Explicit resolvent bounds for transfer operators

Oscar Bandtlow

School of Mathematical Sciences
Queen Mary University of London
Computer-Assisted Proofs, Proof Assistants and Visualization in Dynamical Systems, Pisa, 18-21 June 2024

19 June 2024

General set-up

Set-up
$\mathcal{L}: X \rightarrow X$ transfer operator of hyperbolic dynamical system T

Want

Calculate spectral data of \mathcal{L}

$$
\begin{aligned}
& \text { How? } \\
& \text { Take sequence of finite-rank discretisations }\left(\mathcal{L}_{k}\right) \text { with } \mathcal{L}_{k} \rightarrow \mathcal{L}
\end{aligned}
$$

Hope

spectral data of $\mathcal{L}_{k} \rightarrow$ spectral data of \mathcal{L}

Analytic scenario

Best case

Underlying system T is analytic: then possible to choose X such that $\mathcal{L}: X \rightarrow X$ is 'very' compact

Quantifying compactness

Let X be a Banach space, and $A: X \rightarrow X$ a bounded operator. Then for $n \in \mathbb{N}$

$$
s_{n}(A):=\inf \{\|A-F\|: \operatorname{rank} F<n\} \quad(n \in \mathbb{N})
$$

is called the n-th approximation number of A.

Properties

- $s_{n}(A) \rightarrow 0$ implies A compact
- if X is Hilbert, then

$$
\begin{aligned}
& s_{n}(A) \rightarrow 0 \text { iff } A \text { compact } \\
& s_{n}(A)=\sqrt{\lambda_{n}\left(A A^{*}\right)}(=n \text {-th singular value of } A)
\end{aligned}
$$

Analytic scenario ...

Assumption

Underlying system T is hyperbolic and analytic on a subset of \mathbb{C}^{d}

Fact I

Possible to choose X such that $\mathcal{L}: X \rightarrow X$ satisfies, for some a>0

$$
s_{n}(\mathcal{L})=O\left(\exp \left(-a n^{1 / d}\right)\right)
$$

B-Jenkinson 08, Slipantschuk-B-Just 22, Jézéquel 22

Fact II

Often \exists discretisation scheme $\left(\mathcal{L}_{k}\right)$ such that, for some $0<a^{\prime} \leq a$

$$
\left\|\mathcal{L}-\mathcal{L}_{k}\right\|=O\left(\exp \left(-a^{\prime} k^{1 / d}\right)\right)
$$

Wormell 19, B-Slipantschuk, Wormell-Vytnova

Fact III

Often X can be chosen to be a Hilbert space

Analytic scenario......

Consequences

Since $\left\|\mathcal{L}-\mathcal{L}_{k}\right\| \rightarrow 0$ it follows
spectral data of $\mathcal{L}_{k} \rightarrow$ spectral data of \mathcal{L}

Main problem

For a given $N \in \mathbb{N}$, how close is spectral data of \mathcal{L}_{N} to that of \mathcal{L} ?

Main problem quantified

Definition

Given $\sigma, \sigma^{\prime} \subset \mathbb{C}$ closed, and $z \in \mathbb{C}$, write

$$
\begin{aligned}
\operatorname{dist}(z, \sigma) & =\inf _{\lambda \in \sigma}|z-\lambda| \\
\operatorname{dist}\left(\sigma, \sigma^{\prime}\right) & =\sup _{z \in \sigma} \operatorname{dist}\left(z, \sigma^{\prime}\right)
\end{aligned}
$$

The Hausdorff distance of σ and σ^{\prime} is defined as

$$
\operatorname{Hdist}\left(\sigma, \sigma^{\prime}\right)=\max \left(\widehat{\operatorname{dist}}\left(\sigma, \sigma^{\prime}\right), \widehat{\operatorname{dist}}\left(\sigma^{\prime}, \sigma\right)\right)
$$

Note

Hdist is a metric on the set of closed subsets of \mathbb{C}.
Main problem
If A and B are compact operators, find explicitly computable upper bounds for $\operatorname{Hdist}(\sigma(A), \sigma(B))$.

Finite dimensional prototype

Theorem (Ostrowski 57, Henrici 62, Elsner 85)
Let $n \in \mathbb{N}$. Then there is $C_{n}>0$ such that for any $n \times n$ matrices A, B we have

$$
\operatorname{Hdist}(\sigma(A), \sigma(B)) \leq C_{n}(2 M)^{1-1 / n}\|A-B\|^{1 / n}
$$

where $M:=\max \{\|A\|,\|B\|\}$.

Remark

- Ostrowski, Henrici: $C_{n} \leq n$
- Elsner: $C_{n}=1$, provided $\|\cdot\|$ is spectral norm
- $1 \leq C_{n}=O(1)$ for arbitrary matrix norms

Basic approach

Key ingredient

Need resolvent estimates of the form

$$
\left\|(z l-A)^{-1}\right\| \leq g_{A}\left(\frac{1}{\operatorname{dist}(z, \sigma(A))}\right),
$$

for some function $g_{A}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$.

Example

If A is normal (that is $A^{*} A=A A^{*}$), then

$$
\left\|(z l-A)^{-1}\right\|=\frac{1}{\operatorname{dist}(z, \sigma(A))}
$$

Basic tool: Bauer-Fike Lemma

Lemma (Bauer and Fike 60)

Let $A: X \rightarrow X$ be bounded. Suppose there is an increasing surjection $g_{A}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$such that

$$
\left\|(z I-A)^{-1}\right\| \leq g_{A}\left(\frac{1}{\operatorname{dist}(z, \sigma(A))}\right)
$$

Then, for any bounded $B: X \rightarrow X$ we have

$$
\widehat{\operatorname{dist}}(\sigma(B), \sigma(A)) \leq h_{A}(\|A-B\|)
$$

where

$$
h_{A}(x)=\frac{1}{g_{A}^{-1}(1 / x)} .
$$

Proof of Bauer-Fike Lemma

Write $E=B-A$.
Claim

$$
z \in \sigma(B) \backslash \sigma(A) \Longrightarrow \frac{1}{\|E\|} \leq\left\|(z I-A)^{-1}\right\|
$$

Proof of claim

Let $z \in \sigma(B) \backslash \sigma(A)$ and suppose to the contrary that $\|E\|\left\|(z I-A)^{-1}\right\|<1$. Then

$$
z I-B=(z I-A)\left(I-(z I-A)^{-1} E\right)
$$

But $\left(I-(z I-A)^{-1} E\right)$ is invertible, so $z I-B$ is invertible, so $z \notin \sigma(B)$.

Wrapping up

If $z \in \sigma(B) \backslash \sigma(A)$ then, by the Claim

$$
\begin{aligned}
& \|E\|^{-1} \leq\left\|(z l-A)^{-1}\right\| \leq g_{A}\left(\frac{1}{\operatorname{dist}(z, \sigma(A))}\right) \\
\Longrightarrow & g_{A}^{-1}\left(\|E\|^{-1}\right) \leq \frac{1}{\operatorname{dist}(z, \sigma(A))} \\
\Longrightarrow & \operatorname{dist}(z, \sigma(A)) \leq \frac{1}{g_{A}^{-1}\left(\|E\|^{-1}\right)}=h_{A}(\|A-B\|)
\end{aligned}
$$

QED

Corollary
If A and B are normal, then $\operatorname{Hdist}(\sigma(A), \sigma(B)) \leq\|A-B\|$.

Resolvent bounds for trace class operators

Theorem (B\& Güven 15)
Let $A: X \rightarrow X$ be a trace class operator on a Hilbert space X, that is, $\sum_{n=1}^{\infty} s_{n}(A)<\infty$. Then

$$
\left\|(z l-A)^{-1}\right\| \leq \frac{1}{\operatorname{dist}(z, \sigma(A))} \prod_{n=1}^{\infty}\left(1+\frac{s_{n}(A)}{\operatorname{dist}(z, \sigma(A))}\right)^{2}
$$

Proof relies on following classic bound for trace class operators A

$$
\left\|(I+A)^{-1}\right\| \leq \frac{\prod_{n=1}^{\infty}\left(1+s_{n}(A)\right)}{\prod_{n=1}^{\infty}\left|1+\lambda_{n}(A)\right|}
$$

which in turn follows from the following bound for an $N \times N$ matrix

$$
\left\|A^{-1}\right\|=\frac{\prod_{n=1}^{N-1} s_{n}(A)}{|\operatorname{det}(A)|}
$$

Resolvent bounds for operators with summable approximation numbers

Theorem (B 24)
Let $A: X \rightarrow X$, where X is an arbitrary Banach space, have summable approximation numbers, that is, $\sum_{n=1}^{\infty} s_{n}(A)<\infty$. Then

$$
\left\|(z l-A)^{-1}\right\| \leq \frac{c}{\operatorname{dist}(z, \sigma(A))} \prod_{n=1}^{\infty}\left(1+\frac{c s_{n}(A)}{\operatorname{dist}(z, \sigma(A))}\right)^{4}
$$

where c is a constant not depending on A or X with $c \leq \sqrt{2 e}$.
Proof relies on Banach space Weyl inequality due to Pietsch 80.

Applications to transfer operators of analytic systems

Corollary

Suppose $\left(\mathcal{L}_{k}\right)$ is a discretisation of \mathcal{L} with $\left\|\mathcal{L}-\mathcal{L}_{k}\right\|=O\left(\exp \left(-a^{\prime} k^{1 / d}\right)\right)$. Moreover suppose that there is $M>0$ with

$$
\begin{gathered}
s_{n}(\mathcal{L}) \leq M \exp \left(-a n^{1 / d}\right) \\
s_{n}\left(\mathcal{L}_{k}\right) \leq M \exp \left(-a n^{1 / d}\right)
\end{gathered}
$$

Then there is an explicitly computable function $H_{a, d}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$with
$\operatorname{Hdist}\left(\sigma(\mathcal{L}), \sigma\left(\mathcal{L}_{k}\right)\right) \leq M H_{a, d}\left(\frac{\left\|\mathcal{L}-\mathcal{L}_{k}\right\|}{M}\right)=O\left(\exp \left(-c k^{1 / d(d+1)}\right)\right)$ where $c>0$.

