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How rigorous to be?

As with paper calculations, there are different levels of rigour.

They are all useful!

We regularly make mathematical hypotheses based on inductive
(scientist-style) reasoning.



Suppose we use algorithm  to compute proposition . We could have:

1.  is definitely, mathematically true (i.e.  constitutes a proof).

Example: The Lorenz flow is a Geometric Lorenz flow (Tucker 1999)
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1. That  converges is a theorem, (1) would be true if we computed the (small)
approximation errors explicitly.

Example: Running some proven-to-work approximation algorithm but not keeping track of
the errors.
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1. That  converges is a theorem, (1) would be true if we computed the (small)
approximation errors explicitly.

Example: Running some proven-to-work approximation algorithm but not keeping track of
the errors.

A

1. We have a good idea of how to prove  converges, (2) would be true if we did
that.

Example: Minor extensions of existing algorithms. "What if we used a Lipschitz
observable instead of  like in the theorem"
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1.  would converge if clearly true condition  holds, (2) or (3) would be true if we
could prove .

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things
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1.  would converge if clearly true condition  holds, (2) or (3) would be true if we
could prove .

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things

A C

C

1. (2) or (3) is true in an analogous setting, and would be true if we could extend it to
our setting.

Example: Applying an algorithm proven for Anosov maps to a non-uniformly hyperbolic
map



1.  would converge if clearly true condition  holds, (2) or (3) would be true if we
could prove .

Example: Assuming a dynamical system that appears to be chaotic, exponentially
mixing, etc, is actually those things

A C

C

1. (2) or (3) is true in an analogous setting, and would be true if we could extend it to
our setting.

Example: Applying an algorithm proven for Anosov maps to a non-uniformly hyperbolic
map

1. We have some formal calculation/intuition that  should compute  (usually plus
some evidence in practice).

Example: Dynamic mode decomposition, etc

A X



All of these are useful for both mathematicians and scientists!

Non-uniformly hyperbolic systems will almost always fall into cases 4–6.



All of these are useful for both mathematicians and scientists!

Non-uniformly hyperbolic systems will almost always fall into cases 4–6.

General exercise: find or recall examples of numerics that you have seen
corresponding to cases 1–6.



Last lecture:

Physical measures are important
For most (ie non-structurally stable) systems it is hard or impossible to make a
priori bounds



Estimating a physical measure is easiest done in a weak sense, i.e. by estimating
integrals against bounded observables

We could try doing this by computing a Birkhoff sum. But how can we know our estimates
are correct?

∫
M

A dμ.



Estimating a physical measure is easiest done in a weak sense, i.e. by estimating
integrals against bounded observables

We could try doing this by computing a Birkhoff sum. But how can we know our estimates
are correct?

∫
M

A dμ.

Meta-theorem (truth level 4): For regular enough functions  and  large
enough,  and  are close to being uncorrelated.

The consequence is that a lot of properties that are true of i.i.d. random variables also
hold for chaotic signals. We can use this to our advantage…

A : M → R n

A(x) A(f n(x))



Monte Carlo estimation: i.i.d. case

Suppose we have probability measure , "observable" function 
.

We are given ind. samples .

We want to estimate .

μ ∈ P(M)
A ∈ L1(M, R)

A(x1), A(x2), … , A(xM ) ∼ μ

∫
M

A dμ



Monte Carlo estimation: i.i.d. case

Suppose we have probability measure , "observable" function 
.

We are given ind. samples .

We want to estimate .

μ ∈ P(M)
A ∈ L1(M, R)

A(x1), A(x2), … , A(xM ) ∼ μ

∫
M

A dμ

Theorem (Strong Law of Large Numbers): With probability ,

as .

1

ĀM :=
M

∑
m=1

A(xm) → ∫
M

A dμ
1

M

M → ∞



So, we can estimate the average by taking a really large sample:





So, we can estimate the average by taking a really large sample:

In [384]:
A(x) = x^(-0.9)





using QuadGK


expectationA = quadgk(A,0,1)[1] # true expectation of A


Out[384]:

9.999999279144092





So, we can estimate the average by taking a really large sample:

In [384]:
A(x) = x^(-0.9)





using QuadGK


expectationA = quadgk(A,0,1)[1] # true expectation of A


Out[384]:

9.999999279144092

In [387]:
Mmax = 30000000





sample = rand(Mmax) # μ is uniform on [0,1]





plot(1:Mmax, cummean(A.(sample[1:Mmax])))


xlabel("\$M\$"); xlim(1,Mmax)


ylabel("\$\\bar{A}_M\$")





plot(1:Mmax,fill(expectationA,Mmax),"k--");






So: we want some quantitative convergence estimates!



Convergence rates

The SLLN says:

"If an expectation of  exists, then sample means of  will converge."

