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Abstract. We study the initial value problem for the half Ginzburg-Landau-

Kuramoto (hGLK) equation with the second order elliptic operator having
rough coefficients and potential type perturbation. The blow-up of solutions
for hGLK equation with non-positive nonlinearity is shown by an ODE argu-

ment. The key tools in the proof are appropriate commutator estimates and
the essential self-adjointness of the symmetric uniformly elliptic operator with

rough metric and potential type perturbation.

1. Introduction. In this paper, we study the Cauchy problem for the focusing
half Ginzburg-Landau-Kuramoto (hGLK) type equation

i∂tu+DA,V u = i|u|p−1u, p > 1. (1)

Here DA,V is the fractional Hamiltonian (see [16] for a more general choice of the
fractional powers of the Laplacian)

DA,V = H1/2
A,V ,
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where

HA,V |C∞c (Rn)= −∆A,V = −∇ ·A∇+ V = −
n∑

j,k=1

∂j(Aj,k(x)∂k) + V

is a self-adjoint non-negative operator with a real-valued potential, such that the
positive Hermite matrix A and the potential V satisfy appropriate assumptions
given below. The fractional power of HA,V is defined by spectral analysis. For
details, see Definition 3.1 below. Beside the other ones, it is worth mentioning that
A is supposed to ensure that HA,0 is an elliptic second order operator in divergence
form. Furthermore, focusing stands for the “+” sign in front of the nonlinearity in
(1).

We recall that the classical Ginzburg-Landau equation is instead typically asso-
ciated with the standard Laplacian as Hamiltonian (see [24] for a recent review and
references on this classical subject).

The idea to replace the Laplace operator in the Hamiltonian of some quantum
mechanical models by its fractional powers was initiated in [16] and has been inten-
sively studied in the last decade (see [22], for instance, for motivations to take the
square root of the Laplacian and for an overview of the results in this context).

The half Ginzburg-Landau-Kuramoto equation (1), which is the main subject of
this paper, is closely connected with the Kuramoto model (see [15], [1]) and the idea
(proposed in [16] and [22]) to use the square root of the Laplacian in the definition
of the Hamiltonian.

In order to defineDA,V , we need to prove that−∆A,V has a self-adjoint extension,
where we regard the domain of −∆A,V as C∞c (Rn). One can find a self-adjoint
extension for −∆A,V with rough coefficients A and rough potential V by using the
Friedrichs type extension under the non-negativity assumption (see [4, Theorem
1.2.7]). Recall that the domain of Friedrichs type extension can be defined as the
set of all f ∈ H1(Rn), such that there exists g ∈ L2(Rn) satisfying

−∆A,V f = g (2)

in distributional sense. On the other hand, since the argument of Friedrichs type
extension does not guarantee the uniqueness of self-adjoint extensions, in order to
clarify the definition of fractional power of HA,V , we also need to show the unique-
ness of self-adjoint extensions of −∆A,V . In this case, we say that the operator
−∆A,V is essentially self-adjoint (the problem is referred to as quantum complete-
ness, too). Some sufficient conditions for the essential self-adjointness for general
symmetric operators on manifolds have been discussed in [3], for instance. In this
paper, we give a detailed proof of the essential self-adjointness of −∆A,V (see the
Subsection 1.2 below for the precise hypothesis).

We started the study of this model in [5], where local and global well-posedness
were discussed for the defocusing (“−” sign in front of the nonlinearity) equation

i∂tu+ (−∆)1/2u = −i|u|p−1u

in space dimensions n = 1, 2, 3. The blow-up result for the focusing equation

i∂tu+ (−∆)1/2u = i|u|p−1u

is obtained instead in [6] for n = 1. In [6], the proof of the blow-up result uses the
following simple commutator estimates:

‖[(−∆)1/2, f ]g‖L2 ≤ C‖f‖Lip‖g‖L2 ,
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where f is a Lipschitz function with corresponding norm ‖f‖Lip. In order to show
the blow-up of solutions to (1), we shall prove the following estimates

‖[f,DA,0]g‖L2 ≤ C‖f‖Ḃ1
∞,1
‖g‖L2 , (3)

‖[f,DA,V ]g‖L2 ≤ C‖f‖B1
∞,1
‖g‖L2 , (4)

where Bsp,q and Ḃsp,q are the standard inhomogeneous and homogeneous Besov
spaces on Rn, respectively. Since

B1
∞,1 ∪ Ḃ1

∞,1 ( Lip,

it would be natural to pose the question if the estimates (3) and (4) are optimal for
the case of rough coefficients; but this is not our goal, hence we do not investigate
this question, as well as the question if the commutator

[DA,V , 〈x〉]
is a bounded operator in L2. However, by replacing 〈x〉 by 〈x〉a, our aim shall be
to check that the commutator

[DA,V , 〈x〉a]

is an L2-bounded operator for any a ∈ (1/2, 1) and this shall be a sufficient tool to
obtain our blow-up result at least for n = 1.

