marker=".")
plot(fill(true Amean,2),[0,101],"k--"); ylim(0,101)
yticks([1);
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using Distributions
w = cquantile(Normal(0O,true o),0.01/2)/sqrt(M)

figure(figsize=(10,6))

errorbar(sample means,1:100,xerr=w, linestyle="",marker=".")
plot(fill(true Amean,2),[0,101],"k--"); ylim(0,101)
yticks([1);
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OK, but we don't expect to know the true variance either. How to estimate?



Basic estimator for V(A) (implemented in std etc):

S%\l M—1 Z(A(Cl?m) _ AM)2



Basic estimator for V(A) (implemented in std etc):

1 U _
S%\l — M—1 Z_l(A(wm) - AM)2
If A(z,,) are Gaussian, then
Ay — E[A]




sample _means = Array{Float64}(undef,100)

sample stds = Array{Float64} (undef,100)

for i = 1:100 # generate 100 sample means
x_vector = rand(M) # generate M sample points
sample means[i] = mean(A.(x vector))
sample stds[i] = std(A.(x vector))

end

tconst = cquantile(TDist(M-1),0.01/2)/sqrt(M)

figure(figsize=(10,6))

errorbar(sample means,1:100,xerr=tconst*sample stds,linestyle="", marker=".")
plot(fill(true Amean,2),[0,101],"k--"); ylim(0,101)

yticks([1);
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Estimating physical measures

We want to find a variable whose expectation is f M A dp, but we can't always directly
access p.

Since
1
N n=0

is bounded and converges to fM A dp almost surely as N — oo if du = h dx, we
could try to use that.

VM((By),; — E[Bn]) = N(0, V[By])



But we don't actually know much about E[By|:

» Almost sure convergence is not the same as convergence in expectation
e Convergence rates?

Need an "obviously true" condition...



Exponential decay of correlations (from Lebesgue)

We need some "obviously" true condition C:

Suppose A is sufficiently regular and p is sufficiently nice (e.g. absolutely continuous with
respect to Lebesgue). Then there exist p € N and A2 < 1 independent of A, u,

p—1
/Aof”d,u:/Adp/ d,quZcqfq"JrQn
M M M |

where £ = e?™/P and |Q,,| < CAZ (C could be very large).



We can then estimate:




function birkhoff mean( f, # map

end

A, # observation function
N; # time series length
x0=rand()) # initial value

X = X0

birkhoff sum = 0.

for n = 1:N
birkhoff_sum += A(x)
x = f(x)

end

birkhoff sum / N # mean

birkhoff mean (generic function

with 1 method)



M = 200; N = 30000

means of birkhoff means = Array{Float64} (undef,100)
stds _of birkhoff means = Array{Float64} (undef,100)
f(x) = 3.8x*(1-x); A(x) = x™2

birkhoffmeans = Array{Float64} (undef,M)

for m = 1:M # generate M birkhoff means
birkhoffmeans[m] = birkhoff mean(f,A,N;x0=rand())

end

mean of birkhoff means = mean(birkhoffmeans)

std of birkhoff means = std(birkhoffmeans)

tconst = cquantile(TDist(M-1),0.05/2)/sqrt(M)

figure(figsize=(10,2))

errorbar(mean of birkhoff means,[1],xerr=tconst*std of birkhoff means,linestyle="", marker=".")
plot(fill(true logistic38mean,2),[0,101],"k--"); ylim(0,2)
yticks([1);
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Let's instead try to have some spin-up:

1 « n+N
BNO,N—W E 0 aiBNlJ
n=0



Let's instead try to have some spin-up:

1 — n+N
BNO,N - N E 0 y L~ W
n=0

2

1
E[Byn] = /M N §q

I
o

n

n 1 &=
A(f +N0(;U)) d,Ll, — / Adp —+ W Z ngqNO
M g=1

=

Qn—I—NO

|
o

n

_ / Adp+ O(LA~M)
M

if V is a multiple of p.



function birkhoff mean( f, # map

end

A, # observation function
N; # time series length
NO=0, # spinup time
x0=rand()) # initial value

X = x0

for i = 1:NO #spin-up time
x = f(x)

end

birkhoff_sum = 0.

for n = 1:N
birkhoff sum += A(x)
x = f(x)

end

birkhoff sum / N # mean

birkhoff mean (generic function

with 1 method)