This is as general as possible, and completely qualitative: there are  functions  for
which the sample means converge arbitrarily slowly.

To get quantitative convergence rates, we will need quantitative assumptions on  (in
particularly, on its tails).

A A

L1 A

A



Let's make a strong quantitative assumption on the tails of :  is bounded (or 
).

A A
A ∈ L∞(μ)



Let's make a strong quantitative assumption on the tails of :  is bounded (or 
).

A A
A ∈ L∞(μ)

Theorem (concentration bound): Suppose  is a bounded random variable. In
particular suppose  and . Then

as .

This says that except at the tails ( ) then  has exponential decay like a
normal random variable of standard deviation .

Note also that .

A

|A − E[A]| ≤ α V[A] ≤ σ2

P[∣∣ĀM − E[A]∣∣ > w] ≤ 2 exp(− (2 − ewα/σ2

))
w2

2σ2/M

M → ∞

ĀM ≧ σ2/α ĀM

σ/√M

V[A] ≤ α



Example:  is uniform on , . (So .)

We can therefore estimate

μ [0, 1] A = sin(100/x) σ ≤ α ≤ 2

In [389]:
using Statistics


M = 10000; A(x) = sin(100/x)





sample_means = Array{Float64}(undef,100) 


for i = 1:100 # generate 100 sample means


    x_vector = rand(M) # generate M sample points


    sample_means[i] = mean(A.(x_vector))


end




In [392]:
using Roots


a = 2; σ = true_σ


w = fzero(w->log(2exp(-w^2/(2σ^2/M)*(2-exp(w*a/σ^2)))/0.1),1/sqrt(M))


Out[392]:

0.01795346111089137



In [392]:
using Roots


a = 2; σ = true_σ


w = fzero(w->log(2exp(-w^2/(2σ^2/M)*(2-exp(w*a/σ^2)))/0.1),1/sqrt(M))


Out[392]:

0.01795346111089137

Our theorem tells us that  are  close to  almost always, but we can swap which
of the two we put the error bound on:

In [393]:
figure(figsize=(10,2))


scatter(sample_means,zeros(100))


errorbar([true_Amean],[0],xerr=[w],c="k")


plot(fill(true_Amean,2),[-1,1],"k--"); ylim(-1,1)


yticks([]);

ĀM w E[A]



In [394]:
figure(figsize=(10,6))


errorbar(sample_means,1:100,xerr=w,linestyle="",marker=".")


plot(fill(true_Amean,2),[0,101],"k--"); ylim(0,101)


yticks([]);





In [394]:
figure(figsize=(10,6))


errorbar(sample_means,1:100,xerr=w,linestyle="",marker=".")


plot(fill(true_Amean,2),[0,101],"k--"); ylim(0,101)


yticks([]);

We are only asking for the true mean to lie inside the sample mean 90% of the time. So



our error bars are a bit wide.



Central Limit Theorem

The central limit theorem gives us asymptotically the correct bounds:

Theorem (CLT): Suppose  has bounded variance . Then for all ,

Again, this is qualitative. There are ways to make it tighter, but statisticians have some
guidelines for when it's reasonable to use in statistical tests:

 is sufficiently large (  for unimodal data with short tails), or
the distribution of  already approximates a Gaussian

A σ2 θ ∈ R

lim
M→∞

P [|ĀM − E[A]| > ] = 2P(N (0, σ2) > θ)
θ

√M

M ≥ 20

A(x)



In [397]:
using Distributions


w = cquantile(Normal(0,true_σ),0.01/2)/sqrt(M)





figure(figsize=(10,6))


errorbar(sample_means,1:100,xerr=w,linestyle="",marker=".")


plot(fill(true_Amean,2),[0,101],"k--"); ylim(0,101)


yticks([]);





In [397]:
using Distributions


w = cquantile(Normal(0,true_σ),0.01/2)/sqrt(M)





figure(figsize=(10,6))


errorbar(sample_means,1:100,xerr=w,linestyle="",marker=".")


plot(fill(true_Amean,2),[0,101],"k--"); ylim(0,101)


yticks([]);



OK, but we don't expect to know the true variance either. How to estimate?



Basic estimator for  (implemented in std  etc):V(A)

s2
M =

M

∑
m=1

(A(xm) − ĀM )21

M − 1



Basic estimator for  (implemented in std  etc):V(A)

s2
M =

M

∑
m=1

(A(xm) − ĀM )21

M − 1

If  are Gaussian, thenA(xm)

√M ∼ tM−1
ĀM − E[A]

sM



In [399]:
sample_means = Array{Float64}(undef,100) 


sample_stds = Array{Float64}(undef,100) 


for i = 1:100 # generate 100 sample means


    x_vector = rand(M) # generate M sample points


    sample_means[i] = mean(A.(x_vector))


    sample_stds[i] = std(A.(x_vector))


end





tconst = cquantile(TDist(M-1),0.01/2)/sqrt(M)





figure(figsize=(10,6))


errorbar(sample_means,1:100,xerr=tconst*sample_stds,linestyle="",marker=".")


plot(fill(true_Amean,2),[0,101],"k--"); ylim(0,101)


yticks([]);





Estimating physical measures

We want to find a variable whose expectation is , but we can't always directly
access .