1.1. Notations. We collect here some notations used along the paper. Given two
quantities A and B, we denote A . B (A & B, respectively) if there exists a positive
constant C such that A ≤ CB (A ≥ CB, respectively). We also denote A ∼ B
if A . B . A. Given two operators M and N , the commutator between them is
defined as the operator [M,N ] =MN−NM. For 1 ≤ p ≤ ∞, the Lp = Lp(Rn;C)

are the classical Lebesgue spaces endowed with norm ‖f‖Lp =
(∫

Rn |f(x)|p dx
)1/p

if p 6= ∞ or ‖f‖L∞ = ess supx∈Rn |f(x)| for p = ∞. Given an interval I ⊂ R,
bounded or unbounded, we define by Lp(I;X) the Bochner space of vector-valued

functions f : I → X endowed with the norm
(∫
I
‖f(s)‖pX dx

)1/p
for 1 ≤ p < ∞,

with similar modification as above for p = ∞. If f : I → X is a continuous
function up to the mth-order of derivatives, we write f ∈ Cm(I;X). For any
s ∈ R, we set Hs = Hs(Rn;C) := (1 − ∆)−s/2L2 and its homogeneous version

Ḣs = Ḣs(Rn;C) := (−∆)−s/2L2. For a pair of functions in L2, the inner product
〈f, g〉 = 〈f, g〉L2 is classically defined as 〈f, g〉 =

∫
Rn fḡ dx, being z̄, the usual

complex conjugate to z ∈ C. For x ∈ Rn instead, 〈x〉 :=
√

1 + |x|2. The space

W 1,∞ = W 1,∞(Rn) is the space of Lipschitz functions. The operator Ff(ξ) = f̂(ξ) is
the standard Fourier transform, F−1 being its inverse. For s ∈ R and 0 < p, q ≤ ∞,
Ḃsp,q = Ḃsp,q(Rn) is the homogeneous Besov space of functions having finite ‖ · ‖Ḃsp,q -
norm, the last defined as

‖f‖Ḃsp,q =

∑
j∈Z

2sjq‖Pjf‖qLp

1/q

with obvious modifications for p, q = ∞. The non-homogeneous version Bsp,q =
Bsp,q(Rn) is induced by the norm

‖f‖Bsp,q = ‖Qf‖Lp +

∑
j∈N

2sjq‖Pjf‖qLp

1/q

.
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Here the Littlewood-Paley projectors Pj are defined by means of a radial cut-off
function χ0 ∈ C∞c (Rn) and the dyadic functions ϕj(ξ) = χ0(2−jξ) − χ0(2−j+1ξ)
yielding to the partition of the unity χ0(ξ) +

∑
j≥1 ϕj(ξ) = 1, for any ξ ∈ Rn.

Hence the projectors are given by Qf := F−1 (χ0Ff) and Pjf := F−1 (ϕjFf). The
Lorentz space Lβ,∞ is given by

Lβ,∞ = {f : ‖f‖β
Lβ,∞

= sup
t>0

tβ |{|f | > t}| <∞}.

For 1 ≤ p ≤ ∞, p′ is the conjugate index defined by 1/p+ 1/p′ = 1.

1.2. Assumptions and the main results. We give now the precise assumptions
that we make on the structure of our Hamiltonian −∆A,V and the main results
contained in the paper. We start with the hypotheses on A = A(x), which is a
Hermitian matrix-valued function. We assume:

A1. Uniform ellipticity of A: There exist two positive constants C1 and C2 satis-
fying

C1|ξ|2 ≤
n∑

j,k=1

Aj,k(x)ξjξk ≤ C2|ξ|2, ∀ ξ ∈ Cn, ∀x ∈ Rn; (5)

A2. Regularity of the coefficients: A is in the Lipschitz class of matrix-valued
functions, namely

Aj,k ∈W 1,∞(Rn) j, k ∈ {1, · · · , n};

A3. Boundedness: The multiplication operator

f 7→ ((−∆)1/4Aj,k)f

maps Ḣ1/2 into L2, namely

max
j,k
‖((−∆)1/4Aj,k)f‖L2 ≤ C‖(−∆)1/4f‖L2 , ∀ f ∈ Ḣ1/2. (6)

Let us turn our attention to the potential perturbation V = V (x). It is a real-
valued function satisfying the following conditions:

H1. Boundedness of the potential:

V ∈ Lq,∞(Rn) + L∞(Rn)

for some q with q > max{2, n/2};
H2. Non-negativity of the Hamiltonian −∆A,V : There exists θ ∈ (0, 1) such that

θ〈A∇f,∇f〉+ 〈V f, f〉 ≥ 0, ∀ f ∈ C∞0 (Rn).

Though for the moment it is not our aim to weaken the non-negativity assumption
in H2, it is worth mentioning that this hypothesis could be relaxed, at least in the
case n = 1. For example for A = 1, perturbations of the Laplacian which belongs to
the Miura class should imply positivity of such Hamiltonians (see [11]). The non-
negativity assumption is needed to guarantee that the square root of the operator
is well defined.

First we state the result on the self-adjoint extension of the operator−∆A,V . This
theorem is crucial for the local well-posedness theory below and for the commutator
estimates we are going to prove.
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Theorem 1.1. Assume the assumptions A1,A2,H1 and H2 are satisfied. Then
the operator −∆A,V is essentially self-adjoint, i.e. there exists a unique self-adjoint
extension HA,V of this operator with domain

D(HA,V ) = H2(Rn).

The key point in our blow-up result shall be instead the following commutator
estimate.

Proposition 1. Assume the conditions A1,A2,A3 and H1,H2 are satisfied. We
have the two commutator estimates in two cases below.

Case 1. Let f ∈ B1
∞,1. If V also belongs to Lq,∞ for q > max{2, n},

‖[f,DA,V ]g‖L2 ≤ C
(
‖f‖Ḃ1

∞,1
+ ‖V ‖Lq,∞‖f‖L∞

)
‖g‖L2 . (7)

Case 2. Suppose n ≥ 3 and f ∈ Ḃ1
∞,1. If V also belongs to Ln/2,∞ then,

‖[f,DA,V ]g‖L2(Rn) ≤ C‖f‖Ḃ1
∞,1(Rn)

‖g‖L2(Rn). (8)

Next we turn to the local well-posedness of (1).

Theorem 1.2. Let n = 1, 2, 3. Assume that the conditions A1,A2,H1 and H2 are
satisfied. Then for any u0 ∈ Hs with s = 1 if n = 1 or s = 2 if n = 2, 3, there
exists a positive time T > 0 and a solution u ∈ C([0, T );Hs) to (1).