M = 200; N = 300; NO = 10000
means of birkhoff means = Array{Float64} (undef,100)
stds of birkhoff means = Array{Float64} (undef,100)

for i = 1:100 # generate 100 mean-of-means
birkhoffmeans = Array{Float64} (undef,M)
for m = 1:M # generate M birkhoff means
birkhoffmeans[m] = birkhoff mean(f,A,N;NO=NO,x0=rand())
end
means of birkhoff means[i] = mean(birkhoffmeans)
stds of birkhoff means[i] = std(birkhoffmeans)
end

tconst = cquantile(TDist(M-1),0.05/2)/sqrt(M)

figure(figsize=(10,6))

errorbar(means of birkhoff means,1:100,xerr=tconst*stds of birkhoff means,linestyle="",6marker=".")
plot(fill(true logistic38mean,2),[0,101],"k--"); ylim(0,101)

yticks([1);
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Spin-up is also very important if it takes a while to "find" the physical measure:



f(x) = 3.7030314384x*(1-x) # remember this guy

M = 20; N = 3*1076; NO = 1076
means of birkhoff means = Array{Float64}(undef,100)
stds_of birkhoff means = Array{Float64} (undef,100)

for i = 1:100 # generate 100 mean-of-means
birkhoffmeans = Array{Float64} (undef,M)
for m = 1:M # generate M birkhoff means
birkhoffmeans[m] = birkhoff mean(f,A,N;NO=NO,x0=rand())
end
means of birkhoff means[i] = mean(birkhoffmeans)
stds of birkhoff means[i] = std(birkhoffmeans)
end

tconst = cquantile(TDist(M-1),0.05/2)/sqrt(M)

figure(figsize=(10,6))

errorbar(means of birkhoff means,1:100,xerr=tconst*stds of birkhoff means,linestyle="",marker=".")
plot(fill(true logistic37030314384mean,2),[0,101],"k--"); ylim(0,101)

yticks([1);
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We've been doing a lot of simulations, and they seem to work, but they don't always work:



We've been doing a lot of simulations, and they seem to work, but they don't always work:

LSV(x) = x < 0.5 ? x*(1+(2x)"(0.9)) : 2x-1
A(X) = x

A (generic function with 1 method)



M = 20; N = 30000; NO = 30000

means of birkhoff means = Array{Float64} (undef, 100)
stds of birkhoff means = Array{Float64} (undef,100)

for i = 1:100 # generate 100 mean-of-means
birkhoffmeans = Array{Float64} (undef,M)
for m = 1:M # generate M birkhoff means
birkhoffmeans[m] = birkhoff mean(LSV,A,N;NO=NO,x0=rand())
end
means_of birkhoff means[i] = mean(birkhoffmeans)
stds of birkhoff means[i] = std(birkhoffmeans)
end

tconst = cquantile(TDist(M-1),0.05/2)/sqrt(M)

figure(figsize=(10,6))

errorbar(means of birkhoff means,1:100,xerr=tconst*stds of birkhoff means,linestyle=
# plot(fill(true LSVmean,2),[0,101],"k--"); ylim(0,101)

yticks([1);

,marker=".")
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For this map/observable combination, our Birkhoff means aren't normally distributed:

M = 2000
birkhoffmeans = Array{Float64} (undef,M)
for m = 1:M # generate M birkhoff means
birkhoffmeans[m] = birkhoff _mean(LSV,A,N;N0=NO,x0=rand())
end

hist(birkhoffmeans,bins=100);
semilogy()
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Statistical test for chaos

(Really a statistical test for decay of correlations)



bumpfunc_raw(x) = exp(-1/(x*(1-x)))
const bumpfunc_raw cons = quadgk(bumpfunc raw,0,1)[1]
bumpfunc(x) = bumpfunc raw(x) / bumpfunc raw cons

WARNING: redefinition of constant bumpfunc raw cons. Th
is may fail, cause incorrect answers, or produce other
errors.

bumpfunc (generic function with 1 method)

function weighted birkhoff mean( f, # map
A, # observation function
N; # time series length
twist angle = 0, # twist
NO=0, # spinup time
x0=rand()) # initial value

X = x0

for i = 1:NO #spin-up time
x = f(x)

end

twist = cis(twist angle)
twistpow = 1.
birkhoff sum = 0.

for n = 1:N
birkhoff sum += twistpow*A(x)*bumpfunc(n/N)
x = f(x)
twistpow *= twist

end

birkhoff sum / N # mean
end



weighted birkhoff mean (generic function with 1 method)

weighted birkhoff mean(x->3.6x*(1-x), A, 1000;twist angle=2)

0.0003829297923169078 - 0.00072498080538325291im