Since

is bounded and converges to  almost surely as  if , we
could try to use that.

i.e.

∫
M

A dρ

ρ

BN (x) =
N−1

∑
n=0

A(f n(x)), x ∼ μ
1

N

∫
M

A dρ N → ∞ dμ = h dx

√M(
¯̄¯̄¯̄¯̄¯̄¯̄
(BN )

M
− E[BN ]) → N(0, V[BN ])



But we don't actually know much about :

Almost sure convergence is not the same as convergence in expectation
Convergence rates?

Need an "obviously true" condition...

E[BN ]



Exponential decay of correlations (from Lebesgue)

We need some "obviously" true condition C:

Suppose  is sufficiently regular and  is sufficiently nice (e.g. absolutely continuous with
respect to Lebesgue). Then there exist  and  independent of ,

where  and  (  could be very large).

A μ
p ∈ N+ λ2 < 1 A, μ

∫
M

A ∘ f n dμ = ∫
M

A dρ ∫
M

dμ +
p−1

∑
q=1

cqξqn + Qn

ξ = e2πi/p |Qn| < Cλn
2 C



We can then estimate:

E[BN ] = ∫
M

N−1

∑
n=0

A(f n(x)) dμ = ∫
M

A dρ +
p−1

∑
q=1

cq +
N−1

∑
n=0

Qn

1

N

1

N

1 − ξqN

1 − ξq

1

N

= ∫
M

A dρ +O( )1
N



In [400]:
function birkhoff_mean( f, # map


                        A, # observation function


                        N; # time series length


                        x0=rand()) # initial value


    


    x = x0


        


    birkhoff_sum = 0.


    for n = 1:N


        birkhoff_sum += A(x)


        x = f(x)


    end


    birkhoff_sum / N # mean


end


Out[400]:

birkhoff_mean (generic function with 1 method)



In [405]:
M = 200; N = 30000


means_of_birkhoff_means = Array{Float64}(undef,100) 


stds_of_birkhoff_means = Array{Float64}(undef,100) 


f(x) = 3.8x*(1-x); A(x) = x^2





birkhoffmeans = Array{Float64}(undef,M)


for m = 1:M # generate M birkhoff means


    birkhoffmeans[m] = birkhoff_mean(f,A,N;x0=rand())


end


mean_of_birkhoff_means = mean(birkhoffmeans)


std_of_birkhoff_means = std(birkhoffmeans)





tconst = cquantile(TDist(M-1),0.05/2)/sqrt(M)





figure(figsize=(10,2))


errorbar(mean_of_birkhoff_means,[1],xerr=tconst*std_of_birkhoff_means,linestyle="",marker=".")


plot(fill(true_logistic38mean,2),[0,101],"k--"); ylim(0,2)


yticks([]);



Let's instead try to have some spin-up:

BN0,N =
N−1

∑
n=0

A(f n+N0(x)), x ∼ μ
1

N



Let's instead try to have some spin-up:

BN0,N =
N−1

∑
n=0

A(f n+N0(x)), x ∼ μ
1

N

if  is a multiple of .

E[BN ,N0 ] = ∫
M

N−1

∑
n=0

A(f n+N0(x)) dμ = ∫
M

A dρ +
p−1

∑
q=1

cqξqN0 +

N−1

∑
n=0

Qn+N0

1

N

1

N

1 − ξq

1 − ξq

1

N

= ∫
M

A dρ +O( λ−N0)1
N

N p



In [407]:
function birkhoff_mean( f, # map


                        A, # observation function


                        N; # time series length


                        N0=0, # spinup time


                        x0=rand()) # initial value


    


    x = x0


    for i = 1:N0 #spin-up time


        x = f(x)


    end


        


    birkhoff_sum = 0.


    for n = 1:N


        birkhoff_sum += A(x)


        x = f(x)


    end


    birkhoff_sum / N # mean


end


Out[407]:

birkhoff_mean (generic function with 1 method)



In [408]:
M = 200; N = 300; N0 = 10000


means_of_birkhoff_means = Array{Float64}(undef,100) 


stds_of_birkhoff_means = Array{Float64}(undef,100) 





for i = 1:100 # generate 100 mean-of-means


    birkhoffmeans = Array{Float64}(undef,M)


    for m = 1:M # generate M birkhoff means


        birkhoffmeans[m] = birkhoff_mean(f,A,N;N0=N0,x0=rand())


    end


    means_of_birkhoff_means[i] = mean(birkhoffmeans)


    stds_of_birkhoff_means[i] = std(birkhoffmeans)


end





tconst = cquantile(TDist(M-1),0.05/2)/sqrt(M)





figure(figsize=(10,6))


errorbar(means_of_birkhoff_means,1:100,xerr=tconst*stds_of_birkhoff_means,linestyle="",marker=".")