The next result is the finite time blow-up result for solutions to (1) in one space
dimension.

Theorem 1.3. Let n = 1. Assume the conditions A1,A2,A3 and H2 are satisfied
and V ∈ Lq,∞ for some q with q > 2.

Case 1. Let u0 ∈ L2 and w ∈ B1
∞,1 satisfy 1/w ∈ L∞ ∩ L2 and the following

estimate:

‖wu0‖2L2 ≥ C
2
p−1 ‖1/w‖

2
p−1

L∞ ‖w‖
2
p−1

B1
∞,1
‖1/w‖2L2 . (9)

If there exists a solution u ∈ C([0, Tmax);L2 ∩ Lp+1), then the maximal time of
existence is finite: Tmax <∞.

Case 2. Suppose that V ≡ 0. Let 1 < p < 3 and let u0 ∈ L2\{0}. If there exists a
solution u ∈ C([0, Tmax);L2 ∩ Lp+1), then the maximal time of existence is finite:
Tmax <∞.

Remark 1. Here the condition p = 3 corresponds to the critical exponent pF =
1 + 2/n defined also in a multidimensional framework. See the results in [6].

2. Self-adjointness of −∆A,V . The proof of Theorem 1.1 can be reduced to the
proof that −∆A,0 is essentially self-adjoint. Indeed, if −∆A,0 has unique self-adjoint
extension HA,0 with domain

D(HA,0) = H2(Rn),

then we can use the estimate (29) of Lemma A.1 in combination with the KLMN
Theorem (see [21, Theorem X.17]) and deduce that HA + V is an essentially self-
adjoint operator with domain H2(Rn).

Therefore, it remains to verify that −∆A,0 is essentially self-adjoint. This is done
below in Proposition 2 and this yields to Theorem 1.1. Firstly, we recall sufficient
equivalent conditions guaranteeing the self-adjointness property of an operator.
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Lemma 2.1. [21, Theorem X.26] Assume the operator −∆A,V is non-negative (in
sense of quadratic form acting on C∞0 functions). Then the following conditions
are equivalent:

i) −∆A,V is essentially self-adjoint;
ii) the kernel of the adjoint operator satisfies

Ker (−∆A,V + 1)∗ = {0};
iii) the range of (−∆A,V + 1) is dense in L2(Rn):

[Ran (−∆A,V + 1)] = L2(Rn). (10)

Next, we recall some fundamental operator calculus.

Lemma 2.2. For f smooth enough,

[−∆A,V , f ] = (∇f) ·A∇+∇ ·A(∇f). (11)

Proof. For completeness, we shall sketch the proof. The relation (11) follows directly
from the simple commutator rule

[B1B2, f ] = B1B2f − fB1B2 −B1fB2 +B1fB2

= B1[B2, f ] + [B1, f ]B2.

Lemma 2.3. Let A be non-negative self-adjoint operator. Then

[(λ+A)−1, f ] = −(λ+A)−1[A, f ](λ+A)−1.

Proof. For completeness, we shall sketch the proof. Noting the identity

0 = [(λ+A)(λ+A)−1, f ]

= (λ+A)[(λ+A)−1, f ] + [A, f ](λ+A)−1

and applying the resolvent (λ+A)−1 from the left, we obtain the assertion.

We can now give the following:

Proposition 2. Assume the assumptions A1 and A2 are satisfied. Then the opera-
tor −∆A,0 is essentially self-adjoint, i.e. there exists a unique self-adjoint extension
HA of this operator with domain

D(HA) = H2(Rn).

Proof. We show that the closure (−∆A,0) is self-adjoint. Lemma A.2 in the Appen-
dix A below, implies that

D((−∆A,0)) = H2(Rn).

Thanks to symmetry and regularity of A, there exists at least one self-adjoint
extension of −∆A,0. Indeed, since −∆A,0 is symmetric and A ∈ W 1,2

loc (Rn), the
quadratic form

Q(f) =

n∑
j,k=1

∫
Rn
Ajk(x)∂xjf(x)∂xkf(x) dx, D(Q) = H1(Rn)

is closable and possesses a self-adjoint operator HA satisfying

Q(f) = 〈HAf, f〉
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for any f ∈ D(HA) ⊂ H1(Rn) (see [4, Theorem 1.2.5]). We recall that any self-

adjoint extension of −∆A,0 is also an extension of (−∆A,0) and so is HA.

Now we show that the self-adjointness of HA implies that also (−∆A,0) is self-
adjoint. For this purpose, we shall check the equivalent assertion (10) in Lemma
2.1. Let h ∈ L2 satisfy

h ⊥ Ran(−∆A,0 + 1), (12)

namely h is orthogonal to the range of (−∆A,0 +1). Our goal is to show that h = 0.
We define the Yosida type approximation of Laplacian

ρj = j(j −∆)−1

with j ≥ 1. We show that

(−∆A,0)(ρjf)
L2

⇀ HAf, ∀f ∈ D(HA).

We remark that, for any j ≥ 1 and f ∈ L2, ρjf ∈ H2. For any b ∈ L2,

〈(−∆A,0)ρjf, b〉 = lim
k→∞

〈(−∆A,0)ρjf, ρkb〉

= lim
k→∞

〈f, ρj(−∆A,0)ρkb〉

= lim
k→∞

(〈f, (−∆A,0)ρjρkb〉+Rj,k),

where Rj,k = [ρj , (−∆A,0)]ρk. Since for g ∈ H2(Rn), (−∆A,0)g = ∇ · A∇g in the
distributional sense and ρj commutes with ∇, by Lemma 2.2,

[ρj , (−∆A,0)] = j∇ · [(j −∆)−1, A]∇
= j(j −∆)−1∇ · [−∆, A]∇(j −∆)−1,

where

[∆, A]j,k = (∇Aj,k) · ∇+∇ · (∇Aj,k).

Therefore

|Rj,k| = j|〈∇f, (j −∆)−1[A,∆]∇(j −∆)−1ρkb〉|

=
∑

m1,m2,m3

j|〈∂m1f, (j −∆)−1(∂m2Am1,m3)ρk∂m2∂m3(j −∆)−1b〉|

+
∑

m1,m2,m3

j|〈∂m1
f, (j −∆)−1∂m2

(∂m2
Am1,m3

)ρk∂m3
(j −∆)−1b〉|

≤ n3‖∇A‖L∞‖ρj∇f‖L2‖ρk∇⊗∇(j −∆)−1b‖L2

+ n3‖∇A‖L∞‖j1/2(j −∆)−1∇⊗∇f‖L2‖ρkj1/2(j −∆)−1∇b‖L2 .

Recall that for g ∈ L2

j1/2∇(j −∆)−1g → 0 in L2

and

∇⊗∇(j −∆)−1g → 0 in L2,

where

(∇⊗∇)m,` = ∂m∂`.
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Since f ∈ H1, we get

n−3 lim sup
j→∞

lim sup
k→∞

|Rj,k|

≤ lim sup
j→∞

‖∇A‖L∞‖ρj∇f‖L2‖∇ ⊗∇(j −∆)−1b‖L2

+ lim sup
j→∞

‖∇A‖L∞‖j1/2(j −∆)−1∇⊗∇f‖L2‖j1/2(j −∆)−1∇b‖L2

≤ lim sup
j→∞

‖∇A‖L∞‖∇f‖L2‖∇ ⊗∇(j −∆)−1b‖L2

+ lim sup
j→∞

‖∇A‖L∞‖∇f‖L2‖j1/2(j −∆)−1∇b‖L2 = 0.

Moreover, as j →∞,
lim
k→∞

〈f, (−∆A,0)ρjρkb〉 = lim
k→∞

〈ρjHAf, ρkb〉 = 〈ρjHAf, b〉 → 〈HAf, b〉.

Hence, if h satisfies (12), then for any f ∈ D(HA),

〈(HA + 1)f, h〉 = lim
j→∞
〈((−∆A,0) + 1)ρjf, h〉 = 0.

Therefore, h ⊥ Ran(HA + 1) and the self-adjointness of HA implies h = 0.

3. Local well-posedness of (1). This section is devoted to the proof of the lo-
cal well-posedness for the Cauchy problem associated with the model (1), where
u0(x) = u(0, x) is considered as initial datum. More precisely, we give now a proof
of Theorem 1.2.

At first, we give the definition of DA,V . We use a functional calculus for the
fractional powers of self-adjoint operators based on the integral representation below
(see (4.7) in [7], for example).

Definition 3.1. Let A be a non-negative self-adjoint operator. For 0 < s < 2,

As/2 = C0(s)

∫ ∞
0

λs/2−1A(λ+A)−1dλ (13)

where

C0(s) =

(∫ ∞
0

λs/2−1(λ+ 1)−1dλ

)−1
=

sin
(
sπ2
)

π
.

We remark that here the formula

xs/2 =
sin
(
sπ2
)

π

∫ +∞

0

ts/2−1
x

t+ x
dt, x > 0 , s ∈ (0, 2) (14)

plays a critical role.
Now we can conclude this section by proving Theorem 1.2.

Proof of Theorem 1.2. We rewrite (1) in the integral form by means of its Duhamel’s
formulation

u(t) = eitDA,V u0 +

∫ t

0

ei(t−τ)DA,V |u(τ)|p−1u(τ) dτ. (15)

Here eitDA,V stands for the propagator associated with linear hGLK equation,
namely (1) with trivial RHS. Briefly speaking, eitDA,V f solves the linear hGLK
with f as initial datum. By Lemma A.2, eitDA,V is a uniformly bounded operator
on Hs for n = 1 and s = 1 or for n = 2, 3 and s = 2. A standard fixed point argu-
ment implies that (15) has a solutions in C([0, T );H1) if n = 1 and in C([0, T );H2)
if n = 2, 3.
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4. Commutator estimates. In this section, we assume A1, A2, A3, H1, and H2.

4.1. Preliminary. The following representation is essential for our approach to
study commutator estimates.

Lemma 4.1.〈
g, [(HA,V )s/2, f ]h

〉
= −C0(s)

∫ ∞
0

λs/2〈(λ+HA,V )−1g, [HA,V , f ](λ+HA,V )−1h〉 dλ.

Proof. By (13), we have〈
g, [Hs/2A,V , f ]h

〉
= C0(s)

∫ ∞
0

λs/2−1〈g, [HA,V (λ+HA,V )−1, f ]h〉 dλ

= C0(s)

(∫ ∞
0

λs/2〈g, [(λ+HA,V )−1, f ]h〉 dλ
)
.

Therefore Lemma 2.3 implies Lemma 4.1.

Lemma 4.2. Let A be a non-negative self-adjoint operator. For σ > 1
4 ,

‖(·)σ−3/4A1/4(·+A)−σf‖L2((0,∞);L2) ≤
(∫ ∞

0

λ2σ−3/2

(λ+ 1)2σ
dλ

)1/2

‖f‖L2 .

Proof. Using the spectral measures Eµ for A (see [20, Theorem VII.7], for instance),
we can write

‖(·)σ−3/4A1/4(·+A)−σf‖2L2((0,∞);L2)

≤
∫ ∞
0

∫ ∞
0

λ2σ−3/2µ1/2

(λ+ µ)2σ
d‖Eµ(f)‖2L2 dλ

=

∫ ∞
0

λ2σ−3/2

(λ+ 1)2σ
dλ ‖f‖2L2 .

In the next lemma, we recall the well-known result that the function t→ ts, s ∈
[0, 1], is operator monotone on the set of bounded operators in a Hilbert space. One
can see [18] for the original matrix-valued version of the statement, [10, Proposition
4.2.8] for the case s = 1/2 and [19] for a short proof of the general case. See also
[9, 12].

Lemma 4.3 ([18], [19], [10]). Let (A1, D(A1)) and (A2, D(A2)) be two positive
self-adjoint operators on L2 satisfying D(A2) ⊂ D(A1) and

〈f,A1f〉 ≤ 〈f,A2f〉.

Then

〈f,As1f〉 ≤ 〈f,As2f〉 (16)

for 0 < s ≤ 1. Moreover, if A1 is invertible, so is A2, and

〈f,A−12 f〉 ≤ 〈f,A−11 f〉.
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4.2. Fractional Leibniz rules. Here we collect some useful Leibniz rules for frac-
tional power of the classical Laplace operator.

Lemma 4.4 ([23, Proposition 4.1.A]). Let f be a Lipschitz function. Then for any
g ∈ H1

‖[(−∆)1/2, f ]g‖L2 ≤ C‖f‖Lip‖g‖L2 .

Lemma 4.5 ([14, Lemma A.12]). For 0 < s < 1, there exists C > 0 such that

‖(−∆)s/2(fg)− f(−∆)s/2g − g(−∆)s/2f‖L2 ≤ C‖f‖L∞‖(−∆)s/2g‖L2 .

Remark 2. In [17], one can find the refined estimate

‖(−∆)s/2(fg)− f(−∆)s/2g − g(−∆)s/2f‖L2 . ‖f‖BMO‖(−∆)s/2g‖L2 .

and more general estimates, but for simplicity, we use only Lemma 4.5.

In the sequel, we shall also need a generalization, obtained in [8], of the classical
Kato-Ponce estimate, introduced in the seminal and well celebrated work [13]. We
recall it.

Lemma 4.6 ([8, Theorem 1]). Let 1/2 < r <∞, 1 < p1, p2, q1, q2 ≤ ∞ satisfying

1

r
=

1

p1
+

1

q1
=

1

p2
+

1

q2
.

For s > max{0, n/r − n} or s ∈ 2N (the set of positive even integers), there exists
C > 0 such that

‖(−∆)s/2(fg)‖Lr

≤ C‖(−∆)s/2f‖Lp1 ‖g‖Lq1 + C‖f‖Lp2‖(−∆)s/2g‖Lq2 .

4.3. Key estimate for Proposition 1. The purpose of this subsection is to show
that the commutator between DA,V and a localized weight function is realized as a
bounded operator in L2 under the following assumptions:

‖(λ+HA,V )−σf‖L2 . ‖(λ−∆)−σf‖L2 , ∀f ∈ L2, λ > 0 (17)

for some 1/4 < σ ≤ 1;

‖DA,V f‖L2 . ‖(−∆)1/2f‖L2 , ∀f ∈ H1; (18)

‖(−∆)1/4f‖L2 . ‖H1/4
A,V f‖L2 , ∀f ∈ H1/2; (19)

for any g, h ∈ H1/2

〈g,∇(A(∇f)h)〉 . ‖(−∆)1/4∇f‖L∞‖(−∆)1/4g‖L2‖h‖L2

+ ‖∇f‖L∞‖(−∆)1/4g‖L2‖(−∆)1/4h‖L2 .
(20)

Lemma 4.7. Assume A1, A2, A3, H1 and H2. Let A and V satisfy the properties
(17), (18), (19), and (20). Then for any j ∈ Z,

‖[DA,V , Pjf ]P≤jh‖L2 . 2j‖Pjf‖L∞‖h‖L2 , (21)

|〈P>jg, [DA,V , Pjf ]P>jh〉| . 2j‖Pjf‖L∞‖g‖L2‖h‖L2 . (22)



LWP AND BLOW-UP FOR HALF GLK EQUATION IN A ROUGH METRIC 2671

Proof. We first prove (21). The same relation given at the beginning of the proof
of Lemma 2.2 and the triangular inequality gives

‖[DA,V , Pjf ]P≤jh‖L2

≤ ‖DA,V (−∆)−1/2[(−∆)1/2, Pjf ]P≤jh‖L2

+ ‖[DA,V (−∆)−1/2, Pjf ](−∆)1/2P≤jh‖L2 .

(23)

By (18) and Lemma 4.4, the first term on the R.H.S. of (23) is estimated as

‖DA,V (−∆)−1/2[(−∆)1/2, Pjf ]P≤jh‖L2

≤ ‖[(−∆)1/2, Pjf ]P≤jh‖L2 . 2j‖Pjf‖L∞‖P≤jh‖L2 ,

where we have used the fact that

‖∇Pjf‖L∞ . 2j‖Pjf‖L∞ .

By (18), the second term on the R.H.S. of (23) is estimated as

‖[DA,V (−∆)−1/2, Pjf ](−∆)1/2P≤jh‖L2

. ‖Pjf‖L∞‖(−∆)1/2P≤jh‖L2 . 2j+1‖Pjf‖L∞‖h‖L2 .

We next prove (22). By Lemma 4.1, it is enough to show∣∣∣∣∫ ∞
0

λ1/2
〈
(λ+HA,V )−1P>jg,∇ ·A(∇Pjf)(λ+HA,V )−1P>jh

〉
dλ

∣∣∣∣
. 2j‖Pjf‖L∞‖g‖L2‖h‖L2 . (24)

By (19) and (20), we can continue the estimate (24) by

. 23j/2‖A‖L∞‖Pjf‖L∞

×
∫ ∞
0

λ1/2‖H1/4
A,V (λ+HA,V )−1P>jg‖L2‖(λ+HA,V )−1P>jh‖L2 dλ

+ 2j‖A‖W 1,∞‖Pjf‖L∞

×
∫ ∞
0

λ1/2‖H1/4
A,V (λ+HA,V )−1P>jg‖L2‖H1/4

A,V (λ+HA,V )−1P>jh‖L2 dλ.

Then, by Lemma 4.2, the first integral on the R.H.S. of the last inequality is esti-
mated by

23j/2
∫ ∞
0

λ1/2‖H1/4
A,V (λ+HA,V )−1P>jg‖L2‖(λ+HA,V )−1P>jh‖L2 dλ

. 23j/2
∫ ∞
0

λσ−1/2‖H1/4
A,V (λ+HA,V )−1P>jg‖L2‖(λ−∆)−σP>jh‖L2 dλ

. 2j‖(·)1/4H1/4
A,V (·+HA,V )−1P>jg‖L2(0,∞;L2)

× ‖(·)σ−3/4(−∆)1/4(· −∆)−σP>jh‖L2(0,∞;L2)

. 2j‖g‖L2‖h‖L2



2672 L. FORCELLA, K. FUJIWARA, V. GEORGIEV AND T. OZAWA

with 1/4 < σ ≤ 1 satisfying (17). The second integral is also estimated by

2j
∫ ∞
0

λ1/2‖H1/4
A,V (λ+HA,V )−1P>jg‖L2‖H1/4

A,V (λ+HA,V )−1P>jh‖L2 dλ

. 2j‖(·)1/4H1/4
A,V (·+HA,V )−1P>jg‖L2(0,∞;L2)

× ‖(·)1/4H1/4
A,V (·+HA,V )−1P>jh‖L2(0,∞;L2)

. 2j‖g‖L2‖h‖L2 .

4.4. Proof of Proposition 1. We are now in a position to prove Proposition 1.
We treat separately the two cases.

Proof of Case 1. At first, we show that Lemma 4.7 implies (7) with V ≡ 0. (17),
(18), and (19) follow from A1. Indeed, (5) implies

C1‖∇f‖2L2 ≤ 〈f,HA,0f〉 = ‖DA,0f‖2L2 ≤ C2‖∇f‖2L2

which coincides with (18). Therefore, Lemma 4.3 can be applied withHA,0 and −∆.
Hence, the relation (16), with s = 1/2, A1 = HA,0 and A2 = −C∆, coincides with
(19). Moreover (5) implies that one can find two constants c, C with 0 < c ≤ 1 ≤ C
such that

c 〈f, (λ−∆)f〉 ≤ 〈f, (λ+HA,0)f〉 ≤ C〈f, (λ−∆)f〉
for any f ∈ H2 and λ ≥ 0. Then, Lemma 4.3 implies that for any f ∈ L2

〈f, (λ+HA,0)−1f〉 ≤ 〈f, c−1(λ−∆)−1f〉,

which coincides with (17) with σ = 1/2.
(20) may be obtained by decomposing ∂j(Aj,k(∂kf)h) as follows:

∂j(Aj,k(∂kf)h) = (−∆)1/4Rj(−∆)1/4(Aj,k(∂kf)h)

= (−∆)1/4RjAj,k(−∆)1/4((∂kf)h)

+ (−∆)1/4Rj((−∆)1/4Aj,k)(∂kf)h

+ (−∆)1/4RjB(Aj,k, (∂kf)h), (25)

where

F(Rjf) =
ξj
|ξ|
f̂(ξ)

is, up to a complex constant, the standard Riesz transform, and

B(Aj,k, ∂kf) := (−∆)1/4(Aj,k∂kf)−Aj,k(−∆)1/4∂kf − ∂kf(−∆)1/4Aj,k.

The first term on the R.H.S. of (25) is easily estimated by the Hölder inequality
and Lemma 4.6. Here we recall that (5) implies ‖Aj,k‖L∞ < ∞. The other terms
are estimated similarly, since by Lemma 4.5 and (6), we have

‖B(Aj,k, (∂kf)h)‖L2 . ‖A‖L∞‖(−∆)1/4((∂kf)h)‖L2

and

‖((−∆)1/4Aj,k)(∂kf)h‖L2 . ‖(−∆)1/4((∂kf)h)‖L2 ,

respectively.
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We now show Proposition 1 with V ≡ 0. Since

〈g, [DA,0, f ]h〉
= 〈P≤jg, [DA,0, f ]h〉+ 〈g, [DA,0, f ]P≤jh〉+ 〈P>jg, [DA,0, f ]P>jh〉

= −〈h, [DA,0, f ]P≤jg〉+ 〈g, [DA,0, f ]P≤jh〉+ 〈P>jg, [DA,0, f ]P>jh〉,

Lemma 4.7 implies the estimate.
We next show (7) with V 6≡ 0. (7) follows from the fact that for any g ∈ H1,

‖(DA,0 −DA,V )g‖L2 ≤ ‖V ‖Lq,∞‖g‖L2 .

Indeed, by Definition 3.1

− C0(1)−1(DA,0 −DA,V )g

=

(∫ ∞
0

λ1/2((λ+HA,0)−1 − (λ+HA,V )−1) dλ

)
g

=

(∫ 1

0

λ1/2((λ+HA,0)−1 − (λ+HA,V )−1) dλ

)
g

+

(∫ ∞
1

λ1/2(λ+HA,V )−1V (λ+HA,0)−1 dλ

)
g.

The L2-norm of the first integral on the R.H.S. of the last equality is shown to be
bounded by the fact that for any non-negative self-adjoint operator A

‖(λ+A)−1g‖L2 ≤ λ−1‖g‖L2 .

By (5) and Lemma 4.3,

‖V (λ+HA,0)−1g‖L2 . ‖V ‖Lq,∞‖(−∆)n/2q(λ+HA,0)−1g‖L2

. ‖V ‖Lq,∞‖Hn/2qA,0 (λ+HA,0)−1g‖L2

. ‖V ‖Lq,∞λ−1+n/2q‖g‖L2 .

Then, the L2-norm of the second integral is shown to be bounded by∫ ∞
1

λ−3/2+n/2q dλ <∞.

Proof of Case 2. (8) follows if we are able to show that

−∆ ∼ −∆A,V , (26)

where the equivalence is in the sense of bilinear forms. Indeed, if (26) is shown,
then (17), (18), and (19) are satisfied and therefore Lemma 4.7 implies (8). The
relation (26) is proved as follows:

〈f,−∆A,V f〉 ≥ (1− θ)〈A∇f,∇f〉
≥ C1(1− θ)‖∇f‖2L2 ,

〈f,−∆A,V f〉 ≤ C2‖∇f‖2L2 + ‖|V |1/2f‖2L2

≤ C2‖∇f‖2L2 + C2‖|V |1/2‖2Ln,∞‖(−∆)1/2f‖2L2 .
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5. The finite time blow-up result. Theorem 1.3 may be concluded be means of
the following ODE argument.

Lemma 5.1. Let A,B > 0 and q > 1. If f ∈ C1([0, T );R+) satisfies f(0) > 0 and

f ′ +Af = Bfq on [0, T ) for some T > 0,

then

f(t) = e−At
(
f(0)−(q−1) +A−1Be−A(q−1)t −A−1B

)− 1
q−1

.

Moreover, if f(0) > A
1
q−1B−

1
q−1 , then T < − 1

A(q−1) log(1−AB−1f(0)−q+1).

Proof. For completeness, we sketch the proof. Let f = e−Atg. Then

g′ = Be−A(q−1)tgq

and therefore,

1

1− q

(
g1−q(t)− g1−q(0)

)
=

B

A(1− q)
(e−A(q−1)t − 1).

The conclusion follows straightforward.

We exploit Lemma 5.1 in the proof of Theorem 1.3.

Proof of Theorem 1.3. Case 1. Let w ∈ B1
∞,1(R) be a non-negative function satis-

fying 1/w ∈ L∞ ∩ L2. We put u = vw. Then v satisfies

∂tv +
i

w
[DA,V , w]v = wp−1|v|p−1v. (27)

By multiplying v on the both hand sides of (27), integrating the resulting equation,
and taking the real part,

1

2

d

dt
‖v(t)‖2L2

≥ ‖w
p−1
p+1 v(t)‖p+1

Lp+1 − ‖1/w‖L∞‖[DA,V , w]v‖L2‖v‖L2

≥ ‖1/w‖−p+1
L2 ‖v‖p+1

L2 − ‖1/w‖L∞‖[DA,V , w]v‖L2‖v‖L2

≥ ‖1/w‖−p+1
L2 ‖v‖p+1

L2 − C‖1/w‖L∞‖w‖B1
∞,1
‖v‖2L2 , (28)

where we have used that

‖v‖L2 ≤ ‖1/w
p−1
p+1 ‖

L
2(p+1)
p−1
‖w

p−1
p+1 v(t)‖Lp+1 ≤ ‖1/w‖

p−1
p+1

L2 ‖w
p−1
p+1 v(t)‖Lp+1 .

By (28), we apply Lemma 5.1 with

A = C‖1/w‖L∞‖w‖B1
∞,1

,

B = ‖1/w‖−p+1
L2 .

Then (9) implies that ‖v(t)‖L2 is not uniformly controlled.

Case 2. We rescale w ∈ Ḃ1
∞,1 as wR = w(·/R) with R > 0. Then by (28),

1

2

d

dt
‖v(t)‖2L2

≥ ‖1/wR‖−p+1
L2 ‖v‖p+1

L2 − ‖1/wR‖L∞‖[(−∆A,V )1/2, wR]v‖L2‖v‖L2

≥ R−(p−1)/2‖1/w‖−p+1
L2 ‖v‖p+1

L2 − CR−1‖1/w‖L∞‖w‖Ḃ1
∞,1
‖v‖2L2 .
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We apply Lemma 5.1 with

A = CR−1‖1/w‖L∞‖w‖B1
∞,1

,

B = R−(p−1)/2‖1/w‖−p+1
L2 ,

which means AB−1 ∼ R−1+(p−1)/2. Therefore, if 1 < p < 3, AB−1 → 0 as R→∞
and this shows Theorem 1.3.

Appendix A. Equivalence of Sobolev norms. We show the equivalence of the
standard Hs-norms (for s = 1, 2) and the ones induced by the Hamiltonian HA,V .
We begin with simple a priori estimates that imply the equivalence of H1 norms.

Lemma A.1. Assume H2. If V ∈ Lq,∞(Rn)+L∞(Rn) with q > max{1, n/2}, then
for any α ∈ (0, 1) there exists C > 0, so that for any f ∈ C∞c (Rn),

〈(−α∇ ·A∇− |V |)f, f〉 ≥ −C‖f‖2L2 (29)

and

〈A∇f,∇f〉+ 〈V f, f〉+ ‖f‖2L2 ∼ ‖f‖2H1 . (30)

Proof. We know that uniform ellipticity assumption implies

〈(−∇ ·A∇) f, f〉 ∼ ‖f‖Ḣ1 .

We need to prove the inequality∫
Rn
|V ||f |2dx . ‖f‖2

Ḣs
(31)

with 0 < s < 1, since this estimate and the Gagliardo-Nirenberg interpolation
inequality

‖f‖Ḣs . ‖f‖
s
Ḣ1‖f‖1−sL2

imply ∫
Rn
|V ||f |2dx ≤ 〈(−α∇ ·A∇)f, f〉+ C‖f‖2L2 ,

so we have (29) and (30).
In order to prove (31), we take

1

r
=

1

2
− 1

2q
, s =

n

2q

and then we can write(∫
Rn
|V ||f |2dx

)1/2

. ‖|V |1/2‖L2q,∞‖f‖Lr,2 . ‖V ‖1/2Lq,∞‖f‖
2
Ḣs

due to Hölder inequality in Lorentz spaces and Sobolev embedding. The require-
ment 0 < s < 1 is fulfilled due to the assumption q > n/2.

Lemma A.2. Assume A1, A2, H1 and H2. Then one can find positive constants
C1 < C2 so that for any f ∈ C∞c (Rn),

C1‖f‖H2 ≤ ‖−∆A,V f‖L2 + ‖f‖L2 ≤ C2‖f‖H2 . (32)
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Proof. The right inequality of (32) follows directly from the representation of ∆A,V .
Indeed

∆A,V f = (∇A) · ∇f +

n∑
j,k=1

Aj,k(x)∂j∂kf + V f.

Furthermore we can take
1

r
=

1

2
− 1

q
, s =

n

q
and then we can write

‖V f‖L2 . ‖V ‖Lq,∞‖f‖Lr,2 . ‖V ‖Lq,∞‖f‖Hs (33)

with s ∈ (0, 2), so interpolation yields the right-side estimate.
Next we show the left inequality of (32) with V = 0. By A1,

C1‖(−∆)f‖2L2

= C1

∫
Rn

(−∆)f(x)(−∆)f(x) dx

≤
∫
Rn

(−∆)1/2f(x)(−∆A,0)(−∆)1/2f(x) dx

=

∫
Rn

(−∆)f(x)(−∆A,0)f(x) dx+

∫
Rn
∇(−∆)1/2f(x) · GAf(x) dx

≤ ‖(−∆)f‖L2(‖ −∆A,0f‖L2 + ‖GAf‖L2),

where GA = [(−∆)1/2, A]∇ so that

∇ · GAf = [(−∆A,0), (−∆)1/2]f = ∇[A, (−∆)1/2]∇f.
Then, by Lemma 4.4, the Gagliardo-Nirenberg and the Young inequalities,

‖GAf‖L2 ≤ C‖∇A‖L∞‖∇f‖L2 ≤ 1

2
‖(−∆)f‖L2 + C‖f‖L2 ,

which in turn implies

‖(−∆)f‖L2 ≤ C‖f‖L2 + C‖ −∆A,0f‖L2 .

This inequality and (33) prove the left estimate in (32).

Appendix B. Estimate of the weight function. Our choice of w for the proof
of the blow-up result is w(x) = 〈x〉a with a ∈ (1/2, 1). The lower bound of a is
required to guarantee that 1/w ∈ L2(R) for Theorem 1.3. The upper bound of a
follows from the following Proposition:

Proposition 3. For a < 1,

〈·〉a ∈ Ḃ1
∞,1.

Proof. We recall that 2−sjPj(−∆)s/2 is a bounded operator on L∞. Therefore for
j ≥ 0,

‖Pj(−∆)1/2〈x〉a‖L∞ . 2−j‖2jPj(−∆)−1/2∆〈x〉a‖L∞ . 2−j‖∆〈x〉a‖L∞

which implies P≥0〈·〉a ∈ Ḃ1
∞,1. Moreover, for a > 0 since

‖Pjf‖L∞ . 2jn/p‖f‖Lp

and
|∇〈x〉a| . 〈x〉a−1,



LWP AND BLOW-UP FOR HALF GLK EQUATION IN A ROUGH METRIC 2677

by taking p = 2n
1−a

‖Pj(−∆)1/2〈x〉a‖L∞ . 2jn/p‖∇(−∆)−1/2∇〈x〉a‖Lp

. 2j(1−a)/2‖〈x〉−1‖1−aL2n .

Therefore

P≤0〈x〉a ∈ Ḃ1
∞,1. (34)

For a ≤ 0, it is easy to see (34).

Remark 3. It is worth mentioning that the estimate above is valid in arbitrary
dimension, but we can use only n = 1 in order to prove Theorem 1.3.

Remark 4. The upper bound for the function a in Proposition 3 is optimal. Indeed,

〈·〉 6∈ Ḃ1
∞,1(Rn)

for any n. In order to show this, we estimate the following equivalent norm for
Ḃ1
∞,1(Rn):

|||f |||Ḃ1
∞,1(Rn)

=

∫ ∞
0

sup
|y|<t
‖f(·+ y)− 2f(·) + f(· − y)‖L∞(Rn)

dt

t2
.

For details, see [2, 6.3.1. Theorem]. Then, by substituting x = 0, for t ≥ 1,

sup
|y|<t

sup
x∈Rn

|〈x+ y〉 − 2〈x〉+ 〈x− y〉|

≥ sup
|y|<t

2(〈y〉 − 1)

≥ 2

((
1 +

t2

4

)1/2

− 1

)
>
t

8
,

where we have used the fact that

1 +
t2

4
≥ 1 +

t2

8
+

t2

256
≥
(

1 +
t

16

)2

.

Therefore,

|||〈·〉|||Ḃ1
∞,1(Rn)

≥
∫ ∞
1

sup
|y|<t
‖〈·+ y〉 − 2〈·〉+ 〈· − y〉‖L∞(Rn)

dt

t2

≥ 1

8

∫ ∞
1

dt

t
=∞.
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