plot(fill(true_logistic38mean,2),[0,101],"k--"); ylim(0,101)


yticks([]);





Spin-up is also very important if it takes a while to "find" the physical measure:



In [415]:
f(x) = 3.7030314384x*(1-x) # remember this guy





M = 20; N = 3*10^6; N0 = 10^6


means_of_birkhoff_means = Array{Float64}(undef,100) 


stds_of_birkhoff_means = Array{Float64}(undef,100) 





for i = 1:100 # generate 100 mean-of-means


    birkhoffmeans = Array{Float64}(undef,M)


    for m = 1:M # generate M birkhoff means


        birkhoffmeans[m] = birkhoff_mean(f,A,N;N0=N0,x0=rand())


    end


    means_of_birkhoff_means[i] = mean(birkhoffmeans)


    stds_of_birkhoff_means[i] = std(birkhoffmeans)


end 





tconst = cquantile(TDist(M-1),0.05/2)/sqrt(M)





figure(figsize=(10,6))


errorbar(means_of_birkhoff_means,1:100,xerr=tconst*stds_of_birkhoff_means,linestyle="",marker=".")


plot(fill(true_logistic37030314384mean,2),[0,101],"k--"); ylim(0,101)


yticks([]);





We've been doing a lot of simulations, and they seem to work, but they don't always work:



We've been doing a lot of simulations, and they seem to work, but they don't always work:

In [421]:
LSV(x) = x < 0.5 ? x*(1+(2x)^(0.9)) : 2x-1 


A(x) = x


Out[421]:

A (generic function with 1 method)



In [422]:
M = 20; N = 30000; N0 = 30000





means_of_birkhoff_means = Array{Float64}(undef,100) 


stds_of_birkhoff_means = Array{Float64}(undef,100) 





for i = 1:100 # generate 100 mean-of-means


    birkhoffmeans = Array{Float64}(undef,M)


    for m = 1:M # generate M birkhoff means


        birkhoffmeans[m] = birkhoff_mean(LSV,A,N;N0=N0,x0=rand())


    end


    means_of_birkhoff_means[i] = mean(birkhoffmeans)


    stds_of_birkhoff_means[i] = std(birkhoffmeans)


end





tconst = cquantile(TDist(M-1),0.05/2)/sqrt(M)





figure(figsize=(10,6))


errorbar(means_of_birkhoff_means,1:100,xerr=tconst*stds_of_birkhoff_means,linestyle="",marker=".")


# plot(fill(true_LSVmean,2),[0,101],"k--"); ylim(0,101)


yticks([]);





For this map/observable combination, our Birkhoff means aren't normally distributed:

In [423]:
M = 2000


birkhoffmeans = Array{Float64}(undef,M)


for m = 1:M # generate M birkhoff means


    birkhoffmeans[m] = birkhoff_mean(LSV,A,N;N0=N0,x0=rand())


end


In [424]:
hist(birkhoffmeans,bins=100);


semilogy()




Out[424]:

Any[]



Statistical test for chaos

(Really a statistical test for decay of correlations)



In [374]:
bumpfunc_raw(x) = exp(-1/(x*(1-x)))


const bumpfunc_raw_cons = quadgk(bumpfunc_raw,0,1)[1]


bumpfunc(x) = bumpfunc_raw(x) / bumpfunc_raw_cons


WARNING: redefinition of constant bumpfunc_raw_cons. Th

is may fail, cause incorrect answers, or produce other 

errors.


Out[374]:

bumpfunc (generic function with 1 method)

In [375]:
function weighted_birkhoff_mean( f, # map


                        A, # observation function


                        N; # time series length


                        twist_angle = 0, # twist


                        N0=0, # spinup time


                        x0=rand()) # initial value


    


    x = x0


    for i = 1:N0 #spin-up time


        x = f(x)


    end


        


    twist = cis(twist_angle)


    twistpow = 1.


    birkhoff_sum = 0.


    for n = 1:N


        birkhoff_sum += twistpow*A(x)*bumpfunc(n/N)


        x = f(x)


        twistpow *= twist


    end


    birkhoff_sum / N # mean


end


Out[375]:



weighted_birkhoff_mean (generic function with 1 method)

In [379]:
weighted_birkhoff_mean(x->3.6x*(1-x), A, 1000;twist_angle=2)


Out[379]:

0.0003829297923169078 - 0.0007249808053832529im

In [ ]:



In [ ]:




